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A generalized Ginzburg-Landau theory is suggested to describe the phase transition of an array of
weakly coupled pseudo-one-dimensional chains. Using a mean-field approximation, the coupled-chain

problem is reduced to that of a single chain in an effective field. The finite-range correlations which

develop along the chain are treated using exact one-dimensional solutions. The results obtained are then

used to construct a generalized Ginzburg-Landau theory. We argue that this approach provides a means

of treating the remaining slowly varying long-range fluctuations. Results are given for a variety of
arrays consisting of Ising, classical Heisenberg, real and complex Q chains.

I ~ INTRODUCTION

There exist a number of materials which may
be viewed as arrays of quasi-one-dimensional
systems. These substances are generally charac-
terized by molecular arrangements which lead to
strong coupling along linear chains and weak cou-
pling between the chains. Some examples of such
systems are tetramethyl manganese chloride
(TMMC), ' an S = —,

' Heisenberg antiferromagnet;
o.-5 i s - (N-methyl salicylaldiminato) -Cu
n-(Cu-N-Sal), ' an S =2 Heisenberg antiferromag-
net; most of the salts based on the organic acceptor
tetracyanoquinodimethane (TCNQ), ' which have
been described as exhibiting a wide variety of
pseudo-one-dimensional electronic behavior rang-
ing from localized spin magnetism to band be-
havior to strong electron-lattice coupling; mixed-
valency Pt salts' such as K,Pt(CN), Br, , 3H,O,
which appears to undergo a one-dimensional
Peierls distortion and then at lower temperatures
to develop (short-range) three-dimensional order.

As is well known, ' a strictly one-dimensional
system with short-range interactions does not
develop long-range order at a finite temperature.
Nevertheless, once kT decreases below the energy
characteristic of the intrachain interaction, sig-
nificant short-range correlations develop along
the chain. These correlations may often be well
described by one-dimensional models over a wide
temperature range. However, at some sufficiently
low temperature, the interchain coupling becomes
important, and the array of chains may undergo
a phase transition to a state which has long-range
order.

Here we develop a generalized Ginzburg-Landau
theory'" to describe the phase transition of an
array of weakly coupled chains. The work pro-
ceeds in three stages: (a) A mean-field theory is

developed in which the interchain coupling is ap-
proximated by a mean field and the resulting one-
dimensional-chain problem is solved exactly.
(b) The mean field is replaced by a slowly varying
order parameter whose configuration energy is
given by a Ginzburg-Landau' functional. (c) Using
this energy functional the statistical mechanics
of the order-parameter field is expressed in terms
of functional integrals over all order-parameter
configurations.

Basically, the procedure is similar in spirit to
all Ginzburg-Landau theories —the short-range
correlations are integrated out, leaving only the
slowly varying configurations to be averaged over.
In the present case the "short-range" correlations
are very anisotropic and may, in fact, extend
along the chain for many fundamental chain lengths.
The exact solutions, usually available for one-
dimensional problems, allow one to accurately
treat these "short-range" correlations. Qnce
this is done, the problem can be rescaled such
that distances along the chain are measured in
terms of the one-dimensional correlation length.
The resulting generalized Ginzburg-Landau theory
is then isotropic and, although it usually cannot be
exactly solved, a great deal is known both theo-
retically and experimentally about it.

To illustrate this procedure, we treat a one-
dimensional array of weakly coupled Ising chains
in Sec. II. Replacing the interchain interaction
by a mean field, ' the wave -vector -dependent mag-
netic susceptibility X(p) and the free energy per
spin f are obtained. The susceptibility exhibits
the usual Ornstein-Zernike form and gives an
approximate expression for the transition tem-
perature of the array. An order parameter is
introduced to describe slow spatial variations of
the mean field. Then the results for y(g) and f
are used to construct a Ginzburg-Landau func-
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tional which gives the energy of the slowly varying
mean-field configuration. Using this functional,
a generalized Ginzburg-Landau formulation of the
low-temperature phase transition of the array is
obtained.

