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Fermi-liquid theory of a two-dimensional electron liquid: Magnetoplasma waves~
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The Landau-Silin theory of an electron liquid is applied to a two-dimensional system like that
occurring in the inversion layer of a metal-insulator-semiconductor structure. The frequency- and
wave-vector-dependent electric and magnetic susceptibilities in the presence of a dc magnetic field are
studied. The magnetoplasma modes of the system are investigated for both very short and very long
wavelengths.

Under the application of a sufficiently strong
electric field normal to the surface, the electrons
in the inversion layer of a metal-insulator-semi-
conductor (MIS) structure form an essentially two-
dimensional electron liquid. ' One very useful prop-
erty of this system is that the electron concentra-
tion can be experimentally varied over a wide
range. This property makes the two-dimensional
electron liquid a useful testing ground for many-
body theories, since the effective interparticle in-
teraction depends upon the electron concentration.
One very successful many-body theory is the phe-
nomenological Landau-Silin theory~ of a degenerate
electron liquid as applied to simple normal metals. '
Although we expect the quasiparticle picture and
the Landau theory to remain valid for the two-di-
mensional electron liquid, the system is sufficient-
ly different from a simple three-dimensional metal4
that interesting new effects might be anticipated.
In this paper we apply the Landau-Silin approach to
the two-dimensional electron liquid associated with
an MIS inversion layer. The kinetic equations for
both the spin-dependent and spin-independent parts
of the distribution function in the presence of a dc
magnetic field are studied. The electric polariz-
ability and the magnetic spin susceptibility are con-
sidered for long-wavelength disturbances. The
magnetoplasma modes, including the cyclotron har-
monic waves, are investigated.

We consider a two-dimensional electron liquid
confined to the plane z = 0 in the presence of a dc
magnetic field B= (0, 0, B). In the presence of an
ac electromagnetic disturbance with electric field
E and magnetic induction b proportional to e'"' '",
the distortion 5n(p, r, t) of the electron distribution
function from its equilibrium value no(p) can be
separated into a spin-independent and a spin-depen-
dent part 5n=f)f+Fg ~ o, where o„, o„, and o, are
the Pauli matrices. The spin-independent kinetic
equation can be written3

iaaf(v)+ (- iqv„+ v'std, ) [f(v) ()e,(v)]

=eE' v+ (I)

Here (f& is angle defining the direction of the wave
vector k and f(rtr) is defined by 5f(k) = (- srro/S&) f((P).
The function f)er((P) is the value on the Fermi sur-
face, i. e. , at tk) =k~, of

«(&)= s f &'&'@(&,&')&f()r'), (2)

where l (k, k') is the spin-independent part of the
Landau interaction function. The parameters 7
=2rn*WO and 7, '=2m~a, S; are proportional to
Fourier components of the spin-independent part
of the transition probability, 2rr W(k —k')f) (e„-e„.),
for scattering a quasipartiele from state k to k'
due to collision with an impurity. The functions
f(rtr) and 5e, ((p) are periodic functions of (t) and can
be expanded in Fourier series. In fact, f, , appear-
ing on the right-hand side of Eq. (1), is simply the
lth Fourier coefficient of f(rtr), i. e. , f, = (2rr)
x J d@f(rp)e "e. The interaction function 4'(k, k ) is
periodic in (p —(p' and can be expressed as C'(k, k')
= rrm* 'gr Ar e" 'e e ', where m* is the effective
mass of a quasiparticle on the Fermi surface (de-
fined by f)eo = m* 'pr bp). The parameter n, ap-
pearing in the definition of ~, is simply 1+2,
With these definitions the spin-independent kinetic
equation can be rewritten

(i(d —'r r'+ n, v '+ilnr(de)fr —s qvr (nr rfr r
—nr+rfi+r-)-

,'ev~(EPr, r+ & &r...) -~

In this equation v~ is the Fermi velocity and E,
=E„+iE .

