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A simplified treatment is presented for the lattice sums occurring in the theory of clean extreme
type-II superconductors, rotating superfluid helium, and plasma oscillations in an array of filamentary
conductors. Similar methods are applied to the mixed state of a thin superconducting film in a
perpendicular magnetic field.

The mixed state of type-II superconductors'
consists of quantized flux lines arranged in a tri-
angular lattice with areal density n= B/Pa. Al-
though the detailed theory of such materials is
generally difficult, the analysis simplifies con-
siderably for clean extreme type-II materials at
low and intermediate flux densities (H, t

~H & H t).
In this case, the core size $ is much smaller than
the penetration depth X or the lattice spacing
= (nest)

tie (note that n ' is the area per unit cell),
and the London model applies. The physical prop-
erties of such superconductors are expressible in
terms of lattice sums of the form g,' e' '

& E(r;), . '

where the prime means that j runs over all lattice
sites excluding the origin and E(r;) is either a
Bessel function of imaginary argument (for bulk
materials' ) or a combination of Struve and Neu-
mann functions (for thin films ' ). The original
calculations could evaluate these sums only to order
k . Here we present a new general treatment that
simplifies the previous analysis and extends it to
all values of k .

For definiteness, first consider a bulk type-II
material. Its Helmholtz free energy at low and
intermediate flux density involves the quantity'
g,'Ko(st/&), where Ke is the usual Bessel function
that vanishes at infinity. 7 The free energy, in
turn, fixes both the equilibrium lattice structure
and the constitutive rela, tion B(H) in an applied mag-
netic field. Similarly, the general oscillation
modes of the flux-line lattice ' require sums of
the form g,'(I —e'" "~)K(eqr;) along 'with related

but more complicated ones Isee Eqs. (12a) and
(12b) below]. Here k is a wave vector in the xy
plane and q-=(k, + & ), with k, the axial wave
number associated with

bendix
modes along the

z axis. Finally, the sum g,'e' ' Ko(k,r, ) appears
in the theory of plasma oscillations in Bn array of
filamentary conducting strands. These various
lattice sums m3y be derived from the single quan-
tity

S(k, q, r) -=+~'" "Ko(q
I
r —rt 1)s

where j now runs over al/ lattice sites in the xy
plane and r is an arbitrary two-dimensional vec-
tor (rWr, ).

If qn t &)1 (low-density limit), Eq. (1) con-
verges rapidly and may be summed directly. For
small qn, however, an accurate evaluation re-
quires many terms, and it is then convenient to use
the two-dimensional form of the Poisson sum
formula, "

g e '"' t' '&'F(r —r;) =n g e"'E(g+k), (2)
J K

where (gQ is the set of two-dimensional reciprocal-
lattice vectors and

F(k) = d s e '"''F(r)

is the usual Fourier transform integrated over the
whole xy plane. Equation (3) is easily evaluated
for Ko, and a slight rearrangement yields
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&i (pY+k) ~r

S(k, q, r) = 2~n Z. g+k +q

As expected from the logarithmic behavior of
Ko(x) for small x, the right-hand side of (4) di-
verges logarithmically as ~- 0. To isolate this
behavior, we rewrite the sum

(4)
i (g+k) 'r

""~~ (g+k)2[(g+k}3+ q~]

where the second term converges absolutely and
represents a small correction for qn && 1. Al-
though Eg. (5) is adequate for our purposes, the
same process may obviously be used repeatedly to
construct an expansion in powers of q n ~.

