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Brownian motion model of the interactions between chemical species and metallic
electrons: Bootstrap derivation and parameter evaluation*
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We develop a Brownian motion model of the interaction between reacting chemicals on metal surfaces
and the substrate electrons. The basic equation of such a model is the transport equation for the
description of the chemicals' kinetics. We assume here that this equation has the functional form of the
classical Fokker-Planck equation. The parameters of this equation —the average force and the friction
coeAicient —are determined by a bootstrap procedure, which requires that equilibrium and
linear-response properties of the solution of the Fokker-Planck equation be identical to those calculated
from the full quantum-mechanical equations. This derivation has the advantage that there is no need to
explicitly require the electron-adparticle mass ratio to be small. We show further that our general
expressions for the parameters reduce to those derived previously for systems in which the
electron-adparticle mass ratio is formally made to tend to zero. These small mass-ratio expressions for
the average force and the friction coefficient are then evaluated for several model metal plus adparticles
systems, Simple systems and/or approximations are used in order to clarify the physical magnitude and
dependences of these parameters.

I. INTRODUCTION

As described in an earlier publication, ' there is
strong evidence that the speed of a heterogeneously
catalyzed reaction is quite sensitive to variations in
the fluctuation characteristics of the solid substrate.
For example, near a phase transition of the sub-
strate, fluctuations in the appropriate substrate
degrees of freedom are enhanced, and substantial
anomalies occur in certain reaction rates around
the transition temperature. A similar effect is
noted, when the fluctuation (or equally well the re-
sponse) characteristics of the substrate are changed
by alloying. Yet in some cases, the activation en-
ergy for the reaction (to which any thermally acti-
vated rate will be most sensitive) does not change
materially. For a partial listing of the available
experimental evidence, the reader is referred to
Ref. 1.

Any thermally activated process takes place at a
rate

y= ve ~&~~&~

where T is the temperature and jp~ is Boltzmann's
constant. F~ is a barrier free energy, and v is a
"successful-attempt" frequency. Very crudely, one
may say that I'~ is obtained in a calculation of the
systematic energetics of the reagents as a function
of their position, while v is determined by the dis-
sipative part of the interaction between the reagents
a,nd the degrees of freedom of the heat bath (the
substrate in the present case) responsible for acti-
vation of the reaction.

In order to expand on these statements, we need
to use the Born-Oppenheimer conceptual scheme for
describing electron-nuclear problems. within this

scheme various chemical compounds correspond to
minima in the electronic eigenenergy hypersurface
in the space of the nuclear coordinates of the con-
stituent atoms (adparticles). In many ca.ses a
chemical reaction may be viewed as a Brownian
motion of the system's representative point in this
space from one minimum to another. Usually, this
motion is essentially classical, and we shall assume
this throughout. The manner in which the prefactor
v in Eq. (1) is related within such a Brownian-mo-
tion model to the coefficients embodying the dynam-
ics of the adparticle interaction with the heat bath
or substrate has been discussed by Kramers, 3 and
we begin by summarizing his results.

It is often possible to reduce the problem to mo-
tion in one dimension. For energetic reasons the
statistically favored path taken by the representa-
tive point from one minimum to another hugs the
line of steepest ascent and descent over the saddle
point separati. ng the two minima. This li.ne is
called the reaction path. The probability distribu-
tion for finding the representative point at a certain
position H, and moving with momentum P (where
each of these are 3X-component vectors, if there
are N participating atoms) approximately factors
into a function of the coordinate and momentum
along the reaction path f, say, and a function of co-
ordinate and momenta along suitable coordinates
orthogonal to this path. Thi. s latter function may be
taken to be a Boltzmann factor. The conditions for
the validity of this factorization are (i) the principal
curvature, as well as the higher "torsi.ons" of the
reaction path must vary sufficiently slowly along the
path and (ii) the reaction must proceed sufficiently
slowly so that quasiequilibrium has time to set in at
each point along the path, with respect to the trans-
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FIG. 1. Plot of typical effective adparticle potential
energy V vs reaction coordinate in one dimension. The
activation energy V& for a reaction from A to C is marked.

verse coordinates.
Assuming this factorization, it is easy to show

that the Boltzmann factor only contributes the en-
tropy portion of Ps i.n formula (1). We shall not
mention it further. The energy part of Il~ is the
height VB of the saddle point above the minimum
(A in Fig. 1), if the reaction goes in the di, rection
from A to a neighboring minimum C (Fig. 1).

The first factor f in the probability distribution
obeys a transport equation for one-dimensional mo-
tion along the reaction path, which in lowest ap-
proximation is identical to that of a single adpar-
ticle. When one can regard as small the momentum
changes of the adparticles in collisions with the
bath, this transport equation plausibly takes Fokker-
Planck form. Since in this paper we shall empha-
size the influence of the electronic degrees of free-
dom of the substrate, this assumption is reasonable
because of the small electron mass m to adparticle
mass M ratio. Thus, f obeys the equation

Bf P Bf Bf 8 Bf—+——+(F)—=q —Pf +Mks T—
et M &R eP 8P 3

Here (E) = —BV/BR is the systematic force along the
reaction path and q is the friction coefficient which
embodies the "random" interactions with the sub-
strate degrees of freedom. Corrections to M aris-
ing from the average transverse deviation of the
"adparticle" from the curved reaction path can be
neglected if we assume that such a deviation is very
small with respect to the radius of curvature of the
path.

A general solution of Eq. (2) is still not known.
However, Kramers discusses it in the limits of
small and large g and presents strong evidence that
for intermediate values of g the purely kinematic
theory of Eyring, known as the absolute-rate theory
(ART) must apply. He shows that (for the configu-
ration in Fig. 1), the formulas in the three regions
are Q=(k T)'],

Here ~„'s = (2/M) ~
8'V/BB'~„s. The physical rea-

sons for these differences are roughly the following:
On the grounds of pure kinematics, one would sim-
ply count the number of particles in the Maxwellian
tail about A with sufficient velocity to surmount the
barrier. Such an argument assumes that there is
an inexhaustible Maxwell distribution in well A, and
the result then does not involve g. However, the
thermal agitation of which g is a measure, must be
adequate to replenish the tail, otherwise the reac-
tion would cease. Thus for small g, the rate may
be expected to be proportional to g. Once g is large
.enough to replenish the tail fully, no further depen-
dence of z on g will result and the ART applies until

g becomes so large that the friction between adpar-
ticies and bath (of which q is likewise a measure)
begins to inhibit the motion. Then the rate falls
off. In this region (in which the Fokker-Planck
equation reduces to the Smoluchowski equation) z
falls off as I/q. (For an extension of Kramers cal-
culation to higher order in q and I/q, the reader is
referred to Ref. 1.)

The basic motivation of this paper is that in some
catalytic reactions ART may not apply. One of the
standard explanations for the role of the catalyst in
bringing about a larger rate is that it lowers V~.
At the same time, a lowering of V~ is plausibly ac-
companied by a reduction in ~~. Hence, the inter-
val of validity of ART, ur„ka T'/Vs to &us, evidently
shrj. nks, and a strong q dependence of x might oc-
cur, if g falls outside this reduced interval. Such
a hypothesis would explain why the reaction rate
can change drasti. cally without significant change in

V~ as, for example, alloying changes the substrate
fluctuations and thereby 7i (as we shall see). As a
first step towards the understanding of such phe-
nomena, we develop in this paper prescriptions for
the evaluation of q and (F) and give several model
results for g. This approach of expressing the pa-
rameters of the Fokker-Planck equation in terms
of substrate properties is one way that solid state
physics may be able to contribute to the science of
catalysis.

A satisfactory procedure from the standpoint of
rigor would be, for example, to begin. with the
Liouville equation for the density matrix of the
whole system, adparticles plus substrate, and to
extract from it, by suitable tracing operations and
assumptions about the approximate thermal distri-
bution of the substrate, an equation of motion for
the reduced density matrix of the adparticles alone.
Finally, since quantum effects in the motion of the
latter are expected to be small, a "classical"
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transformation (e.g. , that of Wigner' or Husimie)
should reduce that equation to the classical Fokker-
Planck form, Eq. (2), with the parameters 1i and

(F) being defined inter alia
Such a procedure in various forms has in fact been

carried out several times previously (see Dagonn-
ier's review article) for systems with homogeneous
heat baths and has recently been extended to treat
the inhomogeneous case by one of the authors.
These derivations however are formally valid only
to lowest order in some small parameter which may
be for instance m/M or h&o„/ART. The latter case
in particular is a source of puzzlement since this
ratio can easily be greater than unity in practical
cases, supposedly signifying the complete break-
down of classical mechanics. Qn the other hand,
from the success of the classical viewpoint of reac-
tion kinetics one can conclude with some confidence
that these difficulties are to a certain extent only
formal, and that a classi. cal transport equation for
the adparticles is, in fact, a reasonable representa-
tion of their motion. That this equation must take
Fokker-Planck form would appear to be dictated by
simple symmetry and detailed balance considera-
tions, once it is agreed that the unsystematic part
of the bath-adparticle interaction causes a succes-
sion of very small momentum changes in the adpar-
ticles. As noted above, this last assumption is
reasonable for the electronic baths we consider.
Hence we shall in this paper derive expressions for
ri and (E) of Eq. (2) through a "bootstrap" proce-
dure, based on the presumed validity of (2).

