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Influence of the electron density profile on surface plasmons in a hydrodynamic model*
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The effect of the electron density profile at the surface of a metal on the surface-plasma modes is
studied within the framework of a hydrodynamic model. For a sufficiently diffuse surface, higher
multipole excitations can exist in addition to the usual surface plasmon. The frequency of both kinds of
modes is studied in the long-wavelength limit.
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In these equations n(r, t) is the electron density,
N. (z) is the positive background density, and p, (r, f)
is the density of some external perturbation. (Un-
less otherwise stated we use atomic units, m = I e I

=h =1 in this paper. ) The hydrodynamic velocity

Recently several authors' have investigated the
sensitivity of surface plasmons to the electronden-
sity profile at the surface. Feibelman' has shown
that in the random-phase approximation (RPA) the
frequency of a surface plasmon of infinite wave-
length is independent of the density profile, but
that at shorter wavelengths both the dispersion and
damping are affected. Bennett~ has studied how
the electron density distribution affects the surface-
plasmon dispersion by numerically solving the
equations of a simple hydrodynamic model with a
density profile which decreases linearly through a
surface region from the bulk value to zero. In
addition to its effect on the dispersion relation,
Bennett found that for a sufficiently diffuse surface
additional modes could occur. The numerical na-
ture of Bennett's results makes it difficult to ob-
tain insight into the physical origin of the addition-
al modes and why they do not appear in the work of
Feibelman and of Beck and Celli. The object of the
present paper is to present a hydrodynamic model
based on a quasistatic generalization of the density-
functional formalism' and to obtain approximate
analytical results which clarify the connection be-
tween the results of Bennett and those obtained in
the RPA. In addition we wish to emphasize that the
higher surface modes discussed here could be a
very useful tool in the experimental study of the
surface electron density, especially of chemi-
sorbed species on metallic surfaces.

The basic equations in this hydrodynamic model
are the equation of continuity, Euler's equation,
and Poisson's equation:
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Casting this equation in operator notation by writ-
ing (6G/5n), =Z(npg„we can write Eq. (4) in the
form
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The potential (t), is related to the density nz by the
equation

(t))(z, q(p)= dz' e "' n~(z', q, (p). (6)

In Eq. (6) we include explicitly the dependence of
(t), and n& on q and (p for emphasis. This depen-
dence is implicit in Eq. (5) and in the remainder

is given by v(r, t), and the self-consistent electric
field by E(r, f). In Euler's equation there occurs
the universal energy functional G(n(r, f)j which in-
cludes the kinetic, exchange, and correlation en-
ergies of the inhomogeneous electron system. Note
that the quantity nV(6G/6n) plays the role of the
gradient of the pressure in classical fluids. Im-
plicit in Eq. (2) is an adiabatic extension of the
ground-state density-f unctional for malism. '

In order to describe small-amplitude self-sus-
taining oscillations, we assume that in the absence
of any po there exists a small deviation from ther-
mal equilibrium of the form f(r, t) =f(z)e'" '"',
where q is the wave vector in the plane of the sur-
face, and we linearize Eqs. (1)-(3). The density
and self-consistent scalar potential (E = —VQ) are
written as n(r, f)=np(z)+n~(r, f) and (t(r, f): p(t( )z

+P,(r, t). We emphasize that though (t)p(z) does
not appear explicitly in Eq. (5) below, it is effec-
tively taken into account via the self-consistent
density n, (z). The linearized hydrodynamic equa-
tions can then be combined to give the equation
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of the paper. We substitute Eq. (6) into Eq. (5)
and integrate with respect to z, making the as-
sumption that the density fluctuation n, associated
with the surface excitation is sufficiently well lo-
calized that there exists a finite length L such that
for lz l &L, both n, (z) and Zn, vanish. Note that
although the operator 2 does not appear explicitly
in the integrated equation, many-body effects as-
sociated with it are implicitly contained through
n, (z) which must be a solution of Eq. (5). For
wavelengths sufficiently long that qL «1 we expand
in powers of q and obtain
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where the symbol (f(z)) stands for f ~~ dz f(z). Here
~~(z) =4mno(z), or~(+L) is thevalueof &u~(z) at z = +L,
and ~„, the "regular" surface-plasmon frequency,
is given by ~„=—,'[uP~(L)+&u~(- L)]. The differential
equation for n, (z) has coefficients which are analytic
functions of q; therefore we expect n, (z) to be an-
alytic in q and expandable in power series,

n (z)=gf (z)q .
l =0

(8)

