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Where the degrees of freedom of particles in thermally activated motion are coupled to the order
parameter associated with a phase transition of the bath, fluctuations in that parameter cause a
modulation of the activation barrier, and hence an anomalous rate near T .

Various heterogeneously catalyzed reactions
display anomalies in their rates as functions of the

temperature near phase transitions of the catalysts.

In some cases the slope of the Arrhenius plot (log-
arithm of rate vs reciprocal temperature) changes
at a transition; in others the slope is not appre-
ciably changed, but an enhancement or diminution
of rate occurs in a fairly narrow temperature
range around the transition.

We argue that a contributory factor to these
anomalies is a coupling of the order parameter
characterizing the transition to the degrees of
freedom of the reacting atoms or ions. Inasmuch
as most chemical reactions are thermally activated
processes, it suffices to state the argument for
the simple case of thermally activated motion of a
massive particle over a potential barrier starting
from an initial energy minimum (see Fig. 1). This
particle is imagined coupled to the order parame-
ter.

The rate of escape over the barrier (the reaction
rate) may be found by solving a Fokker-Planck
(FP) equation for the momentum (P) and position
(R) dependent distribution function of an ensemble
of such particles. This Fokker-Planck equation is
essentially one dimensional, since for energetic
reasons the particles move very close to the line
of steepest ascent over the barrier [which is al-
ways a saddle point of the potential energy surface
V(R)]. The result of such a calculation for the
rate K is

K =vexp(-AV/kyT) (1)

(T is temperature and kg Boltzmann’s constant.)
Here AV is the height of the barrier measured
from the originating potential minimum. The pre-
factor v is an “attempt” frequency which depends
on some salient features of the “reaction path,”
and on the “friction constant” 7 occurring in the
FP equation. The course of v as a function n has
been described by Kramers.! For small 7 it rises
linearly, then saturates and remains constant for
a range of s, and for large n decreases again (as
1/7m). The n-independent range is referred to as
the range of applicability of the so-called absolute
rate theory (ART). In that range the effect of pro-
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pulsion by the random forces (of which 7 is a mea-
sure) is in balance with their friction effect (of
which 7 is also a measure).

The reasoning underlying the FP equation is
based on the hypothesis of two time scales, a slow
one, on which the position and speed of the massive
particle changes, and a rapid one characteristic of
the motion of the “bath” degrees of freedom. Stat-
ed crudely, the former motion involves the “aver-
age” force of the bath on the chemicals. The latter
motion determines 7, which for large mass is ex-
pressible in terms of an autocorrelation function of
the force fluctuation about that average force. As
shown in earlier publications,?'®  may be expressed
in terms of electromagnetic response characteris-
tics of the bath. This response becomes anomalous
near a transition and thus causes an anomaly in the
rate of the reaction wherever that rate depends on
7, i.e., outside the range of applicability of ART.

However, near the transition some of the sub-
strate degrees of freedom also vary slowly and
must be treated on the same footing as the massive
particle. In particular, the order parameter (or
parameters) associated with the transition must be
so treated, if, as will generally be the case, some
of the effective coupling of the particle to the bath
involves the order parameter. The appropriate
Fokker-Planck equation then is for a joint distri-
bution functional of the order parameter and the
particle variables.

The free-energy functional F consistent with a
given order-parameter field 3 (r) is defined as
e *F = Tryqn)e™, where H is the full Hamiltonian,
B=1/ky T, and the trace is over all bath variables
consistent with '.‘)_fl(;). (For definiteness we shall
henceforth speak of a ferromagnetic transition,
with 9 denoting magnetization density.) F has the
form

F=F,+F,+F,,, (2)
where the substrate free energy F, is

F,=F, +f[§a?—ﬁlz +1p0R2) + Lo (VI dv
and that of the particle is

F,=(1/2M)P2+V(R) ,
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FIG. 1. Path for the reaction A to C.

where M is the effective mass and V(R) the poten-
tial energy.