This is described in detail in Sec. II. There we
also show how our general expressions reduce to
those of the formal derivations" in the limit of all
small parameters forced to zero. In Sec. IG we
give several model calculations of g, attempting to
elucidate its magnitude and physical dependences.
Finally, there are several Appendixes dealing with
subsidiary material that is perhaps too detailed for
the general reader. Appendix A gives an alternate
bootstrap procedure to that of Sec. II that nicely
generalizes work by Kubo but unfortunately seems
only applicable to an harmonically, bound adparticle.
In Appendix B we show how the bootstrap procedure
of Sec. II, which is done for an effective single ad-
particle moving in one dimension, may be carried
through for an arbitrary number of adparticles in
three dimensions. More of the details of one of the
model calculations of g are described in Appendix
C since this involved an application of multiple
scattering theory that is not generally known.
Lastly in Appendix D we give a model calculation
of g for a system in which phonons are the source
of the random forces in a Fokker-Planck equation.
This allows one to compare the relative efficiencies
of the two kinds (electronic or vibrational) of ther-
mal reservoir.

f„-exp[- P(P~/2M+ V(R)], (4)

and hence the density in configuration space p„is

p (~) e-8F(R)

On the other hand, in terms of the full Hamiltonian
operator H (adparticle plus substrate), it is also
proporti. onal to

where R is the position operator. Thus equating
these two results we find

II. BOOTSTRAP

In this section we develop a bootstrap procedure
for calculating the parameters of the Fokker-Planck
equation. Such an approach is not completely new,
for it has been variously applied to other phenome-
nological equations, " but its use in connection with
the Fokker-Planck equation is original. The basic
assumption of the method i.s that use of the classical
distribution function, f, determined by a kinetic
equation of Fokker-Planck form„gives an adequate
description of the system. This assumption can
only be expected to hold true on a certain limited
time scale, for a certain range of temperature and
mass, and for a limited rapidity of variation of the
potential along the reaction path. Estimates of
these limitations may be obtained from the forrnal
derivations of the Fokker-Planck equation; but, as
we argued in the introduction, these estimates will
be more stringent than necessary. The Fokker-
Planck equation is expected to simulate closely the
actual motion of the heavy particle for most cases
of practical interest. The various possible excep-
tions to this conclusion have been discussed else-
where. "~

Once we accept the Fokker-Planck equation as
the appropriate phenomenological equation, the co-

efficientss

in the equation should be obtainable by the
following method: (i) Calculate certain physical
quantities on the basis of the Fokker-Planck equa-
tion; (ii) calculate the same quantities on the basis
of rigorous formulas using the full Hamiltonian of
the system; (iii) equate the two sets of results.
Then since the results of step (i) are functions of
the parameters of the Fokker-Planck equation, step
(iii) will yield equations for these parameters. Evi-
dently the potential V, which serves to define (E)
through (E) = —8 V/sR, should be obtainable from the
equilibrium situation; whereas g, describing dissi-
pation, requires consideration of at least small de-
viations from equilibrium. We shall carry out the
formal determination of these parameters here
based on Eq. (2) and reserve for Appendix B the
general case of many particles in three dimensions.

To determine V we note that the equilibrium so-
lution of (2) l.s
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= q Pfi + Mks T—
Multiplying by P and integrating over P we find the
following relation between the linear increments in
density p, = ff, dP, current density j, = f(P/M)f, dP,
and kinetic energy density K, = f(P /2M)f, dP:

r' M(r) —(le) = (R e.,+ (R)e, —&
8+i (10)

where p„is the (normalized) equilibrium density
[see Eq. (S)].

Now consider the operators

p(R) =S(R)= &(R- R),

V(R) = —ks T ln Tr[e ~"6(R —A)]+const.

so the force is

(R(R))=+Tr(e e" —I!(R —R))/)!Tr(e e"Il(R —R)] .
(6)

The friction coefficient g may be determined by
calculating the response of the adparticle to an in-
finitesimal slowly varying applied field according to
the Fokker-Planck equation, calculating the same
response according to exact formulas of the type
given by Kubo, '3 and finally equating the two re-
sponses. The validity of this method is restricted
to low frequencies, since the Fokker-Planck equa-
tion as it stands can only yield a basically Lorentz-
ian response, whereas it it known'4 that the true re-
sponse must fall off faster than any inverse power
of the frequency at high frequencies. A more ac-
curate theory would have to take account of non-
Markovian retardation effects resulting from elimi-
nation of the bath degrees of freedom that would
make g, and presumably also the effective force
(F), frequency dependent.

We imagine a small disturbance V, = —I',Re '"'
applied to the heavy particle alone. The solution of
the Fokker-Planek equation will then have the form
f =f„+f, e '"', with f, of order F» and one can
linearize the full equation, yielding an equation for
f, . However, the effective potential is not obvious-
ly V+ V, , since the bath degrees of freedom pre-
sumably also react to the disturbance, though indi-
rectly, so that a reaction field might arise that
should be added to V, . We neglect the possibility
of such effects here, which is in the spirit of the
usual approach to the Pauli rate equation' that the
transition probabilities occurring therein are given
by their equilibrium values, even though the equa-
tion supposedly describes the course of deviations
from equilibrium.

The linearized equation for f, is

—i~f, +—,„+&F) +F, —P Bfi Bf]. Bf.,
8P

j (R) = (ps + 5p)/2M,

Xc(R) = (P'6 + 2PBP + BP')/sM,

E(R)5(R) = Fp,

(12)

(13)

(14)

where P= —ih(8/BR) and P= —BH/BR is the total
force on the adparticle. These operators satisfy a
Heisenberg equation of motion

8j
M —+2——Ep=0 .et 8R

(ls)

The traces of these operators over g)/ variables,
weighted by the statistical operator of the whole
system, satisfy the same equation and so do the lin-
ear increments in these traces produced by the ex-
ternal field V, . Denoting such an increment in the
trace of an operator by braces ( ] and a subscript
1, we have in the presence of V„

or

8—i(dM(jh+ 2—(&h —((F+Fi)P]|= o
8R

8- i~M(i'I+ 2 BR(&'I (»'I F-~(P]' =—o

(16)

The essence of the bootstrap procedure now comes
in making the identifications p, =(p}» ji =(j]» and

K, =(K];. We also use the identification p„=(p)„,
which earlier served to define (F), Eq. (7). Note
that these various identifications refer only to ad-
particle responses: we cannot so treat (Fp), , the
linear increment in the average force density, since
the force operator depends on both the adparticle's
and bath particles's coordinates and hence its aver-
age may not be computed merely from a solution of
the Fokker-Planck equation. '6 We ean now combine
(10) and (16) to find

Mq(R) = —((Fp]; —(F)(p},)/(j), . (17)

The quantities on the right-hand side are now eval-
uated by the Kubo formalism. They will all be
functions of frequency, and the expression for g
will in general not be frequency independent. How-
ever if it is sensibly flat over a frequency range
from zero to well above the time rates of variation
of interest in the solution of the Fokker-Planck
equation the use of a frequency independent q is
justified, and we require only the zero frequency
limit of the right hand side. [Similar results apply
if V, is allowed to vary sinusoidally in space. The
Fokker-Planck equation with a purely local g is then
justified if the right-hand side of (17) is not signifi-
cantly wave-number dependent at low wave number. ]

For a disturbance —I'&Re '"', the relevant Kubo
formula'3 giving the increment in the expectation
value of an operator A is
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CO i.8

A, =— dr e'"' d& (P(- 7' —i&@)A) . (18)
M ~0 &0

Here (. . .) means Tr(e B" . .. )/Tr(e B") and P(r) is
the Heisenberg operator P after evolution over a
time 7 under the Hamiltonian H T.hus (17) becomes

Mg(R) = —
) dr e'"' d&(P(- 7' —iM)(F5 —F„5))

"0 0

dry C)0 8 -1
X

l d1 (r
~

dA. (P(- r —ikh) (P5 + 5P))
"0 +0

(19)
where the right-hand side is to be evaluated at & =0
and the symbol E„hasbeen introduced for the ex-
pression of Eq. (8) in order to avoid confusion. In-
tegrating the numerator by parts with respect to 7,
recalling that i'= [R, H] and if'= [P, H], and ap-
plying the Kubo identity'3 for any operator P,

limit P in (23) loses its time dependence while F in
(22) retains only a time dependence due to the adia-
batic Hamiltonian O' = H P-/2M. For both equa-
tions the traces are of the form

Tr[e B g(R, P, (B].)5(R —R)]

(k—~]TrB[e '"g(-R, P, (B))5(R-R)] ~k&, (24)

or (24 )

where (Bj represents the collection of bath opera-
tors and k labels the plane-wave basis. In the limit
M-~, (24) becomes

XTrB[e "' ' ' "g(R, hk, (B])5(R R)]

d g
[e-'",A"] =, d~e '"[A(- i~a), H],

~dP

(20)
"dk @'2k2

Tr [e ()X (Br{B]) (R 8k $g])]

we may alternatively write

S=lim lim Tr„Tr~ e . d7 e'"'
co"0 M &0

) 8
x dx P( r —rl )r)(ir —T„)()), -

Mp

W Oo

D = lim lim Tr„Tr, e '" dr e'"'(- i(p)
u) ~0 M~~ ~rr0

~8
x ', dXi(-r —ixd) (id+di)),

&0 2M

(22)

(23)

with Tr„and Tr~ denoting traces over the degrees
of freedom of the adparticle and the bath, respec-
tively. To perform Tr„weuse a plane-wave basis.
We neglect all commutators i.nvolving P /2M and
effectively treat P as a c number except when it
acts on a plane-wave state. Such a procedure be-
comes exact if M- ~ first. ~~ We see that in this

Mrl(R) = d7 e'"' d&(F(- r —Pk)(F- F„)5)
dp "0

1
&& —ice d&e'"'

~

u I"' -& -&~@ &&+~& ~

"0 "0 2M

(21)
Either Eq. (19) or (21) is our most general result,
subject only to the presumed validity of the Fokker-
Planck equation. It is important to verify that these
expressions agree with the result of the formal
derivations of the Fokker-Planck equation, that,
as M- ~, q should be proportional to the correla-
tion of the fluctuating force on the (static) adparti-
cle. We proceed to prove this in the limit M tends
to infinity first and ~ tends to zero afterwards.
That the opposite sequence of limits gives the same
result is implicit in the formal derivations. "

To carry out the limiting process we first re-
write (21) as M]7(R) = N/D, where

Now in Eq. (22) the g function is independent of k
while in (23) it varies quadratically with k; hence
in both cases the k integration is trivial. We find
for the ratio N/D,

Mr)(B) =Tr (r
r

r g

dr dA. Fp(- v —ih. h, R, (B])
"0 "0

x(T(rr{ir]) —T.,(rr)]), (Tr,. (r '"' '"' ")] '

",(- — )(F—F.,) . (25)
"0 ~0 p, R

Here the subscript 0 on Il denotes that the only time
dependence comes from H'; similarly the thermal
average is only over the bath degrees of freedom
and is weighted with the adiabatic thermal factor.
Equation (25) is evaluated with the adparticle im-
mobile at R. We may reduce (25) to its more fa-
miliar form if we note that the limiting procedure
above reduces F„,(8), to (F)p B in the notation of
Eq. (25). Then we can define the fluctuating force
on the immobile adparticle at A as

F(R, (B))=F(R, fB].) —(F)p„, (28)

with (F)p B = 0. Furthermore we can eliminate the
A integration in (25) if we take the real part of the
time integral. We find then

( 00

Mii(R) =ReP~ d(FFp(T))p B,
0

(27)

which is the result of the formal derivations. Note
that this limiting expression implies that g becomes
basically just an electronic property with its only
dependence on the adparticles being through their
instantaneous conf iguration.

