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Statistical mechanics of Ginzburg-Landau fields for weakly coupled chains*
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The free energy of a Ginzburg-Landau field describing a system of weakly coupled chains in a plane

is identified with the ground-state energy of a linear array of quantum-mechanical anharmonic

oscillators. The equivalent Hamiltonian is simplified for both real and complex fields using a truncated

basis of states of the uncoupled oscillators. For the real field, the reduced Hamiltonian is solved, and

the system is shown to have a logarithmic divergence in the specific heat similar to the anisotropic,

two-dimensional Ising model.

I. INTRODUCTION

In this paper we consider the statistical mechan-
ics of a system of interacting chains laid out in a
plane. Our purpose is to apply what is known

about one-dimensional systems to the study of
phase transitions in two dimensions. Each of the
chains is described by a continuous order param-
eter g;(x) which will be taken as real or complex.
The energy of a given configuration for each chain
is assumed to be given by a Ginzburg-Landau P

functional and the interchain-coupling energy den-
sity is proportional to I g;,, —~P; l~. The canonical
partition function is then a functional integral over
all g;(x) fields.

In one dimension a transfer-matrix technique al-
lows the functional integral to be reduced to the
problem of finding the lowest eigenvalue of an
equivalent Ha,miltonian. This problem has been
solved numerically for the cases of real and com-
plex P fields. ~

In one dimension, the equivalent Hamiltonian
describes the quantum mechanical problem of an
anharmonic oscillator. For the coupled chains,
it will turn out that the equivalent eigenvalue prob-
lem corresponds to an array of linearly coupled
anharmonic oscillators. The ground-state energy
of the array is proportional to the free energy of
the two-dimensional statistical-mechanical prob-
lem.

We simplify this problem for weakly coupled
chains by expressing the Hamiltonian in a truncated
basis of states made up of only the low-lying states
of the individual oscillators. This is reasonable
as long as the coupling energy is small enough to
mix higher states only weakly. For the real field,
only two states are important, and a fermion rep-
resentation' can be used to solve the problem. The
result is very similar to the anisotropic two-di-
mensional Ising4 model, as one would expect. For
the complex field, the important states can be ex-
pressed as eigenfunctions of a plane rotor, or with
further truncation, as states of a spin-one system,
but we have not been able to solve the resulting
problem. Nevertheless, we believe that this type

of formulation gives insight into the problem of a,

complex order parameter in two dimensions. It
also suggests alternative approximate solutions
such as variational calculations for the ground
state which we are presently investigating.

II. FORMULATION OF THE PROBLEM

We consider a system of M chains of length I..
The value of the order parameter at point x on the
jth chain is represented by (;(x). Then the energy
functiona, l is given by

a=a'(T T,o)/T, o . - (2. 2)

The canonical partition function for the system
is then given by

g g ~OZ t ll (2. 3)

where the symbol f 5g means "sum over all possible
functions g,

" and P =1/k T. The method by which
the functional integral is given precise mathemati-
cal meaning is discussed by various authors. '
Here we will evaluate the functional integral by
solving an equivalent eigenvalue problem. The
procedure for treating functional integrals, used by
Feynman to generate Schrodinger's equation from
an "integral over paths, " is a continuum general-

where g„„-=P, . This functional is like a free ener-
gy in that it contains the entropy contributions of
all the degrees of freedom of the system except
those associated with the g field. That is, we

imagine that we have already integrated all the oth-
er degrees of freedom out of the canonical partition
function. As a result, the coefficients of Eq. (2. 1)
may depend on the temperature; in particular, the
important temperature dependence in the problem
is in the parameter a, which vanishes linearly at
the mean-field transition temperature T p.
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ization of the well-known transfer-matrix tech-
nique. It was used by Scalapino, Sears, and Fer-
rell to generate the equivalent eigenvalue problem
for a single chain; the extension to many chains is
straightforward, and we will simply state the re-
sult.

The partition function is given by

Z=e '~= e ~" (2.4)

where F is the free energy, and the Z„'s are the
eigenvalues of the equivalent Hamiltonian

Z(-=

Here the P s are independent variables and not
functions. Again, P~„=g,. If P, is complex, then
82/s(2 means 82/s(Ref, )2+ s2/a(imp, )~.

