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Resonances in two-magnon Raman spectra and the effect of several exchange parameters~
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The first calculations of two-magnon Raman line shapes to fully incorporate second-neighbor exchange
and all magnon-magnon interactions are reported. Using a spin-orbit coupling mechanism for the

excitation of two spin deviations on a single site of a fcc Heisenberg ferromagnet at T = O'K, we find

a resonance well inside the two-magnon band which is qualitatively similar to that seen in

antiferrornagnets. This resonance is located close to the Ising energy of two spin deviations on a single

site, in contrast to the antiferromagnetic situation where the excitations are usually created on

neighboring sites for which the resonance is close to the Ising bound-state energy. The line shape and

its position are shown to be sensitive to the ratio, g = J,/J „of exchange parameters for nearest- and

next-nearest-neighbor interactions. This sensitivity is illustrated through plots of spectra for

q = 0, + 0.25 for S = 1 and S = 7/2. The latter spin value affords an opportunity to assess the
observational prospects for EuO. The effect of finite temperatures is discussed and a second resonance
predicted in view of the existence of a resonance in the one-magnon propagator at finite temperature.
For a nearest-neighbor sc ferromagnet this secondary resonance should occur at a higher frequency than

the primary resonance that we have found at T = O'K. The relationship between Raman resonances

and two-magnon bound states is discussed in the light of results for ferromagnets and antiferromagnets.
It is anticipated that new progress can be made in respect of distant-neighbor interactions in
antiferromagnets by using a similar computational approach to calculate the appropriate lattice Green s
functions.

I. INTRODUCTION

Studies of two-magnon Raman scattering have
concentrated almost exclusively on antiferromag-
netic insulators for which much experimental data
are available. ' Early attempts to understand the
observations were based on the magnon density oi
states for which it was found necessary to invoke
long-range interactions in order to account for ex-
perimental line shapes. ~ A dramatic shift of em-
phasis followed the 1968 calculations of Elliott and
Thorpe3 for nearest-neighbor (nn) antiferromag-
nets. They demonstrated that magnon-magnon in-
teractions produced a resonance which caused a
major distortion of the density of states and showed
that the resultant spectrum gave good agreement
with observations on RbMnF, . ' Subsequent work
has concentrated on investigating the temperature
dependence of the spectrum taking into account
magnon renormalization and lifetime effects within
the nn approximation. Little appears to have been
done to investigate the limitations of the nn calcu-
lations by incorporating the effects of distant shells
of neighbors, probably due in part to computational
problems which we have been able to overcome.
Since it is known that the basic frequency spectra
are very sensitive to second-neighbor interactions,
calculations of two-magnon Raman spectra are re-
examined in this paper.

We report two new results from calculations of
two-magnon Raman line shapes. The first result
is the existence of a resonance similar in many re-
spects to that found in antiferromagnets. The other

result concerns the sensitivity of the line shape and
the position of its peak to the ratio of next- (second)
nearest-neighbor (nnn) to nn exchange interactions,
The system investigated involves the generation by
one photon, through a spin-orbit mechanism, ' of
two units of spin deviation on one spin site in a
Heisenberg ferromagnet at T = 0 'K. These devia-
tions propagate as two spin waves with wave vec-
tors k and —k and interact strongly because of their
excitation on the same spin site. An exact formula-
tion in terms of spin Green's functions for an arbi-
trary number of exchange parameters incorporates
all magnon-magnon interactions and is comple-
mented by accurate computations.

The type ot' study carried out in this paper for a
ferromagnet has considerable relevance for two-
magnon Raman studies of antiferromagnets because
of the many similarities existing between the prop-
erties of systems with these types of magnetic or-
dering. In general, calculations for antiferromag-
nets are more complicated than for ferromagnets.
The main difficulties arise because the Neel state
of fully aligned spins is not an eigenstate of the
Heisenberg Hamiltonian and this creates difficulties
for the description of the one-magnon state. It fol-
lows that the study of two-magnon states will be
even less amenable to analysis. All this contrasts
with the situation for Heisenberg ferromagnets
where the ground state is known, where the one-
magnon state is an eigenstate of the Hamiltonian
and where the two-magnon problem is exactly
soluble in any number of dimensions. Two-magnon
bound states were first found in the nn sc ferromag-
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net by Wortis' and more recently in the nn bcc case
by Bonnot and Hanus. ' These bound states exist in
nn sc and bcc isotropic ferromagnets only when the
total wave vector (K) of the magnon pair is greater
than a critical value which is close to the Brillouin-
zone boundary, albeit depending on the direction in
reciprocal spa, ce. To date these bound states have
only been located for a single high-symmetry K
direction in the cases cited. It is worth noting that
Boyd and Callaway' have shown that the bound state
connects to a resonance for K below the critical
wave vector. The corresponding situation in anti-
ferromagnets suffers from a lack of comparable
inf ormation. "

The two-magnon Raman cross section is formu-
lated in terms of spin Green's functions' and re-
duced to a convenient calculational form in Sec. II.
Numerical results for the fcc ferromagnet for a
range of second-neighbor interactions are given in

Sec. III, with a discussion of the results, their im-
plications, and a discussion of unsolved questions
given in Sec. IV.

