
PHYSICAL REVIEW B VOLUME 11, NUMBER 5 1 MARCH 1975

&inewidth in exchange anisotropic paramagnets at the critical point
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In this article the kinetic theory developed by Resibois and De Leener describing the temporal
behavior of the spin autocorrelation functions near the critical point (T T,) in the Weiss limit is
extended to exchange anisotropic systems with arbitrary spin. From our model, the scaling laws

proposed by Riedel and Wegner can be justified microscopically. Furthermore, we suggest an
interpretation of experimental data of linewidths above T, on the uniaxial antiferromagnet MnF2 in
terms of the variables ~i~/q and v&/q, where v~ is directly related tc anisotropy. Owing to the
satisfactory agreement obtained in the above, we give scaling functions relative to various systems
(uniaxial and planar ferromagnets and planar antiferromagnets).

I. INTRODUCTION

The angular and energetic analysis of magnetic
neutron scattering' is related to the double Fourier
transform, in time and space, of the spin autocor-
relation functions (af) given by

(s:(t)s', (o))
(s, (o)s', (o)) '

where the denominator is included for reason of
normalization. S, (t) denotes the Heisenberg rep-
resentation of spin component o. (ot = a, +, -) at lat-
tice point a, and the bracket ( ~ ~ ) indicates the
average over the equilibrium canonical distribution.
One also defines

i', '(~) = g dt I;,'(t) expi[q(a —0) —(ut] . (1.2)
a "0

The study of dynamics at the critical point of these
af led to the dynamical scaling approximation (DSA)
established by Halperin and Hohenberg2 (HH):

(~) =(~ (q)1 '&"'
~„"(q)' q

where ~„'8(q), the characteristic frequency or line-
width, is defined by

F(x; «/q) dx=-,' .

A further hypothesis expresses the homogeneity of
the characteristic frequency

(q) = q'f(K/q) .

The DSA leads to z = —', and —,
' for both the ferromag-

nets and antiferromagnets, respectively.
These results received experimental confirma-

tion in particular for the isotropic antiferromagnet
BbMnF3. However, DSA gives no information on
the universal scaling function f(K/q).

To justify DSA microscopically, essentially two
methods have been used: kinetic equations and
mode-mode coupling. ' Although these two ap-

~cc

where & is the relative deviation from the critical
temperature. Extending the DSA, the character-
istic frequency is then written

Qp0, (qq K() y Kg) = l (0~(qlq Kyle Kgl) q (l. 7)

if q, K„, K~ «1 (in units of the lattice para. meter a).
Fixing x~, that is the symmetry and conservation
laws, RW postulate

proaches are different, their results are equiva-
lent. However, if Kawasaki's theory is of more
general application, the limitations of the dynami-
cal molecular-field theory, developed by Resibois
and De Leener (R-DL) above the critical tempera-
ture are more directly apparent (Weiss limit or
long-range forces). Resibois and Dewel6 have ex-
tended the R-DL theory below T,.

These works have provided a microscopic justifi-
cation of DSA. Because of the increasing interest
in the influence of dimensionality on critical phe-
nomena Hohenberg and R-DL have shown using
this theoretical scheme, that dynamical scaling ap-
plies up to d = 6 above T„whereas below T„ the
theory fails at d=4.

Resibois and one of the authors9 (C.J.-P. ), goi, ng
beyond DSA, have calculated the scaling functions
for isotropic ferromagnets and antiferromagnets.
Their theoretical results are in good agreement
with the experimental data ons RbMnF3 (antiferro-
magnet) and'0 Fe (ferromagnet).

The existence of a more pronounced minimum for
ferromagnets has been confirmed.