We see from Eci. (2. 4), that in the thermodynam-
ic limit (L-~), the free energy is dominated by the
lowest eigenvalue of the equivalent Hamiltonian.
This is analogous to the treatment of a discrete
lattice in which the free energy is dominated by the
largest eigenvalue of a transfer matrix.

III. FERMION REPRESENTATION FOR THE REAL FIELD

When P is real, the Hamiltonian in Eq. (2. 5) is
equivalent to the quantum-mechanical problem of
M linear anharmonic oscillators coupled by

springs. We therefore discuss the problem in the

language of quantum mechanics. The problem of a
single such oscillator has been studied in detail by

Scalapino, Sears, and Ferrell. Above the critical
region (a&0), the low-lying "energy" levels are
dominated by the harmonic term. As the parame-
ter a approaches zero, the anharmonic term be-
comes more and more important. When a becomes
negative, the potential has two minima, , and tunnel-

ing between the two wells splits the "energies" of
the two lowest eigenstates slightly. As a decreases
further, the two wells become deeper; tunneling

between them and, therefore, the splitting of the

two lowest "energy" levels decrease exponentially
to zero. At the same time, all of the higher ex-
cited states are being driven to higher and higher

ene rgle s.
For weakly coupled chains the two-dimensional

phase transition will occur in the eritieal region
below T,o. (By weakly coupled, we mean that at
the two-dimensional transition, c,«c„/$, where
$ is the coherence length along one chain. ) In this
region we know that the two lowest eigenvalues of
the uncoupled oscillators are close together, and
all of the other eigenvalues are much larger. It
seems reasonable, therefore, to diagonalize the
full equivalent Hamiltonian in the truncated basis

of states in which each oscillator is restricted to
its lowest two states. This should certainly be a
good approximation as long as the coupling is weak
enough so that the coupling "energy" is small com-
pared to the splitting between the ground state of
the uncoupled oscillator and the first state ne-
glected. We shall show that these conditions are
consistent with the results.

Since only two states are to be considered for
each oscillator, they can be represented by the

presence or absence of a fermion. We define fer-
mion operators c~ and c; in the usual way and con-
struct an effective Hamiltonian which will have all
the same matrix elements as the original Hamilto-
nian in the truncated basis of states. In that trun-
cated basis, the only nonvanishing matrix elements
of P„are those which couple opposite states of the
rsth oscillator and the same state for each other os-
cillator.

The effective Hamiltonian can be written

x(cj',, +c;,,)j), (3.1)

where c is the splitting between the two levels of a
single oscillator and ~ is given by

(3. 2)

with the matrix element evaluated between states
of a single oscillator. The Hamiltonian of Eq.
(3.1) has a temperature-dependent zero point which
can be removed by adding ME, to it. As it stands,
it is very similar, but not ident;ical, to the Hamil-
tonian treated by Schultz, Mattis, and Lieb in
their solution of the two-dimensional Ising model.

Periodic boundary conditions require different
definitions of t.-~„, c~,, depending on whether H, ff
'acts on a state containing an even or an odd num-
ber of particles. %'e define

(3. 3)

Thus we have two distinct Hamiltonian operators;
one, H"'", to act on states with an even number
of particles; the other, H', to act on states of an
odd number of particles. It should be noted that
the Hamiltonian in Eq. (3.1) does not conserve
particle number, but it does preserve the evenness
or oddness of the particle number. We must dis-
card eigenstates of H'"'" having an odd particle
number and eigenstates of H' "having an even par-
ticle number.
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This peculiarity (which also occurred in the work
of Schultz, Mattis, and Lieb) and the relative mi-
nus sign between c&~ and c& occur because we are
mimicking the matrix elements of commuting quan-
tities (g;,g, ) with anticommuting operators (c;, c,.),
and we must keep track of the minus signs by hand.
The duplicity in the definition of c„,~, c„,&, and
therefore B,«, although it does come from the
boundary conditions, will be crucial to what fol-
lows.