Thus our general expressions, (19) or (21), have
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the appropriate limiting form. Furthermore, they
hopefully represent a meaningful extrapolation away
from that limit, though we shall not examine care-
fully this point here.

III. MODEL CALCULATIONS

In this section we evaluate the large mass limit
expression for the friction, Eq. (2V) or the analo-
gous expressions of Appendix B, for several model
systems. Our aim is to clarify the physical depen-
dences of q, allowing one in the future to make rea-
sonable approximations on more complex systems.
Therefore we choose very simple systems to con-
sider here for two reasons: First, we want the
evaluation of g to be straightforward; and second,
we want to see clearly how the physics of the model
determines g. In all, we discuss six different mod-
els below and in addition give a phonon model esti-
mate of g in Appendix D.

A. Charge-response model

We consider first the fri.ction on a heavy particle
in an otherwise homogeneous interacting electron
gas. Assuming that the heavy particle has a single
positive charge, we can write the force operator of

Eq. (26), suitably generalized to three dimensions,
as

n=
' lm l- Re "-d Va. v-.

e"0 % 0 I,'~0 ~0

r l)V(IR' —r'I )c&(r, r', 7'), (29)

where

c,(r, r', ~) = (6n(r)6no(r', ~))o ~ o . (30)

(31)

where the dielectric constant s(q, ~) is given by

e '(q, (o)=1 —V(q)
'

This correlation function c, may be reworked into
the form of a charge response function of the sys-
tem; and because one takes the real part in (29),
only the "lossy" part of the response survives. To
make this more explicit we apply the further ap-
proximation here of neglecting the presence of the
heavy particle in the evaluation of c,. This amounts
to evaluating g to lowest order in the forces coupling
the heavy particle motion to the electron bath. The
validity of such a perturbation approach will be ex-
amined below for more tractable single-particle
models. We find from Eq. (29), noting that a Fou-
rier representation of (30) is now appropriate,

g(R) = —vs l dr V(I R —r
I
)6n(r, R), (28)

where V(R) = —eo/R and 5n(r) = n(r) —(n(r))o y is the
(fluctuating) density operator of the electron gas.
For such a model system the fri.ction is diagonal in
its Cartesian indices and all components are equal.
Furthermore, it is independent of R. Thus, we can
write q [=g„„(R),say] as

&& d~e'"'(lno(q, ~), n( —q)]),', (32)
"0

with n(q) = fdre "'n(r), V(q) =4we'/q', and n is the
volume of the system. The zero subscript in (32) is
a reminder to neglect the heavy particle in evaluat-
ing both the time dependence and the bath average.
To proceed further we use the random-phase ap-
proximation (RPA) for e(q, &o) (Ref. 18)

0„

and in addition take the Thomas-Fermi approxima-
tion for the real part of e(q, w), replacing the de-
nominator in (33) with (1+k',/q')'. Here kz is Fer-
mi momentum, Ez=k kz/2M is the Fermi energy,
and k, = (4k„/mao)'~ the Thomas-Fermi screening
wave vector, where a0 is the Bohr radius. We now

have

4 m e'/ao "&qdq k,'/q'
k' (1+k'/ ')'

4 m~»2/ o
I
ln(1+ mkza ) (34)

3m M 0 ( 1+m'k~a0

For reasonable values of k~ the expression in the

I

brackets is of order unity and we see that g is
roughly the mass ratio times a typical electron fre-
quency. The various approximations that we have
made for & do not affect this conclusion.

Note that the &u-0 limit in (31) removes any plas-
mon contr i.bution to g.

B. Spin-response model

Now let us consider the evaluation of the friction
if we imagine a switch from a direct Coulomb inter-
action to an exchange interaction. Such a situation
would arj.se if an electron remains more or less
localized on the heavy particle. We would then
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write the force operator of Eq. (26) as 1/I [ ] = ~2'
— ln[ —,'/(1 —I)] —1 . (43)

F(R) = —&g dr j(R, r)S ~ s(r), (36)

where S is the local spin operator, s(r) the elec-
tron-spin density operator, and J(R, r) a measure
of the exchange interaction strength. We have as-
sumed for simplicity here that &S&o= &s)0=0. If we

specialize to an otherwise homogeneous medium,
we may reduce the friction expression as in Sec.
III A

1 i 00

— lim li.m Be e'"'dg V~ ~ V~,
3&&aT ~-o %"Q,R'"o "o

Thus we see that though q diverges as I goes to 1,
the divergence is much slower than that of the sus-
pectibility, which is proportional to (1 —I) '. 22

C. Phase-shift modei

Next we turn to single-particle models. For in-
dependent electrons in an arbitrary potential we can
reduce Eq. (B16) to

(44a)

where

drdr'd(IR —rl)&(IR' r'l)c2(r r' ~) (36)
l

dq ——Tr~„»I"„5e —O' E&5 E —h'
(44b)

c,(r, r', ~) = &S s(r)S(~) s(r', ~)&,
„

= 0 . (37)

Now we again apply a perturbation treatment with

respect to the interaction between the bath and the
heavy particle. To lowest order in J we find

c,(r, r', ~) = S(S+1)&s,(r)s,', (r', r)&, (38)

3

~q J'(q)lim(m ——y(ti, v(), ($9(
@vo

t' 1
iim im( ——x(q, w))
fd O

mk~ 1/qv2
+2@2 (1 I +Iq2/12k2)2 q E

0, q& 2k~
(41)

where v~ is the Fermi velocity and I is a measure
of the exchange interaction between the bath elec-
trons, 0&I &1. Substituting (41) into (39), we find,
neglecting the q dependence of J,

m S{S+1) ma, '
M I2 q= F282

(42)

The limiting values of the square brackets are

~ wc

y(q, (d) = —— dv' e'"' &[s, 0(q, r), s,(- q)]&o. (40)
Qo

The zero superscript means that J is set to zero in
the evaluation of (38) or (40). Note that our use of
perturbation theory for q yields an expression simi-
lar to that previously derived from the "Golden
Hule. "" An interesting result for g is obtained if
we use the paramagnetic form of the response func-
tion i((q, (d) (Ref. 20):

where Sn/Se is the energy derivative of the electron
Fermi-distribution function. Since we shall always
consider the electron bath to be degenerate we re-
tain below only the zero-temperature limit of n,

~S——= 6(e —i(,)
~E

(46)

where p (= Ez) is the chemical potential of the elec-
tron bath, governed by II'. Note that the eigen-
states and eigenenergies in (44a) are for single
electrons and that the trace in (44b) is to be done in
the Hilbert space of one electron. Also the single-
particle Hamiltonia k' is defined by

(46)

where the summation is over all the bath particles.
The careful reader will perhaps wonder why there

is no restriction on num in (44a). This omission is
negligible for all but one dimensional systems, and
even there the problem is only formal. If we con-
sider the friction to be defined by

q = lim e dv &6'fo(v)&2
0 ~Q

(47)

rather than Eq. (27), and take the limit ~- 0 only
after inserting complete sets of states of the infinite
medium, we obtain (44a.). ln other words, to get
the physical result we must take the ~ limit after
the thermodynamic limit.

Equation (44) is as far as we can proceed without
introducing a specific h". The simplest case to
consider is when the heavy particle is the only in-
homogeneity in the electron gas, the single particle
analogue of the model of 3ec. IIIA. The only forces
in the problem then are between the electrons and
the heavy particle, which we describe by a poten-
tial V. We assume V has a finite range —specifi-
cally we assume it is not Coulombic —but otherwise
arbitrary. The reduction of (44a) proceeds most
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t'= V+ VG t (48)

easily if we use some formal operator manipula-
tion. 2' To this end we introduce the t matrix:

resentation of t is appropriate

n&k'o'
I
f '

I
k„v&= 5. ..4m+ (2f+ 1)

where

G,'= (p, —p/2m+iO') ' (49)

e2 e" sin6, I', cos8-„.g. ,m gp

(58)

and p is an electronic momentum operator.
Noting that P = (i/0) [P, V] is the force on the ad-

particle and that pi, G,'] = 0, we deduce

where 5, is the phase shift of the 1th partial wave
and the P, are Legendre polynominals. ' Substitut-
ing (56) in (54) we obtain2'

(i/@)[0, f'] =(1+i'G;)&(1+GQ') . (5o) q =———"Q (l+1)sin (6, —5...)8 mZ„ 2

yields

(i/@«'IU, f'] lk& = &ei I PI v;-&

Now to rewrite (44a), we simply use Ig„.& for tn&

and Igp& for Im& plus Eg. (52). We find

/~8=
I

d6 — k 0 t kO'

e'u'& e'a"
x(k —k )(kg —k8)5 e- I5 e—,(52)

2m ) 2m

(52)

where we have included summations over spin ei-
genstates )o& and la ), which until now were only
implicit. If we now assume that V is spherically
symmetric, or at least that we may average out the
non spherically symmetric portion of the square of
the f matrix element, ~2 then we can rewrite (53) as

dk dk

x(l —cose„- - )5 p—R', Rg 2m)' (54)

where k~ is a vector of magnitude 4~ and whose ori-
entation is averaged over, le& is a spin eigenstate
of s~, eg.,„» is the angle between k and k~, and
n= kz/Sma is the average density of electrons. Such
an expression for g was first derived by Davis and

Dagonnier by another method. " Equation (54) may
be directly compared to the transport time v of im-
purity resistance p = m/ne r in the low-density and
zero-temperature limit

g = (m/M)(n/n;)1/r, as n; —0, (55)

where n, ; is the density of impurities. The direct
relationship between g and p can be understood
physically as a consequence of Newton's third law.
The forces that slow a drifting heavy particle are
equal but oppositely directed to the forces that im-
pede the flow of electrons.