According to the universality hypothesis formu-
lated by Kadanoff, " in the vicinity of the critical
point the properties of systems depend only on the
symmetry, the range of the interactions and the di-
mensionality. Therefore, it appeared worthwhile
to study anisotropic systems. To this end, Riedel
and Wegner'a'3 (RW) generalized DSA and have in-
troduced an anisotropy parameter 6 and a cross-
over index p such that
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(d~(g~ K(( i Kg) = I (d~(ql~ K(( I q Kg) ~ (1.8)

if q, ~„«~~. They determine P /» using Mori's'
definition of the linewidth:

He J,
"

dt(S, '(O}S;(t))
(s"'s )e a

(1.S)

where S', (t) is the time derivative of S,'(t). In the
anisotropic regime where q, ~ « ~~ «1, they show
that

II. KINETIC EQUATIONS

We consider a system of f&f identical spins (Isl
arbitrary) fixed on the sites of a three dimensional
lattice. It is described by an exchange anisotropic
He isenberg Hamiltonian:

H = —g J;;S';S,'+K&~s,'S) . (2 1)

The magnitude of the anisotropy of the system is
given by 6= J/K.

t», 1 corresponds to the uniaxial ca,se (easy axis
of magnetization along the a direction) whereas
A &1 gives the planar case (isotropy in the xy
plane).

Naturally we recover the isotropic Heisenberg
model for 6=1.

Because of the anisotropy, the longitudinal (za)

(d~(gp Kg, Kg) = Kg "Kp W &„„,&g„, y (1.10)
Kg K))

where 8' is a universal function in the sense used
by HH. An important result, pointed out by HH,
is the existence of a wave number beyond which the
system behaves as an isotropic system.

The interested reader is referred to Table I of
Ref. 13 where the critical indices for uniaxi. al and
planar ferromagnets and antiferromagnets are dis-
played. Their values were obtained taking g = 0 and

y =43. Adopting the mode-mode coupling theory of
Kawasaki, " RW have especially studied the exis-
tence of the crossover effect and its temperature
and wave-number dependence. They have also
compared their results with experiments on the
unjaxial antiferromagnets MnF& ' and Fe F&.

Following the theory developed by R-DL, in Sec.
II we recall briefly how to obtain the kinetic equa-
tions above T, .

In Sec. III, we justify the scaling laws proposed
by Riedel and Wegner and study the various scaling
functions for some exchange anisotropic systems.

A comparison with the experimental data for the
uniaxial antiferromagnet MnF2' is made and be-
cause of the good agreement, we give the functions
relative to uniaxial and planar ferromagnets and

planar antiferromagnets. Because of some features
of these cases perhaps new experiments could be

undertaken.

and transverse (+-) af must be treated separately.
Indeed, only the z component of the magnetization
is conserved, i.e. ,

a, ps', =o.
i

(2. 2)

This property will play an important role in what
follows as it implies that this component alone will
satisfy a diffusion equation.

To study the time evolution of the af, we extended
the theory developed by R-DL for isotropic systems
to include anisotropic effects. We will recall that
this method is based on an infinite resummation
valid only in the Weiss limit (number of neighbors,
z- ~, J and K-O, ZZ and ZK finite), of a. formal
perturbation expansion of S, (t) in powers of the ex-
change integrals J and K. Consistently one also
uses the Ornstein-Zernike approximation for the
static correlation functions, the Fourier transforms
of which are written

C; = ~,/(I ——.'P~,),
C', =Z,/(I--,'PZ, ) .

(2. 8)

(2. 4)

One knows that this procedure amounts to taking
the value g = 0 for the exponent corresponding to the
asymptotic behavior of the static correlation func-
tion.

One of the authors ' (C. B. ) has shown that the con-
sideration of arbitrary spin magnitude does not lead
to new difficulties. Indeed, it is sufficient to intro-
duce a following reduced variables

t = t[34s(s+ I)]"',
P = P[—,'4s(s+1)j .

(2. 5)

(2 8)

q ~ ab
all b

one obtains

(2. 9)

"t
s, r", (t)= ' G,"(t- ~~r',;, r', , )r", (~)d~, (2. 1o)

~r'0

S,r', -(t)=, G', (t ~~r', ;, r",, )r', -(T)-dT . (2. 11)
40

The non-Markovian kernels G, which are highly

The extension of R-DL's theory to the anisotropic
case is thus immediate and leads to a system of two
coupled nonlinear non-Markovian integro-differ-
ential equations:

"t
B,r;;(t) =P dr G,",(t —~~ r&„,r,")r",,(7), (2. 7)

i "0
"t

s, r.';(t)=g d~G.' , (t ~~r,'„,r,-,)r, ,-.(T.)-. (2. 8)
i "0

In the Appendix we give the rules to obtain the ker-
nels G„~.