In Sec. III we apply these same ideas to the case
of a two-dimensional array of weakly coupled &Ii'

chains. Here the statistical mechanics of an iso-
lated chain is assumed to be described by a real-
&' Ginzburg-Landau theory. The salient features
of the theory are summarized in Sec. IV, and it is
applied to two other examples: (i) a two-dimen-
sional array of classical Heisenberg spin chains,
and (ii) a two-dimensional array of &t chains with

g a complex order parameter. It is straightfor-
ward to apply our formalism to any array for
which the one-dimensional problem can be solved. '

II. WEAKLY COUPLED ISING CHAINS

The Hamiltonian describing a weakly coupled
one-dimensional (planar) array of Ising chains in
an external magnetic field is

(o(q) &
= x(q)&(q). (4)

Here X(q) is the q-dependent susceptibility.
If the spins a„„on the two chains adjacent to

the mth chain are replaced by their self-consis-
tent mean-field values using Eq. (3), the problem
becomes that of a one-dimensional chain in an

Here the (n, m) spin can be up or down corre-
sponding to a„=+1. ~~~ is the exchange coupling
along a chain, ~~ is the interchain coupling, and

h„„ is the Zeeman energy at the (n, m) site. In
this work we take both ~~~ and ~~ &0. We are in-
terested in the situation where J~I» J~, so that the
system develops important short-range correla-
tions along the chains before the two-dimensional
phase transition occurs. The generalization of
this to a three-dimensional lattice consisting of a
two-dimensional array of chains is straightfor-
ward.

For a given p dependence the Zeeman energy
has the form

h„=h(q)e'"i!"!i""~"~'+c.c.
Here q = (ql~i q~) and (dll, d~) are the distances be-
tween the spins parallel and perpendicular to the
chains, respectively. The expectation value of the
spin on site (n, m) is given in linear response by

(o„&=e&&~ii~ll""'i"i '(o(q)&+c.c.,
with

effective field. Dropping the m index, the Hamil-
tonian for this one-dimensional problem is

If = -g dl o„+,o„-h„f(q)g e"ii'll"o„,

with

I.ff(q) =h(q)+2~. (q.)(o(q)&.

&~(q~) is the q, Fourier transform of the inter-
chain interaction

J,(q, )
'= —' g e"~'~"= J, cosq, d,

m k].

Above the transition temperature, the self-con-
sistent expectation value (o'(q)& is given by the
usual linear -response form

(o(q) &
= X, D(qii)I .f(qll, q, ).

Here X,D(qii) is the qii susceptibility per spin for a
one-dimensional Ising chain. Substituting Eq. (6}
into Eq. (8}we have

x,D(qii)
(qlli qJ. )& ] 2 J ( ) ( )

(qlit ql. )
J J. ].D ll

Therefore, in this approximation the g-dependent
susceptibility for the array of chains is simply
related to J,(q, ) and X»(q„):

xl D (q I I )
1-2~,(q, )x„(qi)

' (10)

The transfer-matrix solution"" of the one-
dimensional Ising model gives the result

(0) x, D(o)
1-2~iX,D(0)

' (14)

At temperatures where 2 J'~X, D(0) «I this reduces
to the one-dimensional result. However, as the
temperature is reduced and X,D(0) increases, the
interchain coupling enhances x(0), and the system
becomes two dimensional when t & kT,/Pi!. It turns
out that this region is also the two-dimensional

X,D(q, , ) =
~

(tanhpJ, l)
' e' ll

l

When ~~ « ~~~, the temperature region in which the
intrachain coupling becomes important is such
that p Jll»1. In this limit Eq. (11) sums to the
simple form

x„(o)
Xf D(qll) 1 (~ )2

where X,D(0) =2),/kTdl and $, (T) is the one-di-
mensional correlation length which for is~~~»1 is
given by

$ (T) =-'d e' ~~i.

The q =0 limit of Eq. (10) is
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Ginzburg" critical region.
Within our present mean-field treatment of the

interchain coupling, y(0) diverges at a tempera-
ture determined by the condition

1 —2 J~y, n(0) = 0.

For the case in which JI]» ~~, an explicit expres-
sion for the transition temperature T, can be ob-
tained:

Here we continue to assume that (,qI] and d~q~ are
small compared to 1.