II. FORMULATION +Q J„G„,, &(;,p. (6)

The equation of motion is written as

~G, ,, =(01[At~'A~ ] lo)+(([A'„a];A„)),
for which the inhomogeneous part is straightfor-
wardly evaluated. However, at first sight, the
homogeneous part appears to introduce Green's
functions of the form ((S~At„A, .)) due to [A~„H]
yielding S; operators. Fortunately at zero tem-
perature these new Green's functions reduce iden-
tically to S G. . . as can be seen by using (0 iS~
= (0 IS in the spectral representation

p ((0

IAIDO)(a(BIO)

(OIBI ~)(~'IDIO))
~ -&;+&0 ~+&; -&O

(6)
The final form of the equation of motion consists of
a closed set of equation for G, , ,

(dG, , , = (J;/4') f(t'(2S) (5,, , +5,, 5.)(l —5, , 0/2S)

+ 2S~ ~.Go. a
—2S + ~x-sG. , a

—~nGs. v

The Hamiltonian describing the ferromagnet is
taken to be of the isotropic Heisenberg form,

G, ,((. = (J,/4SN) ((A~~;A6, )), (2)

where the exchange interactions J, act between sites
whose separation is described by a vector b. J,
will be used to indicate the nn exchange parameter
and J~ used for rsnrsinteractions. The spin operators
in (1) obey the usual commutation relations.

We make use of the Green's-function approach
initiated by Wortis' and with some modifications
follow the spirit of the formulation used by Thorpev
in his earlier attempt at the ferromagnetic two-
magnon problem. The modifications include gen-
eralization to arbitrary range of interaction (in-
stead of a nn restriction) and the use of a more con-
venient and dimensionless normalization of all
Green's functions. We define zero-temperature
Green's functions by

The fourth and fifth terms on the right-hand side
of (7) represent spin-wave interactions, as does
the 5~. 0/2S contribution to the first term (incor-
rectly printed without the prime in Thorpe's
paper"). For the set of G, ,'s the first term on
the right-hand side of (6) simplifies to 2SZ,6, 0

(1 —1/2S).
Dropping all interaction effects enables the re-

sulting equation for the unperturbed Green's func-
tions (denoted by superscript 0) to be solved by
Fourier transformation, with the result that G, 0

may be written as a dimensionless lattice Green's
function (LGF) g~,

(7)

Translational symmetry tells us that

and in (7) the single-magnon dispersion function
is given by

with

A, =Q S,.S,„.
~„=S[Z(0) —Z(u)],

with

(6)

The Raman cross section due to the excitation of
two-spin deviations on a single site by a spin-orbit
coupling mechanism has been shown by Thorpe~ to
be proportional to the imaginary part of Go 0(&u).

Though it turns out that Go, o(&u) can be obtained by

restricting consideration to the set of G, 0's, we
will write down the equation of motion for the more
general G, , before making the restriction.

z(u)=p z, e*"'.

Although the equation of motion of G, , 0 is seen
from (6) to include only Green's functions of the
same order, the third term in (6) generates G„„,o's
in contrast to the fifth term which generates only
G„~'s (x specifies the set of exchange interactions
which are operative). For that reason the equation
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G(x, x') = (1 —1/2$)G (x, x')

+ dx" G (x, x' )V (x")G(x",x') .

Carrying out the same approach in the notation of
(6) we have immediately that

G, ()= (1 —1/2$) G, 0+ Q G, 6„2$J(

x —J6"G6",o+ J.G., o&6".o (10)

which may be rewritten

1
/2$)g +

2
— ~ J~, (g —g

1 6~ (ii)
For the nn case Gp p ls completely specified by

the Dyson equations for Gp p and G~, o while the nnn
case requires the addition of Gz, o. It is also pos-
sible to drop one of the Dyson equations and use the
equation of motion of Go, p in its place, but we pre-
fer to use the full set of Dyson equations which give
a more direct picture of the effect of interactions
on the unperturbed spectrum (as we will see later).