If we assume that V is a spherically symmetric
spin-independent potential, then a phase shift rey-

Taking matrix elements of this equation with plane
waves tk& and Ik &, and recalling that the scattering
wave states, lg'„-& are related to plane wave states by

Iy'„-&=(1+G,f )Ik& (»)

i =(i/ k)[j, i"]. (58)

Then, since in Eq. (44a) the friction is related to
matrix elements of F between states of equal ener-
gy, one deduces

&
= (/k)& l(ik"- k"j)

I

= (i/h)(e —e„)&nlelm) =0 since e„=e„,
(»)

and hence @=0. This conclusion is false. The er-
ror in the "proof" lies in the step between the first
and second line of (59). One assumed there that k'~

is Hermitian, which it is not when acting between
states that are not square integrable. The culprit
i.s the kinetic energy, whose anomalous properti. es
in this regard are well known. ' Furthermore the
"proof" cannot be repaired by working i.n a large
box in order to give the electron states a finite
norm. The walls of the box will contribute to the
forces in (58). Thus, though one can then prove
that the equal energy matrix elements of the total
force must vanish, this is not relevant for the force
only on the heavy particle.

D. Two-particle phase-shift model

We now generalize the model of Sec. IIIC to in-
clude two heavy particles in an otherwise homoge-
neous electron bath. Each heavy particle is as-
sumed to interact with the electrons through a local
central spin- independent potential and furthermore
these potentials are presumed not to overlap. This
muffin-tin model of the potential will allow us to
solve the electronic multiple-scattering problem in
closed form. Our evaluation proceeds from (44b)
and its generalization from Appendix B. We write

&r
I
5(p k")

I

r'& = (1/&) lm&rl G'I r'& (8O)

where Im denotes imaginary part and

which again confirms the order of magnitude con-
clusion of Sec. IIIA.

We close this section with a brief discussion of a
"proof" that g vanishes identically for the model
considered here. The argument is as follows: If
the only forces are between the electrons and the
heavy particle, one may write the force on the heavy
particle as
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IO

(62)

IO
where we have assumed the two particles have the
same mass M. This equation is more clearly writ-
ten for this simple model if we use the center of
mass and relative coordinate

R = —,(Rg+R2), r =Rg —R2

and their conjugate momenta

p=p&+p~, p=-. (pi —p2) .

(63)

(64)

-I
IO

10

kF

FIG. 2. Center-of-mass and relative friction in the
longitudinal L direction versus the separation r of the
two muffin-tin spheres. The single s-wave phase shift
of either sphere at the Fermi energy is +30 . The infi-
nite separation limit of the friction is q~.

G'= (p —k'd+f0') '; (61)

note that we only need to know (r ~

0'
~ r ) for r, r' in

one or the other of the two muffin tins, since only
there is the force nonzero. The solution of this
problem for G' requires a straightforward applica-
tion of multiple scattering theory. However, the
relevant formulas are rather cumbersome so we
relegate to Appendix C an explicit listing of the re-
sults we use. The final expressions depend only on
the separation g of the two muffin tins and the phase
shifts of the separate potentials. For simplicity,
we assume the two potentials are identical and have
only an s-wave phase shift 6. Since the require-
ment that the potentials not overlap is only implicit
in the formulas, we shall take the view that the
phase shift is produced by a model potential of arbi-
trarily short range and shall evaluate our results
for all values of ~.

Before presenting the results of our calculation
we need to discuss the form that the friction tensor
takes. 2 By the symmetry of the problem q is diag-
'onal in the Cartesian indices but has different values
in the directions parallel or perpendicular to the
heavy particle separation vector r. We label these
two values longitudinal and transverse, respective-
ly. Furthermore, the friction is nondiagonal in the
heavy particle indices. If we label the two heavy
particles 1 and 2, the appropriate Fokker-Planck
equation is

In terms of these new variables (62) is

Bt i 2M BR i M 2 sx sp~

a

rel

where (F ) = (F') = —(F„)is the average force on
particle 1 and

(65)

c.m. 11 12
l~n laffM + 1~0.'

r el 11 12
~en ~eo. ~offM '

II e&'6 sin26e ' &"/(k r)&] (68)
which represents the sum of all the electron scat-
tering back and forth between the two. For jp„z
=- 5 with 0 & —6 «-,'m, this factor nearly diverges,
while for positive 5 there is no strong structure as
x varies. This accounts for the presence or ab-
sence of the spike in g near k~x = 0. 5 in Figs. 2-4.
Note that this feature would be lost if we were to
use a perturbative evaluation of g as we did in Secs.
IIIA and III 8, for the factor (68) would be set equal
to unity. Thus, perturbation theory could only be
used here for a rough estimate of g. Some further
illustration of this point is contained in Appendix C.

We have used the symmetry here that &11
& and

It is the pair of equations (66) and (67) for
the center-of-mass and relative friction coefficients
that we calculate.

Figures 2-4 show some typical results. Due to
its considerable variation we ha, ve plotted the loga-
rithm of q/qs vs k~r, where qs is the bulk value of
the friction for a, single adparticle IEq. (57)]. Only
the value of the phase shift at E~ enters the formula
for q/qs; we choose this to be + 30' here. The large
difference between these two cases is a consequence
of the multiple scattering. As one can easily see
from the expressions of Appendix C, the basic
manifestation of the multiple scattering between the
two heavy particles is through the factor
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I~1.5 x IO ~gp
~E(&)= l dE (E Ez)b, p (E) (vo)

rel.

8 =-30

IO

lo

-2
10 I

7
k~r

FIG. 3. Center-of-mass and relative friction in the
longitudinal, L, direction versus the separation, g, of
the two muffin tin spheres. The single s-wave phase
shift of either sphere at the Fermi energy is —30 . The
infinite separation limit of the friction is qz.

where we have omitted a factor of 2 for spin. The
factor b,p„(E)is the change in the density of states
at energy E when the two heavy particles are sepa-
rated by r from when they were at infinite separa-
tion. This quantity can also be computed from G',
Eq. (61); we give further details in Appendix C. We
only remark here that one must carefully follow the
motion in energy of all bound states (with E& 0) as
well as the resonances in the continuous density of
states for E&0 in order to find a hE continuous in
r, as required by the Kohn-Majumdar theorem. 3~

We plot in Fig. 6 the binding energy for 5(Ez)
equal to minus or plus 30-'. Again there is a con-
siderable difference between the two cases which
can be understood in terms of the multiple scatter-
ing. The divergence of 4E as 4~g goes to zero is
an artifact of this model, in particular the approxi-
mation (69). Equation (69), when extended to nega-
tive energies gives a poor representation of 5(E) as
E goes to minus infinity. Furthermore if we had
used realistic potentials in the model they would
overlap before z became very small and thereby
violate the conditions for our solution of O'. At the

Ji

IO—2

8=+50 8 =-50'

tan(5 (E))= —ka, k = (2mE jh)'~x, (69)

with the scattering length a chosen so that 6(Ez) is
the value used to compute g. The formula for the
binding energy is

However, we note that as k~x becomes large the
multiple-scattering effects between the two heavy
particles become small. This feature alleviates
concern that the electron gas may not rapidly equil-
ibrate for large z. ' A local equilibrium about
each heavy particle would then be sufficient to es-
sentially determine g.

Since the solutions of the Fokker-Planck equation
seems to depend critically on the relative magnitude
of the friction and the curvature in V(r), s we have
also calculated a V(r) for this model. We take as V
the binding energy 4E of the two heavy particles due
to their indirect interaction through the electron
gas. This is the appropriate result for 7 to yield
the average force (F) of either Eq. (B3) or (B21) in
the limit of large M. For simplicity we evaluate
4E at zero electronic temperature. To do such a
calculation one needs to know the phase shift as a
function of energy. For this purpose we use the
scattering length formulam

10— rel.

C.N. C.m.

IO

-2
IO

I I I

I 2 I 2
kFr Fl'9. 'I

FIG. 4. Center-of-mass and relative friction in the
transverse 1' direction versus the separation y of the
two muffin-tin spheres. The single s-wave phase shift
of either sphere at, the Fermi energy is +30 . The infi-
nite separation limit of the friction is qz.
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have a 5-function normalization: (k[k') =5(k —k').
As in the previous model we compute both the

friction and the binding energy as a function of the
adparticle position, here measured by x, . From
Eq. (44a) and the simple dispersion relation of this
model we can write

(77)

mhere we again omit a factor of two for spin. The
matrix element of the force from the square well is
simply written

(4'a
I El 4'a ) = V/4's (- xq —2a) —4„(-x, )] . (78)

FIG. 5. Binding energy AE of two-muffin-tin scatter-
er model vs the separation r of the two-muffin. -tin
spheres. The single s-wave phase shift of either sphere
6 at the Fermi energy EJ; is + 30'. As normalized, the
figure is independent of the specific value of EJ;.

other limit in y, me remark that the expected
Friedel oscillations in ~E are present, roughly be-
yond k~z = 2; but that they are at greatest of magni-
tude 0. 01 in the units of the figure.