If one defines the space Fourier transform as
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nonlinear functionals of the af themselves, are
given by a series of successive approximations

G, (T (r;;},(r",,})= g G,'"'(~~fr, .}) .
n=1

(2. 12)

III. LINEWIDTHS

We now analyze the linewidth for uniaxial and

However we will limit ourselves to the first ap-
proximation. This will be justified g posteriori.

planar ferromagnets and antiferromagnets. In or-
der to avoid reproducing similar calculations for
ferromagnets and antiferromagnets, we shall de-
velop the calculations for a ferromagnet in which
case we only have two coupled kinetic equations.

We will then give and discuss the results for anti-
ferr omagnets.

A. Ferromagnets

The lowest-order kernels are given by

(3. 1)

G', "'(&- T) =—g (z„,, —z, , )c',, (1--,'pz, )r,-„,.(t- ~)r', , (&- ~)
N

+ P (z„,, —z, , )c', , (1 —,' pIc,)r,';,—,(t-~)r-, , (f- ~), (3. 2)

where the summation on q is restricted to the first
Brillouin zone. Using the inversion symmetry of

the exchange integral, one recovers Kawasaki's re-
sult'" (see also Ref. 22).

For short wavelengths, the Fourier transform of

the exchange integral takes the form

~2 = (1/62)(a —1)«1 . (3. 8)

Had we defined two critical temperatures, T, and

T,', as Moriya did, we would have introduced a
transverse length given by

Z(q) = ZZ(1 —q2&2+. . . ), (3.3) (s. 9)

5 = —Q J(R)R QZ(R)
8

(3 4)

gives the mean range of the interaction. In the
Weiss limit where 2P, ZZ= 2P,'ZK= 1, we then have
for the asymptotic forms of the static correlation
functions

ZJ
e g2(q2+ &2) &

(3. 5)

with q5 «1. A similar relation exists for the trans-
verse part:

T, and T,' are respectively the temperatures at
which the longitudinal and transverse static corre-
lation functions diverge. One will note that

(3. 10)

Let us remark that the roles of the longitudinal and
transverse parts are inverted in the uniaxial and
planar cases. This happens because the critical
temperature is, respectively, T, and T', . Moreover,
in the planar case

(3.11)
ZK

e g2(q2+ &2+ &2 )
s

where one has put

(s. 6)

(3.7)

If one then assumes, as will be justified g posteri-
ori, that small values of q' (Ref. 24) give the dominant
contributions to the kernel (one recovers the mode-
mode coupling), Eqs. (3. 1) and (3. 2) for the uni-
axial case become

(3.13)



LINEWIDTH IN EXCHANGE ANISOTROPIC PARAMAGNETS AT 1989

where the sum on q has been replaced by an inte-
gral and where

The linewidth may then be defined by

y2 62Z2If 2g2/4K2 (3. 14) ~z, (q) K() ) K~) = rq ((() = 0) = r, (&) d&
kp

One recovers the isotropic case when K~ =0. The
longitudinal kernel tends to zero when q- 0. This
is a consequence of the fact that the z component of
the magnetization is invariant (kinematic slowing
down'). On the other hand, the transverse kernel
does not vanish in the same limit.

Using the Markovian approximation, we get
+ 00

G""'(~
l r,',*,r,', ) d7, (s. i7)

"p

s, r,"(f) I G, (~l I I"",, ) dw r,"(f),
wp

s, r,' (f) = G,'-(~ l
r', ;, r,",) d~ r', (f) .

dp

(s. is)

(s. i6)
So,

( 00

~r(q, K)), K~) = G, "'(T
l r, r; ) « . (3. 16)

~tp

2 2

2 2 2

( )
—

l d
' I( ~ )2 '2 21'q K))+K4

q + K~~ + Kg Kl %q + q K(J Kg/ + CO&hq p Ki~ Kg/

2 2 2

[( )2 2 2] q +K)) +Kg
+ C„ (Q + q, K„, K ) + tO (g, K„, K )) (3.20)

One easily sees that the 'linewidth is an homogeneous
function whi. ch takes the form

Hove's conventional theory which rests on the non-
divergent character of Onsager's kinetic coeffi-
cient. We give in Table I the asymptotic behavior