By substituting Eq. (8) in Eq. (6) we see immedi-
ately that in order for (t), (z) to be finite when q ap-
proaches zero, it is necessary that f f()(z) dz =0.
Now, if' fo(z) -=0, Eq. (7) becomes formally the

HPA result for the "regular" surface plasmon or
monopole charge fluctuation obtained by Harris and

Griffin, namely,
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where, from Eqs. (5), (6), and (8), f, (z) satisfies
the equation
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Only the q = 0 limit of 2 enters in this equation.
We emphasize that Eq. (9) is a general result, val-
id no matter what (self-consistent) electron density
profile is used and for all dynamical models for the

energy functional (as long as the resulting 2 is suf-
ficiently short ranged). As in the RPA result, the

infinite wavelength limit & = ~„ is independent of
the electron density profile, but the coefficient of

the term linear in q depends on the numerical value
of (f ) ' (zf, ) which, being a functional of no(z), is
expected to depend on this profile. If fo(z) g(: 0,
Eq. (7) becomes

noV(5G/5n), = )82'()'n„ (14)

where P is a constant.
In addition, in order to describe a metal-vacuum

interface, we assume that no(z) vanishes at some
point on the z axis which we choose as the origin.
W~th this approximation, and defining

0

g(z) =— dz' sgn(z —z') f,(z'),2-
Eq. (10) becomes (note that sg/sz =f,)
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Now, f,(z) is subject to the boundary condition that
it vanish at z = —~ (deep inside the metal) and for
all z &0. This condition on f, (z) autom'atically in-
sures the vanishing of the normal component of the
current density at the origin, so no additional
boundary condition on the current is needed. This

L
x dz sgnz —z, z = ——~z z 0z . 13

L

The first two terms on the right-hand side of Eq.
(11) give the square of the frequency of a higher
"multipole" charge fluctuation of infinite wave-
length. The condition J dz fo(z) =0 leads to the
rather satisfying intuitive classification of dipole,
quadrupole, etc. , charge fluctuations for these
modes, as distinguished from the "regular" sur-
face plasmon ("monopole" fluctuation) for which the
leading term, f„ in the expansion of n, (z) has a
nonzero integral. Note that the q =0 limit of the
frequency of the higher multipoles depends quite
sensitively on the electron density profile, as is
obvious from the equations satisfied by fo(z) and

fg(z ).
In order to illustrate the physical concepts in-

volved in the above discussion we first present
solutions for an extremely simple model, similar
to that employed by Bennett, which consists of as-
suming the pressure term to-have the simple formv
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result, which can be verified by evaluating Eq. (15)
at z = 0-, is a consequence of our having chosen
a=m„ in Eq. (10) as is required by Eq. (9). For
the higher multipole fluctuations Eq. (12) can be
expressed as
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together with the boundary condition h(z = 0 ) = 0
[which is equivalent to f dz fn(z) = 0]. Equation
(16) is of the form of a simple one-dimensional
Schrodinger equation, so the existence of higher
multipole modes has been reduced to finding the
eigenstates of a one-dimensional potential. By
evaluating Eq. (16) at z = 0 one can demonstrate
that the condition Jo dz fs(z) =0 guarantees conser-
vation of charge, so again no additional boundary
condition is needed. We emphasize that the eigen-
values uP obtained from solving Eq. (16) are con-
sistent with the general expression, Eq. (11), into
which solutions fn and f, of Eqs. (12) and (13) have
been substituted, only if charge is conserved.

An instructive example which is exactly soluble'
is that of a "potentialfunction" e~(z) = &u~s(1 —cosh cyz)
where ~~ is the plasma frequency deep inside
the metal. The parameter n characterizes the dif-
fuseness of the surface. The solid is in the region
z &0.