In the nn fcc case the Dyson equations involve
five LGF's gp to g4, labeled by 5's given in units of
2a by (0, 0, 0), (1, 1, 0), (2, 0, 0), (2, 1, 1), and
(2, 2, 0), respectively. In the nnn case g~ and g6
also arise, corresponding to (S, 1, 0) and (4, 0, 0),
respectively. Fortunately a set of identities re-
lating many of the LGF's can be constructed for
all lattices and arbitrary range of interaction by

of motion does not terminate on its own accord for
a finite range of exchange interactions. Fortunately
a set of Dyson equations can be constructed from
the equation of motion of the G, o and these consti-
tute a finite set of equations for the specification of
G, , p, which is the goal of this section.

The Dyson equations are constructed by recog-
nizing that the equation of motion contains the self-
energy part of the Dyson equation. This can be
seen by representing the equation of motion as a
generalized form of the basic mathematical prob-
lem. If D represents a differential operator and
we explicitly separate the interaction terms from
the noninteracting ones, then

DG(x, x') = (1 —1/2$)5(x —x')

+ [v,(x)+ v, (x)]c(x,x'),
where we explicitly include a factor of (1 —1/2$) in
respect of interaction contributions to the first
term of (6). The unperturbed Green's function
satisfies

[D —V,(x)]c'(x, x') = &(x- x'),
and the solution of the perturbed problem is then
given by

first rewriting the orthogonality property

R'6 ~

k

in the following manner:

1 ~ e ((d —2(2))) )
~z. o- —~

CO- 2+k
(is)

Then expanding the cok in the numerator with the
help of (8) and (9), we find that

6;,o= —Q q;Z; g~+Q )ljzjh;, ,zoo 2$J z z

where rl; = J;/J, and h;, &
= &,. ; being defined by

(i4)

h;, , = (z,.) 'Q g;,.-,
6.

where the sum in (15) is over the set of vectors
reached by the ith J6. With this notation the use-
fulness of the identities is readily seen if the sec-
ond term on the right-hand side of the Dyson equa-
tions of (11) is rewritten using g; g, . instead of

g, . , giving

(16)

gp=2$Jy + g + 0 c0

and

g() = 2$J,[- 2$J, /(u~+ O((d 3) ] .
Using these in the Dyson equations it follows di-
rectly that

G, 0(u&) -(d ' for 6220. (20)

Then from the Dyson equation for Gp, p we have

So, = (1 —1/22)2SSq( —+ ' ' ' + O(ru ~)) (21)
I 2$~ J.Z.

so that (15) then gives the Dyson equation an ex-
plicit dependence on a group of LGF's through b6, 6. ,
i. e.

r
1

Z Z, d, (g, —I,„.)c, , ,
z

For the fcc lattice the identities relating various
LGF's enable a reduction to one LGF in the nn case
(either g() or g, ) and a minimum of four LGF's in
the nnn case.

Before embarking on numerical calculations for
specific cases it is useful to consider constraints
on the final spectrum which are useful in interpret-
ing the results. We can derive sum rules for the
integrated Raman intensity, proportional to Imco 0((2)),
and its moments in the following manner. Firstly
go and g, are expanded svithi~ the two-magnon band
in inverse powers of frequency yielding
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Taking the imaginary part of Go o((0) and making
use of the identity

I/((u+ i~) = P(I/&u) —i' ((o) (22)

together with the integral properties of the 5 func-
tion leads finally to an integrated intensity sum
rule,

(-) Im[Go, o(&o)]d&o = (2SJ',)v(1 —1/2$), (23)

and a first-moment sum rule,

(-) Im[Go o(v) ]to dv = (2$J,)v (I —1/2S)

x 2S JZ,.') (24)

R(~) = 2'i'(go- gi 2SJq 2S
(25)

= 2~1'(go gs) 1+ —+O(S ), (2V)
1

with the g, 's being independent of spin for constant
&o/S. Equation (25) shows that the interaction ef-
fects are greatest for small spin and absent for
S= ~.

III. RESULTS

Specific calculations are reported in this section
for the nnn fcc case for a range of values of '6= Jo/J,
which represent the range suggested for EuO. We
also give the nn spectrum which acts as a reference
for the effect of nnn interactions and also corrects
Thorpe's earlier calculation.

The main difficulty in the numerical calculation
is associated with the LGF's. Although the real and
imaginary parts of the basic lattice Green's func-
tions g, are readily available for the nn ferromag-
netic case, the required information is not avail-
able in the nnn case. ' The imaginary part involves
a surface integral in much the same way as the den-
sity-of-states problem, while the real part contains
a volume integral of an integrand which contains

Higher moments can be derived if the need should
arise.