Equation (5) leads us to consider the slowly con-
vergent lattice sums

~0 +0

~ &(8+k) &

S(k, q, r) =2m
g+k

~i (a+k) '1'

Z, (k, r) =on
I g+kj (6)

As in the more familiar three-dimensional case, the Ewald method" ean recast Eq. (6) into a rapidly con-
verging series. Note first the identity

I'(—'P) lgyk
I

=2 «g exp(-g Ig+k I }
0

g pOO«e "m(- &'
I
g+k I')+2 «&' "~(-&'I g+kl'},

~p M g

which reduces Eg. (6) to an integral of phase-modulated Gaussian functions. Second, the particular case of

the Poisson sum formula. [Eq. (2)]

p e '""'~'~ exp[- (r —r, )2/4g'] =4mnr p e"'exp[- p(g+k) ]
j

(7b)

m3y be used to rewrite the portion of the integral from 0 to z. In this way, we obtain the desired expres-
sion

~i ( 8+k) ' I

r(-,'p)Z~(k, r)=mn
(

„-(~ I'(-,'P, g+k I'z )+—Qe'"' (-,'Ir —r, I) 'I'(1-@, Ir-r; '/4z'),

where
CO

I'(a, x) = dte f'
"x

(8)

is the incomplete y function' and I'(a) = I'(a, 0) is the usual y function. Equation (8) holds for arbitrary e,
but the choice z=(4mn) ~ maximizes the rate of convergence and will be used here consistently. If p is an

even integer, the relevant integrals reduce to exponenti31 integrals and exponentials; for example, we

find
~ (

Z~(k, r) =mn~ — -, exp — +—~e' "~E~[mn(r —r,.) ].
g+k ' 4mn 4

A combination of Eqs. (5) and (9) leads to a convenient expression for the original series S(k, q, r) in Eg.
(1).

The required lattice sums now follow as limits of S(k, q, r). In particular,

(9)

g e'" "&Ko(qr;) ='lim[S(k, q, r) —Ko(qr)]
&~0

= lim[ S(k, q, r) —ln(2/qr) + y], (10)

where y= 0. 5772 is Euler's constant. On the right-hand side of Eq. (5), the second term converges for
r=0; moreover, the logarithmic divergence in (9}occurs only in the term j =0. A straightforward calcula, -
tion gives the exact expression

2

J

I ik op. 2+A 1 4+Ã $ 2+Ã
e*"'~KO(qrj) =, , --,' ln, +-,'y —,1-exp-

+ q q k 4mn

~' exp[- (g+k) /4mn], ~& 1
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(12b)

where the primed sum on g omits the term g =0. The first two terms on the right-band side of (11)are in-
dependent of the detailed lattice structure; they agree with those obtained in the continuum approximation,
where the primed sum over j is replaced by an integral, excluding a small circle of radius (mn) '/ about the
origin. Thus the discrete lattice affects only the constant term (independent of q) and terms of order q2and
higher in Eq. (11). The sum needed for the free energy of the lattice is obtainable directly from (11) mere-
ly by letting k-0, and those required for the vibration frequencies involvethe combinationS(0, q, r) —S(k, q, r),
which is finite at x=0. In particular, recursion relations for Bessel functions show that

lim [S(o,q, r) —S(k, q, r)] =q'P (1 —e'"'/) '",'E, (qr, ), (12a)

82 92 2 2lim, —,[S(0,q, r) —S(k, q, r)] = q P (1 —e'"'/) —, K, (q
—r)

gy
2 8~2

These latter sums determine the dispersion relation for oscillations of a dense (n)2(& 1(& n&~) flux-line lat-
tice in an extreme type-II material. For example, a triangular lattice can be shown to have the spectrum

2
2 p 4/4+/ 2/2/4 Q4g2

8 +
mc () +).' 1~+0 & )' 16m(1+0'1~+% ~1~)) (13a)

s(k, r) -=pe'"'"/ P(~ r —r/~/A), (14)

where A is the effective penetration depth4'5 and

where the wave numbers satisfy the condition k2

+k, (&n, but with {k +k, ) X arbitrary Th.is ex-
pression agrees with that found in the continuum
approximation, confirming earlier conjectures. '

In the limit X- ~ and with the factor eB/mc replaced
by n~, Eq. (13a) reduces to

~' = (n~)' [u,'+ (a'/16wn)] PP + q&)-& (13b)
applicable to a neutral superfluid rotating at an an-
gular velocity 0 = —,'na, where v is the quantum of
circulation. ~3