Near 7., a varies like 7 - T,. Finally, the
lowest order significant terms in the coupling en-
ergy are, with n denoting a unit vector in a pre-
ferred direction (if any) occurring in the system
(e.g., the normal to the surface of a solid in the
case of a surface reaction),

Fse= Z A M (RIP(R) + BI(R)(P x1)
aB

+D[P . VXMR)] . (3)

The first term will arise, for example, from ex-
change coupling of the conduction electrons of a
metal substrate to any residual free spin of the
massive particle. The second will arise from

spin orbit coupling of the particle in the field of
force of the bath. The last term is a crude local
approximation to the interaction of the adatoms with
the magnetic field due to 9. (The simplest way to
verify these statements is by considering a well de-
fined local spin S interacting with M through ex-
change. Since it has some susceptibility, S be-
comes proportional to i, )

We retain only the first (generally largest) term
of (3). If the fluctuations in M are slow compared
with those of P and R, the observed reaction rate
will obviously be equal to the time average of the
instantaneous rate, or, equivalently, equal to
ve B &#8Fs)  averaged over the fluctuations
with a weight proportional to e”#¥s. Here AF,, is
the increment in F__ between saddle point and
minimum. Fluctuations in the reaction path itself
may be neglected. The reader not interested in
the more general case may now proceed with the
text following Eq. (8).

In the general case, we assume a simple expo-
nential type regression for IM:

il D¥qy F +random force , (4)
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where D is a constant and ¥y is the functional
gradient of F with components 6 F/8J,, ap/am,,
5F/89,. With this hypothesis, the Fokker-Planck
equation becomes

of <Eaf oV’ ar\ _ o (» 9

a0 "\M 3R ~ 3R sp) ab N\ MkT 55 )/

+Dfd’l}ﬁ5m° (X’ng"'kBTme)f ) (5)

where
'
V =V+F;

71 is, as before, the friction coefficient arising

from the rapid, nonthermodynamic fluctuations.
Because the motion hugs the reaction path, Eq.

(5) reduces to one-dimensional form along this

path:

af P of ov'af o

]
ol | MOX  8X ?ﬁ_"BF(PJ’MkBTSF)f

+Dfd1) Yo - (WsmF‘*'kB Twsm)f, (6)

where M is an effective mass, P an effective mo-
mentum, and X the position along the reaction path.
To test the internal consistency of this formalism,
the case in which I is rapidly varying (D large) is
examined in Appendix A. Here we examine only the
case of slowly varying Ji.

In the ART range the rate does not materially de-
pend on 1, which may thus be equated to zero (as a
mathematical device only). Let us further suppose
that the fluctuations in I are even slower than those
in R and P. Then D may be equated to zero also.
We seek a solution of Eq. (6) with n=D=0, which
satisfies f ~ e¢™F well to the left of the barrier, and
f =0 well to the right of it.

That solution has the form

f=Co{P-[2M(V o, ~ V)]'/?}
xexp[- (P¥/2M+V' =V, +F)/ksT], (1)

where 6 is the step function, and (X2)!/2 means X.
[(7) satisfies (6) because X5(X)=0.] V.. is the
height of the saddle point of V'=V+F,,. We find
C by assigning a fixed current to this solution, and
then calculate the total number of particles # in the
originating well (A in Fig. 1). The rate is then K
=i/n.

The current may be evaluated at V'=Vv_, , and
the result is

C:ﬂj/feXp(— BF/ksT)0M .

(Here [6M denotes functional integration.) Near
A, f is nearly equal to
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Cexp—B[P2/2M + V= Vipax + Mol (X = X, )?
+Fsc(X) - Fsc(0)+Fs] s

where X =0 has been chosen as the coordinate of
the top of the barrier, and w, is the natural fre-
quency around V.. The rate is thus

K=(1/8) f dX dP{exp = [F ,(X) - F,(0)])

x exp —{[P2/2M +% Mw3 (X, )%/ ks T}
XeXP _[(Vmax - Vmin)/kET]y (8)

where () denotes the functional average of the

argument, with e™®Fs/[ ¢ s6M as weight factor. The

average in (8) may be written as a cumulant aver-
age (denoted by subscript c):

(e™80UNY = exp((e 80U, ~ 1),
Thus the rate has the Eyring ART form:

K=(wi/2m) eV BT

with
AV=Vaax = Vain+ 28T
x{(exp = [F;(X4) = Fo(0)]/ k5 T) . = 1}
and

wit=wd +kgT d¥ ... ),/dX3)/M.
Keeping only the lowest-order cumulant average
1
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has the effect of replacing V(X) by V(X)+(F . (X)),
as one would expect.