E. One-dimensional-surface model

y, (x) =A sin(kx+ 6) for x & 0, (7l)

and match this wave function at each discontinuity
in the potential energy until we have only a decaying
wave as x- —~ (for E& Vo), we obtain the complete
wave function and an expression for 5 [= 5(x, , E)]:

Let us now consider a model which has a surface,
albeit one dimensional. The model is defined by the
potential energy of h'" and is shown schematically in
Fig. 6. There is a semi-infinite well of depth Vo,
which represents the metal potential energy. To
the left of this a, distance x, (& 0) is a, square well of
depth t/" and width 2g, representing the adparticle
potential energy. The zero of energy is taken at the
bottom of the metal band. If we write for the elec-
tronic eigenstates with energy E=h k /2m

From (78) we see that q will vanish whenever the
wave-function magnitudes are equal on both sides
of the square well. This happens when. E= E~, a
bound state energy of the i.solated square mell. This
vanishing of q at E~- is a general result in one di-
mension as long as the adparticle and metal poten-
tial energies do not overlap. One need merely note
that at E~ the eigenfunction outside the range of the
metal potential energy is proportional to the eigen-
state of the isolated adparticle Hamiltonian. Since
the matrix element of F is identically zero in the
isolated adparticle eigenstate, by the Hellma. nn-
Feynman theorem, our assertion is proved. This
result would appear to be an artifact of one dimen-
sion though as we show in Sec. III F its analog can
occur in three dimensions in a (too) simple model.

For the binding energy we again use (70). The
change in the density of states due to the adparticle
being at x, , rather than at infinity, is given here by

~p„(E)=- —Ih(x, E) —&(, E)] .1 d
(79)

Since me include no repulsive interaction between
the adparticle and the metal, we only compute
&E(x,) down to x, =0.

Some typical results are shown in Figs. 7 and 8.
We have chosen here 70=26. 9 eV, to simulate the
high-electron density of a transition metal and
p =27. 2 eV and a = 0. 37 A to place E~—there is only

~ = tan ' f(k/P) I(l+ r)/(i —~)]],
mhere

a'P'/2m= V, —E,
y= e '~"& sin(2k'a)/sin(2y —2k'a),

with

(72)

(73)

(74)

20 ~ X
I

VD

h k /2m= E+ V- Vo,

y = ta.n '(P/k ) .
(75)

(78}

We note in passing that the poles in y occur at the
bound state energies of the isolated square well.
The choice g =2 in Eq. (71) ensures that the states

FIG. 6. Electronic potential energy versus position
for a one-dimensional model of metal plus adparticle.
The position of the Fermi level EJ; and of the bound state
energy Ez of the adparticle {if isolated) are marked and
the parameters of the model, Vo, V, x& and 2a, are de-
fined.
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(M/m}(hq) {eV)
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2Q
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For simplicity we present only its one dimensional
form. The transition to three dimensions is easy
but, as we shall argue below, does not seem to
possess any new features. We write the adiabatic
Hamiltonian in single-particle tight-binding form,
retaining only nearest-neighbor coupling

-I Q

-2.0
-XQ

I.Q 2.0 x, /Oo

ho+ V

n=i

x t &n+ 1 I+ I
n+ 1&t &n I l +

I
a&E &al

v =
I
1&t &a I+

I
a&t &1

I
~

(80)

(81)

(82)

1~

6E (eV}

FIG. 7. Friction g and binding energy AE of one-di-
mensional model vs adparticle distance from the metal
surface x& for various values of the Fermi-level position
Ez. solid line, Ez=19 eV, dashed line, Ez =9.5 eV.
Also drawn are the perturbation estimates of g for E&
=19 eV, dot-dashed line and Ez= 9.5 eV, dot-dot dashed
line. The parameter ao is the Bohr radius; the value of
the other parameters of the model are given in the text.

one value —at 14. 5 eV.. In our computation we var-
ied both x, and Zz. Qualitatively, the behavior is
as follows: For the friction there is a maximum at
small x& for E~ well above E~. As E~ decreases to
E~ this maximum moves to larger x, and decreases
in magnitude. As noted above g vanishes for all
xy & 0 when E„=E~. When E~ falls below E3 the re-
verse behavior is seen. A maximum moves in from
i.nfinite x, and grows in magnitude, but the detailed
structure is naturally not completely symmetric
with E~ & E~. The behavior of the binding energy is
simpler. For E~ moving towards E~, ~E de-
creases for all x, . The binding energy is maximum
for E~=E~ since this is the optimum position of the
Fermi level to take advantage of the adparticle in-
duced resonance in the electronic density of states,
lowering the most electrons in energy consistent
with raising the fewest and conserving the total
number of electrons below E~. '

We have also plotted in Fig. 7 a perturbative esti-
mate of g. This was found by using eigenfunctions
of the metal potential alone to compute &O', I Il I 4'~ ).
As expected g exponentially decays with x&. Fur-
thermore, there is no signif icant change as E„is
varied; all trace of the nodes of Fig. 8 is lost.
Again we conclude that perturbation theory, though
satisfactory for a rough estimate of g, may com-
pletely miss certain detailed structure.

F. Tight-binding model

Finally we examine a model which allows a
straightforward extension to three dimensions.

The orbitals of the metal are labeled from one to
infinity and the single orbital of the adparticle is
labeled a. The only dependence in h.'" on the posi-
tion of the adparticle is assumed to be in the pa-
rameter t. Hence

(88)

This result greatly simplifies the reduction of
(44b), for we only need determine the following ma-
trix elements of G', Eqs. (60) and (61):

&a
I

G'
I a) = g, /(1 —tg~t g, ), (84)

(86)

60

50

~ 40-

~30-
20-

IO

5 IO
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l5
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l5

20 25

FIG. 8. Friction g and binding energy AE of one-di-
mensional model vs Fermi level position EF for various
values of the adparticle distance from the metal surface,
x~, measured in Bohr radii ao. solid line, x&/ap=&0
dashed line, x~/a0=0, 5; and dot-dashed line, x~/a0=1.
The values of the other parameters of the model are given
in the text.
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& IG'll) =g. tg, /(1- tg. tg ),
(1IG'I a) =g&t g, /(1 —tg, tg,),

where g, =(al g'la) and g, = (1 lg'Il) with

g'=(/ —t, +f0')

(86)

(87)

(88)

Bf Bf p Bf E(e '"' Bf B ks T Bf
+ u —(d ox—+ =

7/
—uf+

Bt Bx Bu M Bu Bu M Bu

(A2)

We seek now a solution of (A2) that describes a
small displacement of f from equilibrium, due to
the external disturbance

In particular, g, = 1/(p, —E, + i0 ) so that when

/((=E~) is equal to E, , g, is infinite. As a conse-
quence (1/G'

~ I) vanishes and (a~ G'l I) and (I I
G' la)

are both real quantities at this special value of the
Fermi level and these results in turn imply that the
friction vanishes. Thus, as in the previous model,
g =0 when E~ = F, . This peculiar effect cannot al-
ways be removed by working in a system of higher
dimension. For even if we generalize ho to higher
dimension with more than nearest-neighbor cou-
pling, Eqs. (84)-(87) remain formally valid; only
the value of g, changes. However, if we allow v to
couple la) to more than just its nearest neighbor or
if we allow an R dependence in F... then we can no
longer prove that g is zero when g, diverges. The
persistence of the node in q in this model is prob-
ably an artifact of the tight-binding representation
of h'", which too severely restricts the eigenfunc-
tions of the whole system at E, . Rather than at-
tempt to analyze a more-complex tight-binding
model, it would appear more useful to develop a
less restricted representation of jz'. Such work is
currently in progress.

To conclude this section we remark that for com-
parison with the electronic models that we have
considered here, we have in Appendix D examined
the predicted g of a phonon model, wherein the
dominant energy transfer mechanism between an
adparticle and the substrate is presumed to arise
from atomic (or molecular) collisions.

APPENDIX A

f =f"+f, (x, u, (d)e '"',
where

(A3)

f ea( ) e 88(x, u -gH(x, u)

or

—i(dp("(x, ~)+—j"'(x, (d) =0,

where we have introduced density and current den-
sity responses in the usual way. On the other hand,
multiplying Eq. (A4) by u, and integrating over u
again, we f ind

is the Boltzmann distribution and H = —,'Mu +-,'M~ox .
Putting (A3) back into (A2), and, retaining only
terms linear in the external force, we obtain

Bf( a sfi &g Bf"—z(de + u —(dox + = r/ u+ f( &Bx Bu M Bu Bu M Bu

(A4)
where we have used the obvious results

(
8 8, 8 kT8

u —(d()x f =T/ u+ f =0
Bx Bu Bu M Bu

From now on we will slightly generalize Eq. (A4),
including the possibility that g be frequency depen-
dent. Integration over u of Eq. (A4) gives the "con-
tinuity-equation" result

a+OO +QQ

—i (~ddu f, (x, u) +— du uf, (x, u) = 0 (A5)
Bx

%e give here an application of our linear response
Inethod of determining the friction coefficient to the
well known problem of a harmonically bound Brown-
ian particle in one dimension. Although the spirit
of the approach is entirely similar to that of Sec, D,
this special model allows the fruitful application of
certain alternate methods.

The Fokker-Planck equation in this case has the
form

—i(dj("(x, (d)+—duu2f~(x, u) + (d20xp( '(x, (d)

eq
—(x) = —//((d)j"'(x, (d) .

'Integration of Eq. (A6) over x gives

dxxp("(x, (d)

(A6)

Bf Bf q Bf B QaT Bf+ u —(dox =
// uf +

Bt, Bx Bu Bu M Bu

p +ao

1

M. dx p"(x) = —r/((d) j'"((d), (A7)

where x, u and M are position, velocity, and mass
of the Brownian particle, ~o i.s the frequency of os-
cillation in the harmonic well, and g is the friction,
which is assumed here to be position independent.