For the spin-dependent part of the distribution
function, we define g((p) = (- sno/sev)6g(p) and intro-
duce circularly polarized coordinates g "=g„+ ig„.
The resulting kinetic equation for g +' can be written
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(i(d —Sg + pg 7 + 'Llp)(dq +ifjopg) g
Za 4) a—p qvpse-i 5-s +i+z&z+x&

= y, f "'[,' q~-, (a„,—h, „,)+ i&g„]. (4)

In this equation g, is the 1th Fourier component of
g(P); Qo= 2yB, where y is the renormalized gyro-
magnetie ratio (yo is the unrenormalized gyromag-
netic ratio). The parameters 8, and P, = 1+8, are
the spin-dependent analogs of 7, and n, = 1+8,.
The equation for g~~ can be obtained from Eq. (4)
by simply setting Qo equal to zero and replacing
gh) by yh)

To determine the electrical polarizability y and
the magnetic susceptibility vV, we must evaluate the
current density j (inrun E = j) and the magnetization
M ((x b = M). The electrical current density de-
pends only on the Fourier components of f(P) with
I = + 1; j„(qa&) = (n, m *v~e/2v) (f, +f,) and j,(q, (o)
= (io),m*v~e/2v) (f, —f,). The magnetization de-
pends only on the I = 0 component of g(P); M
= z 'm*yogo. For small values of the parameter
X= qv~/(d„Eqs. (3) and {4) can be solved for f„
and go to low orders in X by simple iteration. We
have evaluated y and n to order X'; the results,
which agree with the semiclassic'al results for a
noninteracting electron gas when the Fermi-liquid
interaction parameters are set equal to zero, are
not displayed here since they can easily be evaluat-
ed by the interested reader.

The dispersion relation for magnetoplasma oscil-
lations of a bvo-dimensional electron gas embedded
in a material of dielectric constant &0 has been
given by Chiu and Quinn':

(X, —P"/2. ') (X„"./2. ~) =X.„X,. (5)

We have already discussed the evaluation of y with-
in the framework of the Fermi-liquid theory; the
result could be substituted into Eq. (5) to investi-
gate the effect of Fermi-liquid interactions on the
magnetoplasma modes. However, this method is
not the most convenient, so we use a different ap-
proach,

For self-sustaining oscillations of the electron
liquid, the total current is electronic. We already
know the electronic current j(q, v) in terms of the
I= + 1 Fourier components of f(P). But Maxwell's
equations relate the total current to the electric
field

j(q, (o)=(-i(ue /2mP)(-P c(d e 'E„, Z, ). (6)

We use these results to eliminate E from the spin-
independent kinetic equation and obtain the infinite
set of equations

(i(d+ o'i 7' ' —&i'+ ifc(~(dc)fi —~ Wy(c(( ifi i —c(~+)fi+I)

= —iW&'o'g~P 'c '[(1-&0'(d 'P'c') (f/), g+f Pg, g)

+(I+~o ~ P c )(f,5, , , +f,5,~,)].

(X, +P.) (~,+P.) =P2. (8)

In the low-magnetic-field limit (a» c(d, ) Eq. (8) re-
duces to q = (co~2/c2)+ (&0&v'/an, )2, which is exactly
the plasmon dispersion relation given by Stern.
Keeping terms of order X2 in the determinantal
equation gives for I l I & 2

where

ni(dc ( 4+(
4 l~ (1+ l)Q& &

ltd )D (1' 1)Rg- )
(lo)

In addition to these modes, we find modes described
by

I
1+ 2X X„X„in„a„,i X j+ P, X~+ P,

I 2]+(,'X)'o. ,a.,[(~-,~P.)~,+(X,+P.)X,]=O,

where the prime on the summation denotes the fact
that the terms with n = 2, —1, 0, and 1 are to be
omitted from the infinite sum. Equation (11) clear-
ly represents coupled-plasmon ) l I = 2 cyclotron
waves. For X-O, Eq. (11) reduces to the plasmon
described by Eq. (8) and the cyclotron harmonic
described by X„=0. These modes are coupled by
the terms proportional to X2. The higher cyclo-
tron harmonics described by Eq. (9) in the long-
wavelength limit will also be coupled to the plas-
mon mode, but the coupling term is of higher or-
der than quadratic in X. Despite the weakness of
this coupling, the cyclotron harmonic-plasmon in-
teraction cannot be neglected in the vicinity of the
crossing point (where both modes have the same
velocity).