(()z r(q, K)) Kg):q f~ r(K, )/q', K2,/q) .5/2 (3.21)

One then recovers Eq. (1.7), a result first given by
RW. '3 Because of the form of the static correlation
functions (3. 5) and (3. 6) we split the (q K))) plane
into an anisotropic region [I] (critical [I,] and hy-
drodynamic [I„])such that q2+ K2 «K2~ and an isotro-
pic region [II] (critical [II,] and hydrodynamic [II~])
with q + K„»K~. However, a more detailed study
of the asymptotic behaviors shows that we must dis-
tingui. sh between two further regimes separated by
the curve qK„=K~ in domain [II„]. One will under-
stand this result by noting that (dz [E(l. (3.19)] in
the region where q, K~ «K, contains only a diffusion
type contribution (q KI)~ isotropic behavior) where-
as co~ contains both a diffusive and nondiffusive con-
tribution. The latter arises from a source term
driven by the anisotropy K~.

Above the curve qK„=K~, region [II,,], the diffu-
sive term dominates whereas below it (region [II, ])
the nondiffusive contribution does, this leads to a

behavior. For more clarity, we give in Fig.
1 the various domains in the (q, K„) plane.

Let us insist on the fact that in the anisotropic
critical region, ([I,], where K„«q «K~) the longi-
tudinal linewidth w~ behaves as q K~ . We there-
fore have the characteristic q behavior of Van

K

K

FIG. 1. Various regions in the (q K~)) plane. I and II
correspond to the critical and hydrodynamic behaviors.
The curve q +Kii Kg separates the anisotropic (I, and II~)

2 2 2

an.d isotropic domain and qK~i Kg the diffusive (IIb ) and
nondiffusive (IIb ) regimes.

b2
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in the various regions. We have studied numerically the scaling functions which satisfy the following equa-
tions for the uniaxial case

r+cp ~+1 1 a

f~(x, z) =2~ dy ll d+y'(1+2ya)
"0 ~-1 +X +8

I

x (1+2 a+ )'i f1 (1+2yg+y2)1/2 s (1+2 g 3)1/2 y fr (3.22)

fz, (x, z) = w dy db y (1+2yb, —z~) 2

1+x2+ z2

"0 "-1 + +Z

-1
x 1+2 s+ '"4 x z 5/3 X 81+2y++y f~ (1+2 ~+ ~)u»(1+2 ~+ 2)~n +y

1+~+ Z
-1

2+&2 + & ~ ' f {y+2 g+&&)&/&'(y+g g+ &)'I&

(3. 23)

where we have introduced the following notations

I
x=~ii/q~ y=qlq; z=&~/q.

The numerical solutions are shown in Figs. 2 and 3.
We have presented as reference the curve for the
isotropic case which co~pared satisfactorily with
the experimental results for Fe. This allows a bet-
ter visualization of decoupling through the introduc-
tion of anisotropy, of the longitudinal and transverse
part.

One clearly sees for ~r that in region [II, ] char-
acterized by (z„/q)(q/a~)2 =1 (where z„/q& 1 and

~~/q &1) and K„/q= 1, we effectively find the nondif-

fusive regime which expresses itself by a slower
decay of the curve. The longitudinal part coL shows
for small values of K„/q and y~/q, a characteristic
bump.

It would be interesting to obtain an experimental
confirmation of this feature. Krueger and Huber
made a similar calculation. However, as in their
study of isotropic systems, ' the use of a cutoff on
the momentum severely restricts the prediction of
their theory for small z„/q (cf. footnote 15 of
Ref. 9).

Bearing in mind all the preceding remarks, we
have also studied numerically the plantar case for
which the scaling functions satisfy

TABLE I. Asymptotic behaviors of linewidths for various exchange anisotropic systems in dif-
ferent regimes.

Uniaxial

Ferro.

C ritical

q5/2

q5/2

Isotropic regime (II)

Hydrodynamic (II&)

Diffusive (II& ) Nondiffusive(II& )
2

2 i/2 q2K /2q K(( q K((

q2Ki
/2

K '1'K4q K(( II

Anisotropic regime (I)

Hydrodynamic critical
(Ib) (I,)

q2K2 K-312
II q4K '1'

Planar

Ferro.