If a small, uniform force I', e '"' is applied to the
Brownian particle, Eq'. (Al) becomes

where j(~'((d) = J „dxj"'(x, (d) is the over-all current
response. Using Eq. (A5), we obtain from Eq. (A7)

-i
j ((d) = ——i(d — —(7((d)
.(y) 1 . ZNO

M

Equation (A8) divided by F, gives the spatial aver-
age mobility of the Brownian particle
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t (~)=—1 i~
M ~'- ~o+ i~q(~) ' (A9)

which is related to the velocity-velocity correlation
function by the fluctuation-dissipation theorem

+OO

t&(&o) = dt e'"' (u(t&))u(t&)+ t)) .
B "0

(Alo)

Equation (A10) in our case is proved as follows:
Setting

goo

C(&o) = dt e'"' (u(t&))u(t&) + t)),
"0

we have

dx
~

du uF(x, u, xp) up) tp+ t)
(A12)

and F(x, u, xo, uo, to+ t) is a solution of Eq. (Al) sub-
ject to the initial condition F(x, u, xo, uo, to) = 5(x —xo)
&&5(u —uo). On the other hand, taking the Fourier-
Laplace transform of Eq. (Al) and following the
same steps as we did in deriving Eqs. (A5) and

(A7), we obtain

9—i&op(x, &o) —p(x, t = to)+—j(x, &o) = 0, (A13)

C(&o) =
~

dx&) dup upf (xpup)A(xp ~ up) &o) ~
e aOO

(A 11)
where

w &I

A(xp, uo, &o) = dt e'"'
~)0

M p(&o) = —1/i&o+ &t)(&o)/&o (A18)

This equation simply defines the function &o(&o); if a
Langevin equation is assumed together with Eq.
(Al), one has

)e00

q (~) = dt e'"' (F,(t,)F,(t, + t)),
MABT ~P

(A 19)

to the velocity-fluctuation spectrum of the system;
another relation of this kind can be derived, if we
assume that the Fokker-Planck equation (Al) holds

. together with a generalized (i.e. , non-Markovian)
Langevin equation: If R(t) denotes the random force
in the Langevin equation, we find

)e00

q(~) = dt e'"' (R(t,)R(t, + t)& .
B "0

Equation (A17), which is essentially the Nyquist
theorem, can be easily proved, using a straight-
forward generalization of the analogous proof given
by Kuboso for the case of a "free" Brownian par-
ticle.

In the present case the Nyquist theorem has a
somewhat different meaning, since the left-hand
side is not simply the inverse mobility; the last is
infinite in the dc limit, as immediately follows
from Eq. (A9), while )7 is in general finite at &o=0.

To calculate q, we need therefore a more de-
tailed microscopic description of the system, to be
linked with our statistical approach. In order to do
this, let us first write

[- i&o+)i(&os)A(xo~ uo) &o) uo+ &oo

where

p(x, &o) = e'"' p(x, t&)+ t)
~)0

dxxp(x, &o) =0,
(A14)

where F, (t) = —M&ooox(t) —)iMu(t) + R(t) denotes the
total force on the Brownian particle; Eq. (A19) can
be proved using the same argument as Kubo' did
for the force-free case.

We now proceed in two steps: first, we relate
)i(&o=0) to p(&o) using Eqs. (A18) and (A9); this
gives

)e oo

j(x, &o) = dte'"'j(x, t&)+ t)
~)0

&op
—i &o)i(&o)

p(&o = i&o
&o —&op + i&o)i(&o)

(A20)

are the Fourier-Laplace transforms of the density
and of the current density. Vfe also have

Expandi. ng &p(&o) in a Taylor series around &o = 0 we
have

A(xo, uo, &o) =
~

dx j(x, &o) . (A15)
SCO 'gg 4

&t)(&o) = —$&o —
o ++&o +
0 0

(A21)

Inserting the expression for p(x, &o) from Eq. (A13)
into Eq. (A14), we obtain, after havi. ng done inte-
gration over x by parts, and having used Eq. (A15),

&o + i&off(&o) —&op
(A16)

Finally, substitution of Eq. (A16) back into Eq.
(All) gives Eq. (A10).

We would like now to calculate the friction coeffi-
cient q, at least in the dc limit (i.e. , at &o=0): as
we can see from Eqs. (AQ) and (A10), q is related

where )ip = )i(&o = 0).
Both coefficients of zero and second powers of +

are zero here, since i&(&o)-0 when &o-0.
We also note that the expansion (A21) in the force

free case becomes

+&free) ~ + 2/~ + (A22)

since in this case i&(&o) - I/M)ip when &o- 0.
The second step of our procedure consists in de-

riving an expression for p)(&o) in terms of micro-
scopic or "Hamiltonian" parameters; Eq. (A21) will
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be then the link for relating gp and, as we can no-
tice now, up, to those same parameters.

The basic assumption here is that the mobility of
the Brownian particle calculated using quantum
mechanics is equal to the expression (A9) calcu-
lated from the Fokker-Planck equation. We may
notice that this assumption implies much less than
the validity of the Fokker-Planck equation itself;
as a matter of fact the last can be rigorously
provede only for M- ~; it is not the scope of this
calculation to prove the validity of the Fokker-
Planck equation in a less restrictive hypothesis,
but only to calculate the average driving force of
the oscillator and the friction coefficient even for
cases where we do not make such a restriction.
Our assumption is that such a procedure is reason-
able. This is the essence of the bootstrap.

The microscopic model we use is very simple:
An Einstein oscillator interacting with a quantum
bath, so that the Hamiltonian is given by

Miz((u) = —1/z(u+ q
a " ((u)/(u', (A29)

where

M( ) df a(uz X
d' (f)

"0 dt's
(A30)

y(t) = (i/ff) ([X, P(f)]&,

so that
A I

dfz= e iaaf
~"X'"+eX'"

(Asl)

(As2)

If we now rework the right-hand side of this equa-
tion using the identity'3

r g

[e BH 0] ~ dye 88 eAH [0-H] e kH"
(A 33)

we find, after two integrations by parts of Eq. (A28)
in which we neglect the end point corrections at
f=+~ (this is justified, for example, if we suppose
adiabatic switching of the external force),

P MQ
H =Ha((x;}, g;})+ + Xz+ V(X, (x;}), (A23) (where 0 is a generic operator), and substitute into

Eq. (A30), we obtain

where {x;},1p;}and X, P stand for position and mo-
mentum operators for the bath particles and for the
oscillator, respectively; HB is the bath Hamilto-
nian, given by

(A24)

q ™((u)=
~

dte'"' (P, ; P, (t)),
B "0

(As4)

where we have introduced here the canonical cor-
relation' between two operators g and B, defined

and v is the interaction energy between oscillator
and bath. Q is the microscopic frequency of the
Einstein oscillator which is ingeneral different from
the ~o appearing in Eq. (A1).

If a small, uniform external force I',8 '"' is ap-
plied to the oscillator, the Hamiltonian becomes

A A

Ht =H+H&,

where

Hg = —XIlge

-idiot

(A25)

(A28)

The velocity response of the oscillator is given by
Kubo's' linear-response formula

p co

u'" ((u) = ' dt e'"' ([X,P(t)]),
ASM

(A27)

u'" (u 1
Zz(co) = = . dt e'"' ([X, P(t)]) . (A28)

~0

If we introduce the quantum-mechanical analog
qr@ M'(w) of the function cp(~) defined in Eq. (Al&),
by writing

Jb A

where ( .) means Tr(e ~ ~ ~ )/Tr(e "), the bracket

[, ] indicates a, commutator and P(f) = e'"'~"Pe '"'~".
Equation (A27) gives a "microscopic" expression

for the spatial average mobility of the Brownian
particle

and

d~g . fl) I ( AHA xHH)-
+0 P

P, = ~n'x( )+fg(x—, (x,})

(As5)

(A38)

en Q M. e d (= —ni" dtt" ', n ) 1 (A37)
~=o "o

so that34

is the operator for the total force on the Brownian
particle; note that f = —s V/BX is the part of this
force produced by the bath. We note now that, in
order for the mobility given by Eq. (A28) to be equal
to the expression (A9) from the Fokker-Planck
equation, y™(a)a,s defined in Eq. (A29) and given
by Eq. (A34), must be equal to y(+) defined in Eq.
(A19) and given by Eq. (A19) or (A20); therefore
comparison of Eq. (A34) with Eq. (A19) shows that
the classical force-force correlation function has
to be interpreted as a quantum canonical correla-
tion function; a suitable choice of zi(ur) makes in fact
the two equal. The last step of our procedure con-
sists in expanding pa M (&) given by Eq. (A30) in a
Taylor series around ~=0; comparison with Eq.
(A21) will provide expressions for ~o, zoo in terms
of microscopic quantities. From Eq. (A30) we ob-
tain p(~ = 0) = 0, and
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8 ~Qe Mo

= iy(0) = —i,et' t„-p

, x()
SM ~p ~0 dt ~0

(A36)

If we finally note that

(A5o)

g3~QoMe

ace
=3i dt t

p ~p

dt ([x, x(t)]& .
dp

Comparison with Eq. (A21) gives

(A40)

dt —&[x, x(t)]) = o. (A39)
&0

From this we see that the first two coefficients of
the Taylor expansion of y(&o) are in agreement with
Eq. (A21). To find the next two coefficients we
proceed as follows:

we obtain, from Eq. (A49),

Note that if &Sf/SX& = 0 one has aPo & n~, since (f;f &

& 0 (the canonical autocorrelation of an Hermitian
operator being positive). In the general case we
can note that the denominator in the right-hand side
of Eq. (A51) is always positive, because of Eq.
(A43). For calculating the friction we need to go to
the next order,

~ («&)o

dt&[x, x(t)]& .
(00 5 ~p

Noting that

&
&[x, x(t)]&= p —,&x; x(t)&,

(A 41)

(A42)

18' 1= ——&4 ' dtt4I 8(o „0 4I 0 dt
~ POO

dt t&[x, x(t)]&,8 ~p

so that comparison with Eq. (A21) gives

(A52)

we obtain, from Eq. (A41),

~', = (t v/m)I/&x; x) . (A43)

dt t([x„x(t)]&. (A 53)

On the other hand, using Eq. (A46) we easily find

Note that &0, and not Q, appears in the left-hand
side of this "equipartition law"; Eq. (A43) should
be compared with the similar result

«&0
dt t([X, X(t)]&=, dt t &[X, f(t)]&

"0

&I; f»=tifuv (A44)
and

already proved by Kubo' for a "free" Brownian
particle, and still valid here.