Here p = 2m*v~~. We use the equation of continuity
to replace f, by (in, qual/2&v)(f, —f,), and define
x, =(u, '(i(u+ilng(u, + n, ~ ' —~g') and y, = P~, '~ '

&& (v 1+eo(d2/P2c~). The nontrivial solutions of the
resulting equation are obtained by requiring that
the determinant of the matrix M„, multiplying the
column vector f, ={.. .f,f „,. . .f „f„fz,. . f„,.. . . )
vanish. Fortunately most of the elements of M„,
are zero. The nonvanishing elements of M are the
diagonal elements M„„=A„+(6„,, +5„, ~) P„and the
two elements immediately adjacent to the diagonal
in each row (or column) M„,~, = a 2Xo.„~„with the
exception Mi, -i =~-i, i= P . We have introduced the
symbols X= qvz/(d, and P~ = (io.'~ay~/2(()~) + (~z X)~Xo~ ooo(&,
where a= 2vNe2/m*, with N equal to the electron
concentration. If the parameter X is very small,
the diagonal elements for I l I ~2 lead to a series
of modes beginning for X= 0 at ~ = ln, w„ together
with a mode described (up to terms linear in X) by
the equation
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Equation (7) is not in the most convenient form
for investigating magnetoplasma modes of short
wavelength (i. e. , with X& 1). To investigate the
shorter wavelengths we find it convenient to intro-
duce the position vector of a quasiparticle on the
Fermi surface R(P) = &o,

' f v(P) dP, where v(P)
= vz(cosP, sing) is its velocity. Since we have
chosen the wave vector q to lie in the y direction,

' = e' '" The funcfions f(P) e ' '" ' '

se, (g) e '~'"'~', and v(Q) e '~ "'o' are all periodic
functions of P and can be expanded in Fourier se-
ries. The Fourier coefficients are E„&„and
v, , respectively. By substituting into Eq. (1) we
obtain

i(uF, + (~ '+ il(o, ) (F, +e, )

=eE ~ v, +Q ~, 'f, , i' '&, , (X). (i2}
l'

Here 4 is the Bessel function of order n, and we

have used the result e"~ = g„ i"J„(X)e'"o. The
Fourier coefficients &, are related to the Fourier
coefficients f, of the distribution function f(Q) by
the relation e, =g„i' J, (X)A„E„, where A„ is the
nth Fermi-liquid interaction pa, rameter. Using
this result in Eq. (12) we obtain

n C

+ e.E v, (i(u+ v '+ il(u, ) '.
To obtain the magnetoplasma wave dispersion re-
lation we again use Eq. (12) and the expression for
the current density in terms of f, and f, in order
to eliminate E from Eq. (13). It is straightforward
to show that F, and f„are related by the equation
f„=g, (- i)™J; (X)E,. Therefore, after eliminating
E from Eq. (13), we multiply the equation by (-i)'
xZ, (X) and sum over all l. This gives the result

-1w -1 0)l'mg 1
~ + ~l ~l' J J + i&

km+ ~ ' i+ho, '~ ' ' pe,&u g(i&a+a. '+ilu& ) 'J, [q'J, +(p' —&,&u'c')J, ]f
l

2

p(2(0+T +il(0 } eT [qel +(p —e h1 c )J~ ]f-pe ooo

For l = + 1 we have

a „,= [i""(i&uA,+ v, ') +i ge 2,ny]

x T, ~+i pe n, y T, , +i (nqqvy/2&)

x(i&uAo+7 ')T„,—A„s „,.
Here y, = —(pro&a) '(p' —eon&oc ') and y = (peoria)

'
x (p + e o(0 c ) —

q /pe o(d

If we assume that ~7; » 1 for all values of l and
set A, =0 for all l, the determinantal equation be-
comes

Q1, 1
—1 Q11

a1, 1
—1

=0. (Is)