Another property of the final spectrum results
from recognizing that the Dyson equation of (11)
and the spin dependence (for corresponding fre-
quencies, e/S constant) of the go's and G, ,o's allow
us to write Go o(ar) in the form of an unperturbed
spectrum plus an effect due to spin-wave interac-
tions,

Go, o((u) = (1 —1/2S) [go((o)+ (I/$)R((o)] . (25)

In general R(&u) is a complicated function which for
large S is a slowly varying function of 1/S. We il-
lustrate this for the nn case for which (11) and (25)
give

singular surfaces. Though it is possible to obtain
the real part by a Hilbert transform of the imagi-
nary part, the latter would have to be extremely ac-
curate for that procedure to be successful. In
another investigation two of us (W. R. F. and P.
D. L. ) have developed a powerful method (sAvE) for
the direct numerical integration of the Brillouin-
zone sums for the real and imaginary parts of
LGF's. ~AvE can be used with any desired disper-
sion function so that it is not restricted by the num-
ber of exchange parameters or the type of magnetic
ordering. The results presented in this paper used
an overall accuracy of about 1% for the LGF data.
This gives good resolution of the Van Hove singu-
larities and was considered quite adequate for the
investigations undertaken, though if desired the re-
sidual errors could be reduced substantially by in-
creasing the computer time used.

A measure of the adequacy of the LGF data is
offered by testing the sum rules for the final spec-
trum, shown in Fig. l. These were given in (23)
and (24) and are found to be satisfied in all cases
to within the same accuracy as the LGF data used
in calculating the spectra. This is in contrast to
Thorpe's results for the nn fcc case which gave a
large deficit (about 30% for $= 1) in the first sum
rule, which he attributed to the existence of a two-
magnon bound state above the continuum. Indeed,
Thorpe was able to pin down the weight and position
of that bound state by using the sum rules. Though
we now know of the errors in his formulation it is
perhaps interesting to note that in the nn sc case
Thorpev found the sum rules to be satisfied, con-
sistent with the known absence of bound states at
K= 0 in that case. Having repeated the nn sc cal-
culations ourselves, finding a spectrum qualitative-
ly similar to the fcc results given in Fig. 1, and
also having regenerated Thorpe's result, we can
confirm that the incorrect spectrum satisfies the
sum rules almost as well as the correct result. Of
course one would expect a distinction to occur for
higher moments.

It is clear that for finite spin the correction ef-
fect to the unperturbed spectrum defined in (25) re-
distributes the weight in the spectrum in a manner
such that the sum rules are conserved, while the
total area under ImGt, o(&o) varies with S as (1 —1/2S)
in accord with (23). The imaginary part of R(&u),
which can be obtained by subtracting the (1 —1/2$)
weighted S= ~ curves in Fig. 1 from those for finite
spin, exhibits a well defined resonance effect within
the two-magnon band which reduces weight at the
top and bottom of that band. Considering the spin
dependence for g = —0.25 from Fig. 1 we see that
the resonance dominates the spectra for S= 1, is
absent for S=~, but with the peak for S=~~ being
determined by a competition between the resonance,
ImR(&u), and the two-magnon density of states
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spin deviations on nearest-neighbor sites by an ex-
change coupling mechanism, a qualitatively similar
resonance was found by Elliott and Thorpe near
the energy of the corresponding Ising bound state
which is lower than the separated Ising energy by J,.
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Imgo(&o). Also as the spin is reduced and the mag-
non-magnon interactions strengthen the resonance,
the Van Hove singularities become less conspicuous
features of the spectra. It is furthermore implicit
in the results in Fig. 1 that the position of the res-
onance is essentially independent of spin for con-
stant(u/S.

The position of the resonance peak is very close
to the energy of two spin deviations on a single site
as calculated from the Ising portion of the Heisen-
berg Hamiltonian in (1), being given by 2S(Z,J,
+ JzJ2). We note that this energy is also the energy
of two spin deviations which are separated by a
greater range than the exchange interactions. In
the nn antiferromagnetic case, for the creation of

FIG. 1. Calculated two-magnon Haman spectra for
three values of g, the ratio of J2/Jg, as a function. of
frequency. Points in Fig. 1 (a) for S =1 and Fig. 1 (b) for
for S = —are shown for g = —0.25 (solid triangles), g =0. 0

2
(solid squares), and g =+0.25 (solid circles). In both
Fig. 1(a) and Fig. 1(b) the basic two-magnon density of
states scaled by (l-l/2$), are shown as dotted lines for
the three g values; for g = 0. 0 a logarithmic singularity
occurs at co/8SJ'& = 4. 0, while for g =+ 0. 25 the upper end
is not shown but peaks sharply at a value of 4. 25 at cu/