To assess these results for T>T,, we go into
Fourier representation

M(E) = 2m)*2 | m(@) sing?Z ¥ aq

and assume 51:6 to vanish for z>0. For simplicity
we take all three components of A to be equal and
consider desorption of a particle from a surface.
Also, we omit the quartic terms in F and thus
cannot expect to obtain the precise values of the
indices in the critical behavior near 7., More ac-
curate approximations are possible, but of no con-
cern in this preliminary assessment. Then

ks TA [ sin®¢*R*(X) e

(Fo)= 47 cq®+a

The integral formally diverges, but this is due to
the neglect of terms such as (V2M)?, etc., in Fg,
which are equivalent to an upper cutoff g,, to the
q integration., The integral thus consists of an a-
independent part

kgTA 1 ( 9max .
Bang \ [1 - (sin2qR?)/2qR* g% dq ,

which may be interpreted as contributing a constant
activation entropy (the coefficient of T') and a more
interesting a-dependent part which is

(F (X0, = ks T (A/4mcVa/c (1 —{1 - exp| - 2R*(X)Va/c]}/2R* (X)Va/c)]}

which tends to zero like a, i.e., like T - T as T~ Tg.

result of the fluctuations by an amount (see Fig. 1)

The effective barrier height will be changed as the

(Foo(Xg Ve = (F (X4 e = ks T(A/87c){[1 - exp( - 2R% Ja/c)|/RE —[1 - exp( - 2RE Ja/c)]/RE}

which likewise goes to zero like a as T~ T¢. Sub-
stitution into (1) shows that if this effect is inter-
preted as a change of prefactor with temperature,
we have an anomaly of amount

AV= |V e = Vrg | /Vmax(®, Tc)
=1-exp- |A(1/R; - 1/R%)/81uc]| .

For a JS +§ model of the adatom, A is of order

- (J%/bandwidth) X (atomic volume). Taking c¢ to be
of order k5T X (lattice spacing)? and 1/R, - 1/Rg
of order of a reciprocal-lattice spacing, then with
Tc~1000°K, J~0.4 eV, the bandwidth approxi-
mately 3 eV we find that Av is about 5%. Substan-
tially larger anomalies are sometimes observed. 4
(Abrief resume of the experiment in Ref. 4 is given
in Appendix II.) This may be due to less smoothing
of the fluctuations near the surface (for example,
as the result of ¢ having a reduced value there).

I

When T< T., the same analysis may be repeated,
but with 3R expanded around the appropriate mean
value.

Anomalies of the kind described here should be
observable also in the diffusion rate of atoms
through solids near phase transitions; also in the
interactions between adatoms or impurities. (The
formalism is trivially generalized to many heavy
particles. )

The author acknowledges the hospitality of the
Laue-Langevin Institute, Grenoble, where part of
this work was completed.

APPENDIX A

In the usual derivation of the Fokker-Planck
equation for Brownian particles, the friction coef-
ficient arises from the coupling to those degrees
of freedom of the bath that vary rapidly on the scale
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of motion of the particles. In the case of large D, of the Smoluchowski equation and the Maxwell ve-
the magnetization field can be regarded as such a locity distribution.) It is desirable to perform such
set of degrees of freedom. Hence in the limit of a check, since essentially the same formalism
large D one should recover the FP equation for the should apply in the case of coupling to other fields:
adparticle alone, with the friction coefficient deter- For example, the strain field and the electromag-
mined by coupling to the magnetization field (as- netic field in the case of physisorption. To make
suming any other source of friction to be absent). our point we shall neglect other sources of friction

Thus for large D the solution of the functional equa- on the adparticle (n=0). Writing
tion (5) should have the form of a product of the

solution of that new FP equation, multiplied by the
equilibrium distribution of the magnetization field. and

F,=F +F

(Such a result is somewhat analogous to the approxi- f~}e'”1/2
mate solution of the usual FP equation for large B ’
friction, which reduces to a product of a solution we obtain from (6)
|
gf_z_Paf avaf ,epapl BFaff 2 1aw2 12 -
oi T MR % oF ~2 1 oR’ R o5 - L) WI¥h+iBVREL - if RnF1f]S (A1)

For simplicity, let A be diagonal: A,z=084,3A4,. Then up to terms bilinear in 3 we have:
Fi=[ (a0 + 1l TROF + 5 401062 - R)a
(-3

This may be rewritten in terms of “normal modes,” which we chose to be real: If {cpw(v, R)} is the ortho-
normal set that satisfies

= V200 (T, R) + 09,0, R) + Ag@ea (R, R)O(F - B) = 0o (R) 00 (7, B) | (a2)

then
1
—EZ ww 77750: N
q

where

Moo =2 [ Mo (7)@ealr, R)dv , (A3a)

Mo (1) = QY2 mya@ealr, R) . (A3b)

q

The normalization is [ @@ o dv= 00, and € denotes the sample volume. Henceforth we incorporate the
@ index in ¢q. Writing

Mg = Mg (3Bw, )2 (A4)
and substituting (A4) and (A3Db) into (Al) converts that equation into:

of Ea} 8V8f 281}( 2 li zfz

ot "M 3R 8k oD -2 M R -3 2D Z piF (A5)

where v, =1In(w,).