This is identical to the dispersion relation for a
noninteracting electron gas given by Chiu and

Here lL = —,m*v&2 and P= (qa —eo&u2c 2)' 2. We may
eliminate fo from this infinite set of equations by
using the equation of continuity fo = (in, qv~/2&@)
x (f, —f,). To obtain nontrivial solutions, the de-
terminant of the matrix multiplying the infinite col-
umn vector f, must vanish. This determinantal
equation can be written la„& —6

&
I = 0, where

s, g
+ 1 (iQ)A( + 'T ( ) T

for /4+ 1. The symbol T, stands for

T, = g (i&@ + w '+ in&a, ) V„„(X)J„,(X). 1 — ag g
— Qfff, -1Q -1,~ Qm, 1Q 1,~ = Oq

t ll&1 I ml &1

(19)
w"e e if= (e-i, -i —1}(&i, —1) —&,, q&, , In the
short-wavelength limit where X» 1 we use the
asymptotic form of the Bessel function J, (X)
= (2/vX)' o[cos(X—2lv —4v)+ O(X ')]. For reason-
able values of the electron concentration N and the
cyclotron frequency &u„Eq. (19) reduces to

1 —QX '(cotmQ+ cscwQ sin2X) = 0. (20)

In this equation 0 = v/e, and only through the m*
appea. ring in co, do Fermi-liquid effects appea, r.
The interaction coefficient A, appearing in the a,
of Eq. (19) drops out of the equation when the X» 1
approximation is made. Equation (20) has been de-
rived previously by Chiu and Quinn' for the free-
electron gas.

To summarize, we have derived expressions for
the electrical susceptibility y and magnetic spin

I

Quinn. ' In the limit of small X the Bessel functions
appearing in Eq. (16) can be expanded in power se-
ries, and it is not difficult to show that the disper-
sion relation obtained from I a, —6, I = 0 is identi-
cal to order X2 to Eqs, (10) and (11). Because all
the a, except a, and a, are proportional to A„
we can obtain a reasonable approximation to the
dispersion relation at short wavelengths by retain-
ing terms of only zero and first order in the coef-
ficients A, . The resulting equation is
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susceptibility n of a two-dimensional electron liq-
uid in the presence of a dc magnetic field. The
fundamental cyclotron resonance absorption occurs
at to = n, a&, = n, cB/m*c, where m * is the quasipar-
ticle effective mass. It follows from Galilean in-
variance that m*=0.,m, where m is the band mass
and is independent of electron-electron interactions.
Thus in a cyclotron resonance experiment' we would
not expect m to depend on the electron concentra-
tion N except for nonparabolicity of the bands or
electron-phonon effects. In contrast, the ampli-
tude of quantum oscillations depends on Ru, /kT.
This quantity is inversely proportional to m*, the
quasiparticle effective mass, which depends on e,
and therefore is sensitive to the electron concen-
tration. ' We have also investigated the magneto-
plasma modes of the two-dimensional electron liq-
uid. We find a sequence of "cyclotron harmonic"
waves, which begin for very small values of qv~/~,
at co = e, l~„ for l = 2, 3, 4, .. . . In addition to the

cyclotron harmonic modes, we find the usual bvo-
dimensional plasmon. As discussed by Stern, the
plasmon begins at q= 0 with the frequency ar

= co'I'cq; for larger values of q, ~ = (n, eo'aq) '~a.

The plasmon mode and cyclotron modes are coupled,
and one obtains a splitting of the coupled modes in
the vicinity of their crossing point. For very large
values of q, the cyclotron mode which begins at
~ = la, ~, approaches asymptotically the value
a& = (l —1)&u, . It is interesting to note that there
exists a long-lived excitation of frequency v, (for
the I= 2 case at large values of q) whose frequency
is close to but not equal to the fundamental cyclo-
tron resonance frequency e,w, . It is tempting to
think of ascribing the subharmonic structure of
cyclotron resonance seen by Kotthaus et al. to
those propagating modes, but the lack of sensitivity
to the electron concentration of the position and
amplitude of the subharmonic structure makes this
surmise unlikely.
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