8SJ'&=4. 166 (see Ref. 6). '

IV. DISCUSSION

We have demonstrated the feasibility of going be-
yond the nn approximation in calculating two-mag-
non Raman spectra. Through calculations for a
nnn fcc ferromagnet we have shown that the sensi-
tivity of the line shape to details of the nnn inter-
actions is large enough that any analysis of mea-
sured spectra which neglects them when they are
appreciable would be misleading. It also follows
from our ability to calculate distant-neighbor LGF's
that it is now feasible to make new progress on the
corresponding antiferromagnetic problem. Such
an extension of existing nn calculations may con-
tribute to removing the remaining discrepancies for
RbMnFB and other materials at low temperatures.
We also expect that similar possibilities will occur
for exciton-magnon sidebands. '6

The sensitivity of the peak position and width to
variations in p is dramatically shown in Fig. 1(a)
for S = 1 and follows roughly the variation of 1m'(&u),
the S = ~ limit. The curves for S =

z in Fig. 1(b)
represent the range of g values estimated by a num-
ber of workers for EuO. Although the sign and
magnitude of J, for EuO is in question, " it is clear
that calculations of two-magnon Raman spectra
without its inclusion would have very little value.
It must be remembered that only one mechanism
has been discussed here for ferromagnets and if
another existed, which created spin deviations on
neighboring sites, the interpretation of spectra
would be more complicated. In cases where the
present spin-orbit mechanism dominates there is
a good prospect of settling the question of Jz. A

recent attempt" to observe this spectrum for EuQ
failed because of a lack of stoichiometry which gave
a large first-order effect. Hopefully, improved
specimens will exhibit the second-order spectrum.
In respect of other ferromagnetic condidates for
the observation of two-magnon Raman spectra, Tb
has been proposed" because its density of states,
having a well defined peak near the upper band edge
rather akin to the present g = 0. 25 case, would en-
hance its prospects of being resolved.

At finite temperatures three principal effects are
introduced. Firstly, bare magnon energies will
decrease with increasing temperature according to
the self-consistent renormalization theory~ up to
near T„causing an appropriate scaling of the
spectrum to a smaller bandwidth. Secondly, life-
time effects will soften sharp features in the spec-
trum. Fj.nally, noting that Silberglitt and Harris
have established a resonance in the one-magnon
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propagator of the nn sc ferromagnet at nonzero tem-
perature, a second resonance would presumably be
present in the two-magnon spectrum at finite tem-
peratures. This second resonance occurs at 78'
along the (1, 1, 1) direction of the sc Brillouin zone,
or about —,

' of the maximum one-magnon energy, and
we therefore expect it to be located above the pri-
mary resonance discussed in this paper.

Finally, it seems appropriate to make some re-
marks about resonances in two-magnon Raman
spectra and their relationship to any bound states
of two-magnons which may exist in the same sys-
tems. Apart from the bound states mentioned in
Sec. I, the only other examples occur in the pres-
ence of anisotropy. Nevertheless, since a corre-
lation has been noted' between the antiferromag-
netic resonance and the Ising bound-state energy,
the question of their relationship naturally arises.
Owing to a shortage of information hitherto, no
further light has been shed on this problem. How-

ever, by drawing on the additional information ob-
tained in the present paper, together with prelimi-
nary results that two of2~ us (B. Z. C. and P. D. L. )
have obtained for anisotropic extensions of this

work, we feel that a tentative discussion is in or-
der at this time. Two-magnon Raman spectra,
whether for single-site or neighboring-site gen-
eration of two spin deviations, may be regarded as
a probe of two-magnon excitations for zero total
momentum of the pair (K=0). The answer to the
relationship between bound states and resonances
will eventually require that the gap between K= 0
and the large K region where the bound states exist
be bridged. Until a suitable probe is found it ap-
pears to be profitable to explore anisotropic effects
which yield a bound state at K= Q. It is then pos-
sible to see how the resonance makes a transition
to the bound state by varying the anisotropy. One
related point that should be recognized is that the
fcc case is not going to be as straightforward to
understand as either the sc or bcc eases. This fol-
lows because a simple analysis of the extent of the
two-magnon continuum for the nn fcc ferromagnet,
whose spectra are shown in Fig. 1, gives a mini-
mum width which encompasses the Ising bound-state
energy in a similar fashion to the nn antiferromag-
net and therefore seems to preclude sharply de-
fined bound states for that case.
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