The eigenvalues and eigenfunctions of the term in paranthe51s on the right-hand side of (A.5) are - 25,
and

T(ng) = (/22" 1 )2 H, (1) exp(= 3 ud),

where the », are positive integers or zero, and the H, n, are Hermite polynomials. In derlvmg (A.5) we have
used the fact that because of the orthonormahty of the ¢, (A3a) and (A3b) give &m,/8R=0, whereas from
(A4) ap,/oR=1%p, 8v,/9R.

Noting that the left-hand side of (A5) links only ¥ states whose n,’s differ by +2, we attempt a solution

—_

F=H®R, P, ) w0+ 7R, P,NT2,) , (A6)



11 THERMALLY ACTIVATED PROCESSES NEAR A.

in an obvious rotation.
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The second term on the right is expected to be of order 1/D. Terms with four,
six, etc. quanta have been dropped as they will be of order 1/D? 1/D°) etc.

¥(0) [or, more precisely

¥(0) e ®F1/2] corresponds to thermal equilibrium of the field for a given fixed position of the adparticle.
Substituting (A6) in (A5), using (A4), dropping terms with four or more quanta, and equating coefficients

of ¥(0) and ¥(2,), we find

To order D! the solution of the latter equation is

Ju=(@VZDw,)™ ”“( /ot B“—%)

Substituting this in the former equation and setting

1
fo-toem 13 v,

gives
ofy Pof, oV’ of L 8y
ot "3 OB _aﬁ-ﬁ% e T"’BaP Pefo+ M 5p, )
where
-1 d
Nas = (48DM)° ZBR 5R,

is the effective friction coefficient and
V=V @B v,
q

is the effective potential.

(A7) has indeed the form of the FP equation. It
is interesting to note that 27'3,v, is the position-
dependent part of the entropy associated with the
field fluctuations [as is checked from the relation:
entropy = k(InZ - T91nZ/8T) where Z= [Tl e~ ? 1],
Thus in solving (Al) for a reaction one finds that
the activation energy AV will be replaced by the
activation free energy AV’ as required by general
reaction Kkinetics. Note that these results apply
for all coupling strengths.

APPENDIX B

In the experiments on initial oxidation rate of iron
in Ref. 4, the investigators plotted that rate over
the first two minutes of exposure of the pure sample
by recording the change of weight. From about
fifty-five seconds onwards, they found the rate to
be diffusion limited. That is to say, the rate of
change of weight varies as (time)™/2 at long times.
Presumably, the bottleneck of the reaction is then
diffusion of oxygen through the growing oxide layer.
Up to about forty seconds, a marked deviation from
diffusive behavior is observed. The rate in that
range declines experimentally with time, and the
oxidation reaction at the oxide-metal interface
should then be the rate-limiting step. Extrapolation

. 5 .

Td R R T W )

f _-Ef- v Po 0\ Bov (P o,
—ﬁi ?% _ﬁ( ot Blap) 2aR< Jax

(A7)

[

to zero time of the logarithmic rate curve then
gives the oxidation rate. The first measurements
became possible after twenty seconds of exposure,
and so the extrapolation to zero time had to be based
on the data between twenty and forty seconds. How-
ever, barring any changes of mechanism between
zero and twenty seconds, the investigators claim a
reproducibility of +5%.

An Arrhenius plot of their data (log rate versus
reciprocal temperature) shows a pronounced cusp
at 755 °C, the Curie temperature of pure iron, and
a smooth behavior on either side of the cusp. Also,
the activation energies above and below the Curie
point were found to differ substantially, by about H
eV, on the basis of a plot of log (rate/temperature)
versus reciprocal temperature, thus assuming ap-
plicability of absclute rate theory to the reaction.
The theory given in the present paper will indeed
yield such a change in slope, obtainable by replac-
ing N by its average value in the expression for
F.. Evidently F, (())=0 above the Curie point
and finite below. The exchange mechanism dis-
cussed at the end of the main text will only give
about one tenth of the observed change in activation
energy. It is possible that the mechanism discussed
by Measor and Afzulpurkar (change of density of
states at the Fermi level upon spontaneous magnetic
polarization below T'.) is responsible for the ob-
servations. Such a mechanism, at the phenomeno-
logical level, can likewise be described by the pres-
ent theory, with a possibly much larger value of A.
This would explain both the large anomaly near the
transition, and the large difference in activation
energies.
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