Continuing with the mean-field treatment of the
perpendicular coupling, we turn to the free energy.
The free energy f per spin can be expanded in
terms of the uniform (q =0) mean field (o'). In
the absence of an external magnetic field, the solu-
tion of this one-dimensional problem with ~~~

» J~
gives

kT2 = 2 Jll/In(J11/JJ. ) (16) f = -J1+J,[a(o) +2b(o)'+0((o)')]. (24)

This has the same form as the exact result" ob-
tained by expanding 1=sinh(2 J„/kT, ) sinh(2 J~/kT, )
for the case ~~~ » J:

kTc= 2 Jll/'ln(2 J1/J~). (17)

The approximate expression given by Eq. (16) over-
estimates the transition temperature by a factor
of order [1+ln2/ln(2 Jll/J~)]. This difference be-
tween the exact result, Eq. (17), and our equation
(16) reflects the slight suppression of T, due to the
two-dimensional fluctuations which are neglected
by our present mean-field approximation.

For temperatures near 1'„ in the two-dimen-
sional regime, where

Here a is the same coefficient that appeared in

y(q) [see Eqs. (22) and (23)] and

b = 4 (2 Ji)'X,'o(0) =—-',

where the last approximate equality holds in the
temperature region given by Eq. (18). Minimizing
f with respect to (o) gives the usual mean-field
result for the behavior of (o):

(o)2=0, T&T,

=-a/2b, T&T,. (26)

Close to T„when the condition given by Eq. (18)
holds, b can be approximated by —,

' and a by
(2 J,l/kT, )t In this. ease, for T & T„

I tI = l(T —T.)/T. l& kT./2 Jll, (o) -=(4J /kT, ))t). (27)

1 1

2 J, (2 Jll/kT, )t + &;q ~,
+ (4q', /2)

This gives the characteristic lengths

Tc 1 Tc kTc

(20)

(21)

which describe the spin correlations in the parallel
and perpendicular directions, respectively. These
lengths diverge in the usual mean field way as
(T )1/2/(T T )1/2 when

In calculating y(qll, qj ) [Eq. (10)] outside the tem-
perature region set by Eq. (18), the temperature
variation of g, and X, D must be taken into account.
In this case, one has the more general result

x(q, q, ) =
a(t)+[(h,qll)'+(d q )'/2]2 JiXln(0) '

(22)
with

a(t) =1 —2 J~g, n(0).

our mean-field q =0 susceptibility has the "Curie-
Weiss" form

X(0)=—(kTc/4 Jll Ji.) 1/t ~

In this same temperature region the small-q
(q, l $, «1, q~d2 «1) expansion of y(q) has the usual
Ornstein-Zernike structure:

Thus the buildup of the order parameter below the
ordering temperature is enhanced by the large
factor 4 Jll/kT, =- 21n( Jll/J~).

In order to go beyond these mean-field results it
is necessary to develop a scheme to take into
account the remaining fluctuations. These fluc-
tuations are most important when ~t~&kT, /2 Jll In.
this region the interchain correlation length be-
comes larger than d~, which means that two-di-
mensional correlations become important. This
region is the same as the one estimated from the
Ginzburg criterion for critical fluctuations. Phys-
ically, the spin correlations vary slowly on a
scale set by $, (T,) along a chain and d~ perpen-
dicular to the chains. Thus one would expect a
generalized Ginzburg-Landau theory based on the
mean-field results for y(q) and f with the corre-
lation lengths $,1» $„$»d~ to be a valid ap-
proximation. Using y(q) and f it follows that the
energy of a slowly varying mean-field configura-
tion described by an order parameter 4(x) ean be
expressed as

J'
E[4 (x)] = ' d'x a4'(x) + b4'(x)

cg[[ 4~ j

(28)