We shall briefly consider the similar but more
intricate case of a thin superconducting film in a
perpendicular magnetic field. The magnetic flux
again penetrates the sample in quantized bundles
surrounded by circulating supercurrents, but the
associated magnetic fields have an algebraic tail
owing to their extension intothe surrounding vacuum.
This long-range behavior introduces a dependence
on the shape and size of the sample, so that the
free-energy density diverges in the thermodynamic
limit. The vibration frequencies remain well-de-
fined, however, and may be derived from the series

~i (@k)~ r

s(k, r) =2mnA'Q (16)

where t:he Fourier transform of P follows from a
standard integral representation. '4 Equation (15)
indicates that g(x) diverges like x ' as x- 0. Thus
it is preferable to rewrite (16) as

~ +0

i (g+k) ~ r
s(k, r) =2A Z)(k, r) 27)nA-'

(17)
where the first term dominates for large nA2.
Moreover, g, (k, r) contains the leading behavior
for small r (rr-r '), and the remaining part of (17)
is only logarithmically singular as x- 0. As in the
similar case of Eq. (5) for a bulk sample, Eq. (17)
may be manipulated to yield an exact expansion in
inverse powers of n' A, but the present form suf-
fices for our purposes.

The evaluation of (17) requires the identity

y(x) =x-'- —,"[H, (x) - V, (x)], (15)

with Ho and Y, the Struve and Neumann functions of
order zero '' . If the lattice constant (n))') ' ex-
ceeds A, then (14) may be evaluated by expanding
g in powers of A/Ir —r/I and using (8).5 On the
other hand, if (7)n)'/~A is large, the Poisson sum
formula, (2) provides a more convenient expression

~t
ei ((rl'k) r

~ g k ~
1 ()( r/

Z, (k, r) =wn erfc
2 $/Q +2 +

~ ~

f e[r( c)')")nor-r, i]ig+ki 2(mn / 2 . Ir —r, I

(16)

which follows from Eq. (6) with erfc x = 7/
'/3 I"(—,

' x~) the complementary error function. An elementary
analysis gives the expansion

g (1 —e'"'"') g(r&/A) =27/nA Ak(i+A@) ' —2n A]l —())n /0) erf[k/2(7/n)'/s])+A+(l —e'"'J) r&'erfc[(pn)'/~r&]
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+2vrnA+fg ' erfc[g/2(7m)'~ ] —
I g+k I

' erfc[l g+k I/2(7m)'~ ]j-2vrng][g(g+A ')] '

—[Ig+kl(lg+k I +A ')] 'j, (19)

where the logarithmic singularity in (17) has dis-
appeared, and the last term remains finite as n' 3A

Equation (19) and related but more compli-
cated sums [compare Eq. (12)] arise in calculating
the normal modes of the mixed state in a thin su-
perconducting film. In this way, it is possible to
confirm the earlier conjecture that a moderately
dense triangular lattice (nA~ &&1) in such a film has
the same oscillation spectrum as the continuum
model-

eB ~ k kA

inc 16' 1+kA' (20)

assuming kn ' +&1 but kA arbitrary. It is interest-
ing that (20) differs from the spectrum of the non-
bending modes in a bulk triangular lattice [Eq. (13a.)
with k, = 0] only in the substitution of the nonanalytic
function kA(1+kA) ' of k~ for the analytic one
k~A2(1+& A~) '. This alteration reflects the long-

range interaction between flux lines in a thin film.
At long wavelengths (kA &&1), it affects certain elas-
tic properties of the corresponding lattice, in par-
ticular the compressibility' ' and the limiting form
of the vibration spectrum. For shorter wave-
lengths (kA &&1 in thin films or N. && 1, k, = 0 in bulk
samples), however, the anomalous behavior disap-
pears, and Eqs. (13a) and (20) become identical.

This note has presented a new and simplified
treatment of two-dimensional lattice sums occur-
ring in the theory of clean type-II superconductors,
rotating He II, and plasma oscillations in filamen-
tary conductors. The resulting expressions extend
to shorter wavelengths the previous calculations of
vibration frequencies in a triangular array of flux
lines. They confirm that the spectrum is identical
with that evaluated in the continuum approximation,
both for bulk type-II materials and for thin films.
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