IV. SOLUTION OF THE FERMION HAMILTONIAN

M
e-in'/4

M

(4. 1)

The factors e"' are just a convenience; they make
the coefficients in the Hamiltonian real.

For states with even numbers of particles, the
allowed values of k are

3& (M —1)m
~ ~ ~ (4. 2a)

while for an odd number of particles, the allowed
k's are

2m 4m (M-2)m
(4. 2b)

In this representation, the two Hamiltonians are
given by

H'"" = g [(e —2~cosk) (b,"b~+ b', b, )
0&0

+ 24+ 24 cosk+ 24 sinkb~b,

—2~ sinkb~b ~] (4. 3a)

H' =(E —2b) btbo+2~+(E+2n) b~~b,

+ g [(e —2ncosk) (b~~b~+ bt, b ~)
0&k&a'

+ 2~+ 2~ cosk+ 24 sinkb„b~„

—2~sinkb~b „]. (4. 3b)

Each Hamiltonian is now block diagonalized; that
is, operators of a given k are coupled only to those
of —k. We can write

The method of solution of the Hamiltonian of Eq.
(3.1) follows closely Schultz, Mattis, and Lich, ~

except that they work with a transfer matrix rather
than a Hamiltonian.

The first step is to Fourier transform the opera-
tors,

i'/4

M

and diagonalize each H„. It turns out that the
ground state of each HI, corresponds to a mixture
of the zero particle and two particle states. Thus,
the ground state of H'"'" can be constructed by put-
ting each subspace in its ground state and adding
up the "energies, " i. e. , E'""=g,co(k).

The ground state of H'"' must contain an odd
number of particles. Thus, at least one of the
subspaces must contain an odd number of particles
and the energetically favored choice is k =0. The
ground-state energy of H' differs from the
ground-state energy of H"'" for two reasons:
first, the creation energy of the odd particle; sec-
ond, the shift in energy of each eo(k) due to the dif-
ference in the allowed k's. These shifts are each
of order 1/M, but there are M of them, so they
contribute in the same order [0(1)]as the particle
creation energy.

When all the contributions are worked out the re-
sults are

E'""=ME + —@+ A ——(&+2~)0
7T

'If/2 8 ' ~1/2
dy 1—,veiny~, (4.4a)@+26) )

X
0

godd Eev8n+ ~ (4.4b)

((t) =(0+(ft+2(Pt +''' t

h(t) =50+6,t+ ,h~t + ~ ~ ~, —

(4. 5a)

(4. 5 )

then ep = 240 and we can substitute the series into

Ep is the ground-state energy of the single oscilla-
tor with respect to the zero of Eg. (2. 1); it should
be included in the result since it is temperature
dependent.

We know from the work of Scalapino, Sears, and
Ferrell that E is a monotonic increasing function
of temperature, and 5 is a monotonic decreasing
function of temperature. Thus at high tempera-
tures, E'""is the lowest eigenvalue, and at low

temperatures E'"" is the lowest eigenvalue. Their
crossing, & =24, defines a transition temperature,
T,. At T„ the argument of the elliptic integral is
unity, and it is a relative maximum in both & and

Figure 1 shows the behavior of E and 4 as func-
tions of temperature and also shows 6 for various
values of c,~

Also, since ~ is the relevant measure of cou-
pling strength, and since at T, & T,0, e is small
compared to the spacing between the ground state
and first neglected state (second excited level) of
the uncoupled oscillators, the coupling near T, only
weakly mixes in higher states, and our truncation
of the basis of states is consistent.

The free energy (also E'"'" and E' ) does not
have a Taylor series about T;, but e and ~ do. If
we expand them in t =(T —T,)/T, :
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Eq .(4.4a) or (4.4b). Recalling that HE= E'"'"
above T ) or HF =E'" L (below T,), we can differ-

I

entiate twice with respect to f and examine the re-
sult asymptotically as t- 0. Using the asymptotic
behavior of elliptic integrals of the second kind,
we find that the specific heat is given by

e —36C-~Lu' -"
( I ~f~)+0(i).