Here the order parameter 4'(x) can be understood
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as the average of the spin over a chain length

g, (T,) centered at position x =(x~~, xj ):
ll@(x)=

( (T ) M (on'm)~ (29)

sition temperature of an isolated chain. As is well
known, for the case of a single chain, fluctuations
prevent the system from ordering and give rise
to a broad continuous transition region of charac-
teristic width &T given by"

with x~~ =nd~~, xj =md~, and the sum over n' such
that (n' —n(d, ~& —,'g, . It is convenient to scale the
dimensions so that x~~ = g, y~~ and x~ = (d~/v2)y~.
Then the functional E[g(y)j has the isotropic form

d'y [aq"(y) + I q"(y) +
I &,+I'1,

Z g@ ~-Sz L+& (31)

and the correlation function by

(3o)

where V, is the two-dimensional gradient. The
energy functional E in Eqs. (28) and (30) does not
include the configuration-independent contribu-
tions of —

~~~ per spin which arise from the first
term of Eq. (24).

In arriving at the Ginzburg-Landau functions,
Eq. (30), we have integrated out the short-range
one-dimensional correlations. The ~~~ coupling
now simply serves to set the parameters $, and

X,n(0). In order to treat fluctuations, we now

propose that F['+), Eq. (30), be used as the energy
functional for a generalized Ginzburg-Landau
theory. ' Here the partition function is given by the
functional integration

AT =2T,'(bkT') '/a' (34)

L

k,.(x)g, (x) dx.
i 0

(38)

Proceeding as in Sec. II, a mean-field approxi-
mation of the interchain coupling is made, and the
problem is reduced to that of a single one-dimen-
sional chain in an effective field. The q-dependent
susceptibility of the array in this approximation
has the same structure as Eq. (10),

~& D(qll)
( II& J.) 1 2~ c (q» )X (q )

(36)

with X,o(q~~) the susceptibility of a single chain and

Here Ri& are the perpendicular near-neighbor dis-
tances between chains and z~ is the number of
near-neighbor chains of a given chain. For c~
positive, the susceptibility diverges first for q =0,
and the mean-field prediction for the transition
temperature T, of the array is given by

If the array interacts with an external field h which
couples linearly to g, there is the additional inter-
action energy

(@(x)@(x'))= 5@(e 8~'~'/z)4(x)4(x'). (32) 1 —2e,c,X„(0)=O. (38)

While these functional integrals cannot be carried
out exactly, this formulation reduces the problem
of an array of weakly coupled chains to the stan-
dard form for an isotropic phase transition.

III. ARRAYS OF REAL-P4 GINZBURG-LANDAU CHAINS

This same type of approach can be applied to
arrays of chains described by a continuous real-
field order parameter. " Here we consider a two-
dimensional array of weakly coupled chains ori-
ented along the x axis. The ith chain is described
by a real order parameter P;(x), and the energy of
a given configuration is given by

F=+ ax a4',. +kq4+c„

L
—2 g c, P,. P,. dx,

o
(33)

where a = (T —T;) a' and a', E, c~~, and c~ are posi-
tive constants. The i 4 j sum is over near neigh-
bors. The temperature &,' is the mean-field tran-

The single-chain problem can be solved by well-
known transfer-matrix techniques which reduce it
to finding the eigenstates ~n) and eigenenergies
&„ of the effective Hamiltonian, "

82

Pc II
9

(39)

X)D(qp) kT J(dx e"~~"(4(x)4(0))

kT 1+(q, , g, )' ' (40)

with (1~)~0) the matrix element of the variable
g between the ground state ~0) and first excited
state ~1) of Eq. (39), and

(41)h, '=P(e, -~,).
From Eq. (40), we have X,n(0) =—~(1~/~0)'2$, /kT,

so that the condition specifying T„Eq. (38), be-
comes

In Eq. (39) P is simply a variable and not the field
g(x). It can be shown that the one-dimensional sus-
ceptibility- of a single chain is given by
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1 =4z c, g, l&ll ylO&l'/bT. (42)

and

l&llgfo&l'=- &olq'lo& —= (a'/2b)(T; —T) (43)

~, =- (T:/~T)"&.exp[(T: —T)/~T1, (44)

with $ =c~~ '/a'kT;. Substituting these expres-