First we solve the (inhomogeneous) equation for
the regular surface plasmon, Eq. (15). For sim-
plicity we chose the product o.P to equal ~~/M2 in
which case the two solutions to the homogeneous
equation can be expressed in terms of hyperbolic
functions. We show below that this value of o.P
corresponds to a surface diffuseness such that, in
this model, the dipole mode first appears. If, fol-
lowing Bennett we take P'= ~s~ and use data for
sodium (the resulting profile is shown as curve "a"
in Fig. 1), we obtain from Eq. (9) &us =-,'~~(1 —0. 06q),
with q in A '. It is a straightforward exercise to
show that for a step-function density profile one ob-
tains es = —', &u~(1+ 1.37q) and this indicates that (as
first shown by Bennett) the slope of regular plasmon
dispersion changes sign as the diffuseness of the
electron contour increases from zero. Further-
more, the result implies that this change in sign
occurs when the diffuseness is close to that which
first binds the dipole mode.

The zero-point energy of the higher multiple
modes for this potential function was found by solv-
ing Eq. (16) with the boundary condition h(z = 0) = 0.
This restricts us to the odd-parity solutions whose
eigenfrequencies are given by

FIG. l. Electron density profiles go(g)/yzo(- ~) = ~&(g)/
cop = 1 cosh Ap for three different values of e . Curves
a, b, and c correspond to n equal to 0. 73 A, 0. 29 )(

1and 0. 18 A ~, respectively. Abscissa is measured in
Fermi wavelengths (hz =2~/0&) appropriate to sodium (one
Fermi wavelength equals 6.28 A).

uF„=vs —(nP/2)'I- I —2n +(I +4~/ oP )' ]',

where ~ takes on the values 1, 3, 5, . . . subject to
the condition 2n & —1+(I+4&v&/esp )'@. We give
here the values of nP at which successively higher
multipole fluctuations first appear and the corre-
sponding zero-point energies. For oP=+~/v2
the dipole fluctuation first appears, with frequency

For uP = ~~/M12 the quadrupole fluctuation
appears at ~ = ~~, and the dipole fluctuation has a
frequency &u = (-', )' &u~. For o.P= co~/(30)' the octo-
pole mode has ~=~, while the dipole occurs at
~=(f)' ~~, which is less than the regular surface-
plasmon frequency, and the quadrupole at &= (I)' '

The curves a, b and c of Fig. 1 are the pro-
files corresponding to these values of o.P (for the
bulk density of sodium).

Our qualitative results based on the simple pro-
files just described lead us to suggest the useful-
ness of performing inelastic low-energy electron
diffraction experiments on layers of alkalies chemi-
sorbed on free-electron metal surfaces. By ap-
pealing to the simple model of chemisorption pro-
posed by lang' to explain changes in work function
as a function of coverage, we would expect that
the higher multipole fluctuations described in this
paper (which do not appear to have been detected
in experiments performed on elean surfaces) could
be observed when the coverage is high enough (per-
haps one or two full layers). The simple Ansafz
made in Eq. (14) and the model profiles discussed
above illustrate the basic concepts in a qualitative
way. However, the hydrodynamic model proposed
in this paper is more generally valid than these
simple assumptions. In order to obtain quantitative
answers a more rigorous choice for the density
functional and a self-consistent density profile
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ns(z) must be used. Lang and Kohnt' and Lang'o

determined numerically the self-consistent density
profile no(z) for clean surfaces and for surfaces
with chemisorbed species, and we expect to use
their numerical results. An approximate energy
functional which has been useful in static studies
of metallic surfaces is the first-gradient expan-
sion. " Since the gradient of the density appears

in this approximate functional G(n(r, f)), the op-
erator 2 appearing in Eil. (5) becomes a second-
order differential operator, and the equations sat-
isfied by fs and ft become fourth-order equations.
Vfith these complications it will be necessary to
resort to numerical methods to obtain quantitative
results, but we expect the qualitative features of
the simpler models to remain.
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