4m5p
(4.6)

V. PLANE ROTOR REPRESENTATION FOR THE COMPLEX
FIELD

(5. 2)

1f"(r)+ Par~ P+br~+ ' f(r) =Ef(r ) .
4p c„ 4p c„x

(5.3)

I

/E, -E,

When ~P is complex, the Hamiltonian in Eq. ( .,2. 5,
is equivalent to the quantum-mechanical problem
of asys emot f coupled two-dimensional anharmonic
oscillators. If we write /=re'", then the equiva-
lent eigenvalue problem for a single, uncoupled os-
cillator is
-1 824 1 84 1 82%

2+ + 2 2..(" —." -".,
+Par'2I +Pbr44 =El . (5. i)

A trial solution of the form
4 = (f(~)/Wr) e" '

yields the radial equation,

We nee d to know which eigenstates of Eq 5. 1
ofwill contribute significantly to the ground state o

the full system. We therefore examine the eigen-
value spectrum of Eq. (5.3). For a given value of
rn, this equation is equivalent to a single quantum-
mechanical particle in the effective potential

2
2 4 S7

V=f3ax +/br + (5.4)

A s in the real-field case, the two dimensional
ordering of weakly coupled chains should occur at
a temperature below T,p. The parameter a will be
negative in the region of interest, and the first two

in the otential of Eq. (5.4) will dominate,
m. We thenat least for reasonably small values of m. We en

find the minimum of the potential (to first order in
h ——' term) by first finding the minimum of

Paw +Pbr4 and then treating the m ——, term as a
perturbation. This approximation will be consis-
tent as long as

(5. 5)2b

In order to understand this criterion physically, we
in ro uced the Ginzburg critical region AT~. AT&

in which theis the temperature interval around T„ in w ic e
thermal energy kT,p is sufficient to switch a section
of the chain, one mean-field coherence length long,
from the ordered to the disordered state or vice

~T can be estimated by setting kT, p equalversa.
n th timesto the mean-field free energy per unit leng imes

the mean-field coherence length, (c/I a l)~'~ at T
T p

= 4 Tg This yields the relationcp

~a~'P'c/9=ie(~ 7 —T„~/~7;)'. (5.5)

Combining Eqs. (5. 6) and (5. 5) gives the condition

3~ (T- T„/~T, ~'» m' .
~ ~Thus, as long as the two-dimensional transition

t rature is several times ~TG below T,p, a
ill bereasonable number of the lowest m values wi e

treated accurately in this approximation.
Expanding the potential about the minimum and

using the harmonic approximation, we find the
lowest eigenvalues are given by

Pa' m'--,' aT,
44 2 i 2 T,pl)—

I

—3 0
co

QTG

—a " 3(m —-') aTg
(2c . 22

I 2 —t,ol )
(5. S)

FIG 1 S l d l' shows the temperature dependence of
Dashed lines s owh the behavior of 24 for various

f e . Each curve corresponds to a value of e~values o e~. ac c
hed and dotted curvehalf that of the curve above it. Dashed an o e

e and theshows t e sp i ingh l'tt' between the lowest eigenvalu
ction ofsecond excited state (first neglected state) as a function o

temperature.

Here the first term is the value of the potential at
the minimum, and the second is the "vibrational
energy" reflecting the localization of the wave
function about the minimum. We think of n as a
radial or vibrational quantum number and m as a
rotational quantum number.

Recalling that a =a'(T —T,o)/T o, we can make
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the temperature dependence of the terms in Eg.
(5. 8) explicit;

'(-)=-""(:.':)'(':.")'

(o )'oi(OT )o~(17 To)

)
Pa' m —4 ATc &Tc
46 8 7'co I

T' Tco

a' '" 3 m'-4 ~Tc '" ~TG.

(5. 9)
The first term represents the depth of the well and
it increases as (T —T,o) /AT~~ as T decreases. The
second term represents the principal vibrational
contribution to the eigenvalue, and it increases as
(I T- T,o I]/b, Tc); that is, as T decreases below
T,o the "vibrational energy levels" split farther
apart. The third term represents the principal ro-
tational contribution. While the vibrational levels
are splitting farther apart, the rotational levels
are coming together with splittings decreasing as
(I T T, 0! /6 T-c)'. For m)02 the rotational levels
are doubly degenerate. The last term falls off rap-
idly compared to other rotational and vibrational
terms and therefore is not important.