Since we would like to compare ~p with Q, we
prefer to rewrite the compact result of Eq. (A43)
in a different way. Noting that

(A 55)

n~n-(op h MQ ~p
(A 56)

dtt([X, f(t)]& =
p

' dtt&[f, f(t)]),
«lP Mp

since [X, f(t=o)] =0, so that Eq. (A53) becomes

, = - iifn'x(t)+f(t)

from which

we obtain, from Eq. (A41),

1 1 i 1
'=n' h-n'" "[xf't']'

(A45)

(A4V)

Using Eq. (A50) this gives

Setting

r(t) =(I/~t. V')&f;f(t)&

and using Eq. (A51) again, we finally obtain

«y(l)r(l+ —~y(0)+ s&=))

(A5V)

(A 58)

(A 59)

On the other hand, using again Eq. (A46), we have

dt ([x, f"(t)]&

together with

~ =Q 1+—@0+ (A 60)

«Z, &(l' f(l)I&+ «&Rf&l&I&); (Al())
MQ ~p dt 0

so that Eq. (A4V) becomes

As a final remark, we like to point out a close
relation between the friction gp and the scatter j.ng
rate of the bath particles in presence of a spatj. ally
random array of oscillators, each with frequency
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0, and coupled to the bath as in (A23). More spe-
cifically, if we suppose that the bath particles are
electrons, and if we write, following a procedure
due to Zwanzig, the electrical conductivity of the
system in the form

()(a)) = (ne /m) t- iu)+1/7 ((d, n,)] ', (A61)

where n is the average electron density and, in the
dilute limit,

1 1 2

)
=—

( )
nr+ O(nr) p

n~ being the density of oscillators, we find

1 . . 1 mo((o) i= lim lim- p
— (d7(~=0) .0 ., 0 nI ne'

(A 62)

dt(f; f(t)), (A63)

where the last equality can be established by the
same arguments used by G'otze and Wolf le ' in their
conductivity calculation. We conclude that, at low-
est order in n&,

1 nzM 1 dt(; (t)v((v=0, ng) n m MAT po

where the superscripts distinguish the various par-
ticles of which there are n in total and the sub-
scripts denote vector components. Note that the
distribution function f here describes all the de-
grees of freedom of the adparticles. There has
been no reduction to vari. ables only along the reac-
tion path. The assumption of (Bl) requires no new
assumption beyond those for Eq. (2). One might
worry that there would now be more stri. ngent re-
quirements on the bath relaxation rate due to the
time required for the relative motion of the adpar-
ticle to be internally communicated through the
bath. 8'2 However, the calculations of Sec. IIID
indicate that for well separated adparticles, the
mutual indirect interaction through the electron gas
is essentially negligible.

To find first expressions for the (F') we examine
the equilibrium solution of (Bl):

f.,- exp —P gP, (S.')'+ V(fR}), (B2);1„12M'

where (F„')=- —SV/SR' and (R}denotes the collec-
tion of coordinates, fR', Ra, . . . , R"}, which de-
scribes where each particle is. Now we require
that the equilibrium joint density,

dt's(t)
nr M
n m&o

or substituting Eq. (A64) into Eq. (A59),

(A64) p„=f,f dP'f„,
computed from (B2) be equal to the exact equilib-
rium joint density computed from

n

{p).,= Tr(e' 0 e(R' —)(')) Tr(e' ) .
k=1

This result has not the simple form of the one de-
rived in See. III C for a dilute concentration of scat-
terers with no internal degrees of freedom in the
adiabatic approximation [i.e. , q = (m/M) (n;/n)1/v ],
though it is close to it. Note that Eq. (A65) does
not reduce to this result, even for m/M-0. This
is due to the intrinsic difference between the pres-
ent model, where the Brownian particle is presumed
harmonically bound to some equilibrium position,
and the simpler model treated previously where the
medium surrounding the Brownian particle had been
supposed completely unif orm.

APPENDIX 8

This yields the analogue of Eq. (8),

(P'„)=P T,. )p Tr e e",], e(rr' —)('))
at k=1

To carry out the bootstrap for g we need to de-
fine operators analogous to those of Eqs. (11)-(14).
These are

n

p((R})= II 5(R' —R') = g 6'
f-1

&'.((R})= z, (I'.5*+5'P'.) II 5'
kg i

In this appendix we show that the bootstrap pro-
cedure of Sec. II may be extended in a straightfor-
ward fashion to treat many adparti. cles moving in
three dimensions. We fi.rst consider the case when
all the adparticles are disti. nguishable. The Fok-
ker-Planck equation for such a system is

~i gk

K„"g((R})=g(M'M') j 'j~ ) I 5
kAigj

BH
(Tp Sgp P

(S5)

(S6)

We next require a relation between the linear incre-
ments of the traces of these operators when we ap-
ply a uniform field in one direction, P, to one of the
adpartlclesy g y i. e'.

q
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jy(j, 8) y g je-i'm
1 1 8 (88)

%'e derive such a relation from the Heisenberg
equation of motion of J; In the notation of (16) the
result is

(89)

which is the analog of (16). On the other hand, the
classical equation corresponding to (10) is obtained
by multiplying (Bl) by P,' and integrating over all
mome nta:

n 3 i 1/2
—' M*(Z.*),"" 2g g,„,(K."„),""—

„ I

—(P.')
n 3

x(p),""—P,5, ,5. ,p„= g-g &i."„m'(Z„')(U".,

(Blo)
where p, ((RRj, f) =, ]I dP' 'f,((R, Pj, f) (BIV)

our arguments above would still hold, but in the
evaluation of (815) we would be forced to consider
Kubo formulas that were not symmetric under per-
mutations of the adparticle identities. To avoid this
situation we must reinterpret the many-adparticle
Fokker-Planck equation. We now view f(=f,) as a
symmetrized n-fold joint distribution function so
that f, ((R, Pj, f) describes the joint distribution in
which at time f one adparticle is at (R(~), P(~&), an-
other at (R"', P"'), and so on up to (R'"', P'"'). We
use here, for example, the notation R'~' to denote
the value of the jth spatial argument in f,. The
superscript in parentheses serves only to differen-
tiate the various arguments of f„notto label par-
ticles as before. Corresponding to this reinterpre-
tation we have to make new definitions of the vari-
ous joint densities. This is most simply illustrated
by p. We now define the classical joint density by

n

(~i )(i,&&& d pnpi y(i, (&&

a=i
(Bl1) and the quantum joint density operator by

n

(K' )U'k' = — dP'P'P (kl'M )
' f'~'k' (812)

~ I Y
n

(p)(J ~ (&&
'

dPky(f, (&)

&Y
n

p„=, dP f„,
k=1

(818)

(814)

and f((~'k) is the linear deviation of f from f„re-
sulting from the application of VU'~'. As in Sec. Q
the bootstrap is effected by equating the various
(purely) adparticle responses and then combining
Eqs. (89) and (810):

n 3
ik~k(gkj0, 8) {Pipj(i, (&& +(Pi)[pj($,&&&

A=1 @=i (815)
Thus g is defined by a matrix equation involving the
various responses.

Again it is important to show that this result re-
duces to that of the formal derivations in the limit
that all M~ tend to infinity. This limit may be easily
worked out if, as before, it is taken before the limit
&u-0 implicit in (815). We do not present the in-
termediate steps since the expressions are nota-
tionally clumsy, but merely note that the J response
matrix of (815) becomes diagonal in both particles
and components so that the limiting expression for
g may be written

p&o

u, r~'q.",([Rj) =Re 6", «6",.(~), (»6)
"o o {%)

where pk~ =P~~- (p&k)0 (ff& and the extra subscript no-
tation is defined in Sec. II.

Next we consider the case when all the adparticles
(=n in number) are indi. stinguishable. Formally,

p ((Rj) = 5(R' '-R') (818)
k=1 S

Here JRj denotes the collection of arguments {R()&,
R(k&, . . . , R'"'j. The symmetrization symbol s in
(818) is defined by

n

5(R —8 ) =—
&
g, [5(R' ' —8'), (819)

I =1 s n' p A1

where each p operator is to appear once and only
once in each n-fold product on the right-hand side
and the summation is over all permutations of the
operator labels. To illustrate, for two indistin-
guishable adparticles,

5(R"' - R') =-[5(R'" —ff')5(R'" —fP)
k=1

+ 5(R'" —R')5(R"' —Xt')] (82o)

(P.(*')= a,Z,„„,ln Tr[e '"p,({Rj)]. (821)

To determine g we need to change the applied
perturbation from (88). Before we applied a uni-

%'e may similarly proceed to define symmetrized
versions of the other joint densities, both classical
and quantum. The only formal distinction from the
previous treatment is that all latin superscripts on
the left-hand sides of Eqs. (84)-(BV) and (Bll)-
(814) acquire an enclosing set of parentheses to
signify that these labels refer only to arguments
rather than particles and the right-hand sides are
symmetri. zed as in (817) or (818).