sions into Eq. (42) we find that

We will say that the chains are weakly coupled if
T, for the array is less than T,'-4T, where 4T
is given by Eq. (34). In this case, setting T =T„
one finds from the solutions of the effective Hamil-
tonian, Eq. (39), that

chains are well below T,', only the ground and first
excited state of H are important. Diagonalizing the
Hamiltonian, Eq. (49), in this basis and expanding
the ground-state energy in powers of &g& through
order &g&' one obtains

l&ll el 0&l'&e&'+

(5o)

According to the transfer-matrix theory, this is
just the Gibbs free-energy density. Adding the
self-consistent field interaction energy —,'c z~&g&'
to this gives the free-energy density we seek:

To
C

ln(cg/zxcj )o)
(45) f =z, +z,c, (a&4&'+bl&ol 0'lo&l&4&')1 (51)

a(T)+2z, c,X„(0)[(&,q, ~)'+(d, q, )'/2J '

with a(T) =1 —2z~c~)t, o(0). The parallel and per
pendicular coherence lengths are therefore given
by

(4S)

For temperatures near the ordering temperature
T, of the array, the expression for )t(q) reduces
to

1 1
2z c (T —T,/&T)+ p, q', ~+(d~q)'/2

'

(48)

The calculation of the free-energy density (free
energy per chain per unit length) is straightfor-
ward within. our present approximation in which the
interchain coupling is replaced by a mean field.
The Hamiltonian, Eq. (40), becomes

8
H =—,+ aP + bg' —2z ~c~ & g& g.

4Pcii 8 ' (49)

At temperatures near T„which for weakly coupled

Thus weak coupling means that the ratio of the
transverse coupling to the longitudinal coupling
z~c~Po/c~~ is small compared with unity. This
ratio plays the same role as J~/&,

~

for the Ising
model discussed in Sec. II. In the continuous
model, described by the energy functional
F[$,(x)] of Eq. (33), c~ has dimensions of energy
per unit length, so that z~c, g, represents the ef-
fective transverse coupling energy, and c~~ has di-
mensions of energy times length, so that c~~/$,
represents the effective longitudinal coupling ener-
gy

Assuming that q, ~g, and q~ d are both small
compared to unity, the q-dependent susceptibility
becomes

with

a = 1 —2z ~c~)t, o(0) =—(T —T,)/b T (52)

+-', (d, ~ V,e)' . (54)

Here we have not included the configuration-in-
dependent contribution NI e,(T) which represents
the free energy of N noninteracting chains of length
L. Scaling x such that x, = $, y;t and x~ =(d~/v2)y
gives the isotropic form

F[+(X))=l( . .(,&0IO'Io&)

d'ya4'y+b+4y + V'4 y '.
(55)

This functional has the same form as Eq. (30) of
Sec. II for the Ising problem. There is again a
substantial amount of order along the chains, and
the configuration energy is set by the interchain
or transverse energy —,'z~c F„&olg'lo&. Using Eq.
(55) the generalized Ginzburg-Landau theory is
constructed as discussed at the end of Sec. II.

b =-'[2ziciX, o(0)J ' —= -' (53)

Here we have replaced 2l&1l Pl 0&l'/(e, —e, ) by )'„o(0),
set l(1lflo&l'—= (Olg'lo), and in the last form of
Eq. (53) taken 2z~c~y, o =1, its value at T, .

Now, just as before, we introduce a new order
parameter 4(x) which is a ratio of P(x) averaged
over a length $, (T,) along the chain to ((ol Pl 0&)'~'.
It follows from the expressions for y and f that a
slowly varying 4(x) configuration has energy

F[@(x)]= ' ', i d'x a4'(x)+b+'(x)z,c,&o 'o&
CP~
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IV. SUMMARY AND CONCLUSION

H~
-—-Q g S(+~, s) ~, (56)

and the chains are coupled by a near-neighbor ex-
change ~~:

-+2J,S,,„S,, (5V)
ij

Here S is a classical unit vector and ~l~,~

=S(S+1)8~~ ~, where 8 is the Heisenberg exchange.
We will treat the case in which the coupling along
a chain is antiferromagnetic (&~~&0), while the cou-
pling between the chains is ferromagnetic (J~ &0).

Fisher" has calculated the correlation functions
leading to the staggered susceptibility for the one-
dimensional chain. In the ply =0 limit

X,D(0) = (I/3kzT)[(1 —u)/(1+u)], (58)

with u = (cothK —1/K) and K =2 J~~/kT. Just as be-
fore [Eqs. (15) and (38)], this leads to an estimate