In the region which we expect to show a two-di-
mensional phase transition for weakly coupled
chains, the eigenvalue spectrum of Eq. (5.1) should
look schematically as shown in Fig. 2. The situa-
tion is very similar to the energy-level structure
of a diatomic molecule, in which the electronic
structure produces an effective potential wherein

/'E

the vibrational states are widely spaced and rota-
tional states lie close together. As long as the
coupling between the oscillators in Eq. (2. 5) is
weak, the ground state of the whole system will in-
clude primarily several rotational states of the
lowest vibrational level of the uncoupled oscillator.
Higher vibrational states will contribute only weak-

ly, and we can truncate the basis of states to in-
clude only the rotational states of the lowest vibra-
tional level (n=0). Since the separation of the var-
ious rotational states decreases as I

T- T,OI ',
rather than exponentially, the separation remains
finite in the region of interest, and we expect small
values of m to be most important, so that the ap-
proximations made in arriving at Eq. (5. 8) are
consistent.

We can regroup the terms of Eq. (5. 8) to put the

energy in the form

Z(m) =Z, +(1/2I)m' . (5.10)

In this form„ the spectrum is that of a plane rotor
with the zero of "energy" set at Eo. Both Eo and I
are temperature dependent.

We approximate the full Hamiltonian of Eq. (2.5)
by a system of coupled plane rotors. We write

(r); = roe" 2,
with ro the minimum of the effective potential for
m =0. Then the effective Hamiltonian takes the
form

+ 22oTHD[1 —oos(T..,.—T,.)] I. (2. 11)

Since the spacing between the ground state of the
uncoupled oscillator and the lowest states with m
=+ 2 is four times the spacing between the ground
state and the lowest states with m = +1, we expect
that all of the important information about the tran-
sition will be retained if we further truncate the
basis of states to include only the three lowest
states (n=0, m=0, +1). Then the effective Hamil-
tonian can be written in terms of a system of cou-
pled spins with S=1. The effective Hamiltonian
becomes

Al=+2
m=+ I

m=O
e„,=Q([~+2Pc,(p, —po)j(s1'.)'

j=1

+ 2P c,p() —P c,p. (s,'„s,"+s,'.,s,')}, (5. 12)

m=+2
m=+I
m=O

n=O

(5.18a)

(5. 13b)

where e is the splitting between the ground state
and the first excited states of the uncoupled oscil-
lators, and p„p„and p, are given by

po=&0IO'I0&,
FIG. 2. Schematic diagram of the eigenvalue spectrum

of Eq. (5.1). (5. 13c)
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The numbers in the brackets are the m values of
the states.

VI. SUMMARY AND COMPARISON TO THE ISING MODEL

We have treated the statistical mechanics of
Ginzburg-Landau fields for a two-dimensional sys-
tem made up of weakly coupled one-dimensional
chains. For both real and complex order parame-
ters, we reduced the problem of finding the free
energy to that of solving for the quantum-mechani-
cal ground state at an equivalent Hamiltonian of
coupled anharmonic oscillations. Then we used the
weakness of the coupling to simplify the problem
further by considering only low-lying eigenstates
of the uncoupled oscillators. For the complex or-
der parameter, we exhibited the equivalent Hamil-
tonian in several truncated forms. For the real
field, we were able to solve the two-state truncated
Hamiltonian.

The free energy of the system is equal to the
free energy of the uncoupled chains plus additional

terms reflecting the coupling energy [see Eq.
(4. 4)]. Thus the specific heat shows the large
bump which Scalapino, Sears, and Ferrell2 found
for the individual chains. In addition, at a some-
what lower temperature, the weakly coupled chains
show a logarithmic singularity coming from the
coupling-energy terms. This is very similar to the
anisotropic, two-dimensional Ising model, in
which the specific heat shows a large gentle hump
(like the one-dimensional Ising model) and, at a
lower temperature corresponding to two-dimen-
sional ordering, a logarithmic singularity.
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