%e can now carry through the bootstrap for
(E'"), the systematic force in the direction n on
an adparticle at R"&:
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form field to a particular particle; now we apply a
locally uniform field to any (indistinguishable) ad-
particle in a certain location. Thus

fr(1,8) P Q gati g(R(r& fbi)e i(a-t (B22)

where g(r) is a "gate" function: It e(luals unity for
)r ~

«d and vanishes for
~
r ~) d, where d is a dis-

tance smaller than the typical interadparticle sepa-
ration. The argument H'J' will be chosen equal
successively to those in the joint densities. Kith
(B22) the bootstrap procedure can again be carried
through, we only note the final result

(i) (0) g(&) ((j),g)

&=1 y=l

(p(i&p}((r) ye) + (p( )()(p )((I) ts) (B23)

k TMri o ({R))=Re 4a d'r Joe(r) (B24)
PP p, {%}~

with 5'or defined as below (B16).

where now all the responses require only symme-
trized operators. In the limit M —~ this reduces to

APPENDIX C

%'e present here more of the detailed analysis of
the two-particle phase-shift model. Since the mul-
tiple-scattering theory that we use has been exten-
sively discussed elsewhere, " ' ' we shall only
briefly record the specific formulas relevant to our
simple model.

The problem we study is that of two-muffin-tin
potentials separated by a distance z in an otherwise
homogeneous noninteracting electron gas. The ra-
dius of the two tins is R„Tand only the s-wave
phase shift 5 is not zero. For simplicity we chose
the 2 axis along the separation vector of the two
muffin tins. The advantage of using muffin tin po-
tentia, ls is that one can then reduce the multiple
scattering equations from integral form to matrix
form i.n a site-angular momentum space. For the
friction we need to compute (r ~

G'~r ) for either
both r, r i.n the same muffin tin or ea, ch j.n a differ-
ent muffin tin. The general formulas are

(r l
G'lr') = g (4(()("I~+, (r)(t)'(

L 1,I P

x[ j .,..(4~)'"I;,(r )(- r)'o, (Cl)

with

1 (rr=,r, , (,r. 2 @a )((r()l: t ( &)+ ((r&')j+ ' ff( (r) 2 r(,r. o r, ('),r.„r.„,r.o
e' f~( (r')

Bgy

for r, r both in muffin-tin p, and

(C2)

(c3)

~ /for r in muffin-tin p and r in muffin-tin v, p. 4 v.
The Y~ are spherical harmonic functions4'; L,

(= I, m) is a general index denoting both the orbital
quantum number 1 and the magnetic quantum num-

ber m. The function R, is a solution of the / wave
Schrodinger equation for an isolated muffin-tin po-
tential at energy Z (= Iok /2m) which is a regular
at the origin and outside the muffin-tin varies as

1'r, .o r.„—{t(6o „iver.i r + t, i [C/(I —tC) j~, i) ~ t(}

x(1 6, „)(1—6 ), (C6)

where the Greek indices label the muffin-tin poten-
tials and

mk R —Ro )
C, .„=—,+4~(t) 'Ig,

R)(r) =j, (kr) cos5(+r()(kr) sini)(, r&RM T (C4)
xk,',(klR. -R, l) ld ky, ,(i)I;.(k)I"g(k),

(c~)
thereby defining the phase shift 5, . The function

N, (r) is the other linearly independent solution of
the l wave Schrodinger equation at F.; outsi. de the
muffin-tin potential it is defined by the variation

N((r) = ri)(kr) cos(&) —j,(kr) sin5(, r & RM T . (C5)

ti = —(2wA /)r(k)e s(n5) (ca)

The integration in (CV) is over the direction of k
and h', =n, +ij, .

For our model these equations simplify consider-
ably. For instance, the J are given by

The n, and j, are spherical Bessel functions. '
The multiple-scattering aspect of G'" is contained
in the V' functions:

= ( 2r(fi /mk)5r. os~ ()(1 eo )

x (1 —5„„)e"sin5D (cs)
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and

+g'g, gy ( 2+@ /mk)61, ~, Q6z, , Q(1 6g, )

x (1 —6„„)e~"sin~6ho(kr)D,

where D is the factor of Eq. (68),

D = [1 —e2" sin 6ho (kr)] ' .

(clo)

Making use of the relations Y',„(z)= 0 for m e 0,
and

rAM T
r2dr R, (r) R,—,(r)"0

sin(6, —6„,) = sin6~ &, 0 ~ (c12)

where p is the muffin-tin potential, 4~ greatly re-
duces the number of C's [Eq. (CV)], that we need to
compute. Our final formula for the friction is

N'"sin g,8mE~
r M

(c13)

N„'„"= —,'[1+Im(e'" sin6ho D)],
N„'„"= —,'[Im(h', + h,')] [Im(e"'hoD)], u & v .

(C15)

(C16)

(clv)

The argument of all the h's is k~r, and the y and x
(transverse) components are equal.

From the form of (C13) we see how to define a
perturbative estimate of g: We need merely set
5 =0 in computing the N's. We find then

N"~ =N" = —' for all rZZ

SCAN

(C18)

which agrees with the single muffin-tin result, Eq.
(57). The results for the cross friction terms are
more complicated in this limit:

N,", = —,
'

Im(ho) Im(ho —2h2) —[Im(h', )]

N„'„"= —,
'

Im(ho) Im(ho+ h2),

(C19)

(c2o)

but both of these expressions reduce to —,
' so r goes

to zero. This perturbative limit of (C18) to (C12)
is in strong contrast to the exact result, obtained
by expanding (C14) to (C1V) as r-o,

N,".'(r 0) = N."."(r—- O) = 2/sin'6, (c21)

N„„(r-0) = N„'„"(r-0) = ,'(k~r)~ /isn6, —(C22)
which illustrates the possibly strong difference be-
tween perturbative and exact results. Note that in
the artificial limit r-0, only N,'," remains finite.
This feature is a consequence of the resonant scat-

where

N,","= [I +1m(e~" sin6ho~D)]

x [—,'+ Im(e" s in6hpD)]i+ [1m(e~'5 s in6hoh, 'D)]
(C14)

N,", = [Im (e~"hoD)] [Im( —,'ho —
3 h~

—e~" sin25hoh, '~D)] —[Im(e "h,'D)]

d Im aae"'"/r'
b p„(E)= ———ln 1—

dE ~ (I+aha)' (c24)

We have written (C24) for E & 0. When E & 0, one
replaces k with i x, E = —8 ~v'/2m. Since the argu-
ment of the logarithm then becomes a real number,
we obtain a finite density of states only at the van-
ishing of the argument, which defines the bound
states.

APPENDIX D

Here we examine the friction that results from a
phonon model of the interaction between an adpar-
ticle and the substrate. The specific treatment we
examine is that developed by Pagni and Keck
(PK). They use a "soft-cube" model46 to describe
the dynamic interaction between an adparticle of
mass m~ and the surface, which is represented by
a single particle of mass m, coupled to a stationary
background by a spring with constant k, . The in-
teraction between adparticle and the surface par-
ticle is a one dimensional harmonic repulsion with
spring constant k~, which is operative only for
separations less than a critical amount, say, the
point P of Fig. 1. The fundamental quantity of their
theory is the one way equilibrium transition kernel,
R(E, E ), which describes the transition rate be-
tween an adparticle state of energy E to one of F.',
averaged over an equilibrium distribution of the
substrate degrees of freedom. The energies here
are measured from the bottom of the binding poten-
tial well (Born-Oppenheimer ground state, say) of
the adparticle. One calculates R(E, E ) by first as-
suming particular values for the amplitude and
phase of the surface particle oscillation before the
adparticle with energy E collides with the repulsive
spring k; then following exactly the motion of the
adparticle while it is in contact with 4, until it first
separates, with a final energy F. and a velocity di-
rected away from the surface; and finally averaging

tering between the two potentials which, by produc-
ing bound states, effectively reduces the scattering
eff iciency of the pair.

Finally, we note that one can easily work out the
asymptotic forms of the N's for r tending to infini-
ty. As expected N"' tends to a constant while N"",
p, t v, decays to zero. A different sort of Friedel
oscillation occurs for each component.

Let us now turn to the binding energy calculation.
The formula for the density of states in a muffin-
tin model has been derived previously3~ and has re-
cently formed the basis of several cluster calcula-
tions. 3' For our model the form it takes is

d Im tan 6ho~(kr) h k

(I f tan6)2
(c23)

which, with use of the scattering length formula
(69), becomes
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the result over an equilibrium distribution of the
surface particle amplitude and phase with an appro-
priate flux factor to represent the frequency of such
collisions. Once the kernel R is determined, one
has an explicit kinetic master equation for the ad-
particle energy distribution. In the limit that the
energy transfer of each collision is small, the
master equation can be approximated as a diffusion
equation wherein only a single parameter A~ ap-
pears. This is the mean-square energy transfer
defined by

obtain a phonon estimate of g, we need only to cal-
culate 6, for an appropriate choice of the param-
eters m„nz„k„k. Although PK have per-
formed extensive calculations of 4~, ' 7 they did
not consider the limit we have in mind. Our typi-
cal system is hydrogen atoms on tungsten, which is
characterized by k,/k~-1 but m~/m, «1. Fortu-
nately, in this limit one can easily calculate 4~ by
using a perturbation expansion in m /m, of the col-
lision dynamics. In the lowest nonvanishing order,
the result is independent of the value of k,/k . We
findr aO

~,(z) =
I (z z')'I-f (z, z') dz' .

~' «t
(Dl)

=8~~ ~~ 1+0 ~ + ~ ~ ~ (D3)
It is at this point that we can make contact with

our work. The form of the diffusion equation is
identical to that of the Fokker-Planck equation in

energy space. Hence we can make the identifica-
tion of g as

vI = A, {z)/2(k, 7 )zN, (z) (D2)

in the notation of PK. The quantity N, (Z) is the
thermal equilibrium distribution function of the ad-
particle in energy space. From (D2) we see that to

where &o~
= (k /m~)'~s and we used a superscript P to

denote that (D3) is a phonon estimate of q. Recall
that all the models of Sec. III gave as electron esti-
mate of g

vi'- (m/m, )Z /n . (D4)
Reasonable estimates of (D3) and (D4) show that ri'
and g are of comparable magnitude. Of course
particular resonance conditions could render one
or the other dominant.
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