of the ordering temperature of the array given by
1 =2z~ J~X,D(0). For J~~»kT, we find that

kT, =Jii( zi Ji/Ji))" ~ .—

The change in the dependence of T, on z~ J~/J„

(59)

The problem of a weakly coupled array of chains
is characterized by two scales of energy. The
longitudinal intrachain coupling energy is large
compared to the transverse interchain coupling
energy. This difference of energy scales can be
removed and the problem homogenized by using
the single-chain (one-dimensional) solution to in-
tegrate out the "short-range" one-dimensional
correlations. The procedure for carrying this out
has been discussed in Secs. II and III for two spe-
cific examples.

Treating the interchain coupling within mean
field, expressions for the q-dependent suscepti-
bility X(q~~, q~) [Eqs. (20) and (46)] and the free-
energy density f [Eqs. (24) and (51)] were ob-
tained. These expressions provide an adequate
approximation outside the critical ordering region
jand give an approximate expression for 1;. In the
critical region, interchain fluctuations are treated
by a generalized Ginzburg-I andau formalism using
a free-energy functional F [Eqs. (28) and (54)]
with parameters obtained from X and f. All of
these functions are constructed from the solution
of the one-dimensional problem. Specifically, the
one-dimensional linear response X, D(q) and the low-
est-order nonlinear response must be evaluated.

We conclude with two additional examples. First
consider a two-dimensional array of classical
Heisenberg spin chains. The gth chain has a
Hamiltonian

from logarithmic for the Ising model to square root
for the mean-field estimate of the classical vector
model reflects the change in symmetry of the
order parameter. More generally, one may ex-
pect that kT, /J„varies as (z, J,/J~~)", where the
index &' depends on the number of components of
the order parameter and the dimensions of the
array.

For ~T small compared to ~ll, spin correlations
develop along the chains and

X D(qii) =—X„(0)/[1+ (qadi 4) ), (60)

(61)

with a =1 —2z, J,X»(0) and 5 =—'„'. The order pa-
rameter 4 is equal to the average value of S, over
a length $, along a chain [see Eq. (29)]. In this
case the crossover region between 1D and 3D be-
havior as well as the 3D critical region occur for

As a final example, we conclude by giving some
results for a complex + field. The notation is that
of Sec. III. The susceptibility of a single chain is
approximately given by

(ol I
@I'lo&

X1D(qll) kT 1 + (q p )2

Numerical results for $, ' are plotted in Ref. 15.
For T&T;, one has $, '=—bkT/2clal. The transi-

tion temperature of the array can be expressed in

the weak-coupling limit as

2z~c~ $„
C C

C

with E2O =c~~/a'kT; . Just as for the real field, the
weak-coupling limit is set by the requirement that
z„c~P~/c~~ be small compared to unity. The square-
root dependence on this relative coupling strength
which appears in Eq. (63) is similar to that ob-
tained for the classical spin case. The change in

dependences on this ratio of coupling strengths
from logarithmic for the real field to square root
for the complex field reflects the change from
exponential to power-law growth of the correla-
tion length $, . As previously noted, the square
root in Eq. (63) is a mean-field result, and in an

exact theory it would be replaced by a different

with a correlation length $, =2 J,
,~d, ~/kT The q.

-
dependent susceptibility of the array is given by

Eq. (10). Finally, it is straightforward to calculate
the nonlinear (FP) susceptibility for T near T,."
From this one finds that

~Pl=m~, z, I d. '„oIOI' ~ &I@I'
1]

d4 d~
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index. Near T, a new complex order parameter
4(x) is obtained by averaging g(x) over a length

$, (T,) and normalizing it to ((0~ ~g~'(0))'~'. The
free-energy functional is

J.

+ —' (V,e(2, (64)

with a =1 —z~c~y, o(q~~
——0) and & =—1.
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