Uniaxial
Antiferro.

(d L

(d T

(dL0

CdT
0

q
5/2

q5/2

q3/2

q3/2

q3/2

q3/2

q2Ki/2

2Ki/2q K((

K3/2
(I

K3/2
II

q2K i/2
II

q2K-i /2
(I

K-3/2K4
II

2 Ki /2q K((

K3/2
II

K3/2
II

q2K-i/2

K-5/2K4
(I

II

q'K '1'K
(I

K2K-i /2
II

K3/2

q'K-'1'

q312K

q3/2K&

K3/2

q Kg

K3/2

Planar

A ntiferro.
Cd T

(dL0

q3/2

q3/2

q3/2

q3/2

K3/2

K3/2
It

q2K-i /2q Ktt

tl

K3/2
II

K3 /2
It

K-5/2K4
II

q2K-i/2

K3/2
It

K3/2

K3/2

q2K-i /2q K((

q3/2

K3/2

K3/2

q3/2
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2 1+x
dh y (1+2yh) 2 +x +zfr(x, z) =211 dy

vp

, (x'+2xyh+z')(x'+I)
fz x& z =&1 dy db, y 2 1"0 -1 +

~ 1+2 ~+»« x z 5/2 X Z

(I y 2yg + 2)1/2 ' (1 4. 2yg y 2)1/2

2 2 ( + y +y fr, (1+2 g+ 2)1/2& (1+2 g+p)1/2 +y fr
(3.24)

-1
1+2 n+ ' "4 x z 5/2 X Z

) fI (1 ~ 2yg ~ 2)1/2 & (1 + 2yg 4 y2)1/2 + y fL (3.25)

The longitudinal part is that relative to the plane of
magnetization. In these curves (Figs. 4 and 5), the
nondiffusive part appears in the longitudinal func-
tion, whereas the transverse function exhibits the
bumps for K~/q & 1 and K„/q & 1. However, when

K~/q grows, we note a behavior for fr quite differ-
ent from that of a uniaxial ferromagnet.

Let us also recall that the planar ferromagnet is
formally equivalent to liquid helium. 2

B. Antiferromagnets

The study of the antiferromagnets differs from

1

that of the ferromagnets in that we must now con-
sider both the critical behavior around q = 0 and

q = 7. where the exchange integrals show their maxi-
mum value (r is a vector of the reciprocal lattice).
We are thus led to study coupled kinetic equations
relative to the total (q=0) and staggered (q=7) mag-
netizations. Only the z component of the total mag-
netization is an invariant. Taking these differences
into account and limiting ourselves again to the
lowest-order kernel and the Markovian approxima-
tion we obtain for the uniaxial antiferromagnets,
where we have put

Z JKa
4m

2 2~I q + K~~ 1
l

d'q t2 2 2 0/ r(
q + Kii+ K& 2 iq+ q, K~~ p Kg) + &p'Lq

(3.26)

(3.27)

1
~

I q +K()+K4ai, 1 q +K(i+K2 2 2 2 2 2 1
(3 28)2 2 0, , + , 2 0, vf2 q +K +K' &I &q+q r Kii ~ KzJ+z (q K Kg( q +Kii CO+(q+q, K~)& K~g+Q)&&q, K|~K~)

o - (11+11')'-q" 1
&a a a+K„+K O1'(q+q, K„, K~)+O1r(q, &Kt, K )

o 1
~

& (1I+Q ) —q —Ko
'i 'P I2 4 &z(q+q K~ Kg)+(0 (q K,~, K )

(11+q')2 —q" + K', 1
+ /2 t I+ Kii (dr(q+ q & K~, & Kg) + 4)/ (q & K» K&&)

(3.29)

(3.30)

Let us stress the fact that it is the only situation where we have the possibility of comparison with experi-
ment. The linewidths are again homogeneous functions but the exponent is now —, and for example, for the
staggered longitudinal part we have

+Q (q& Kll & KQ) = q"'fz (K„/q& K&/q) (3.31)

In the regime q, K~ «K„, one then recovers the diffusive and nondiffusive region for &~.
The scaling functions satisfying

& o&o
& +g 2 2 x z x zfa &

— y 2 p„a + y +y fr (1 2 ~+ a)1/2& (I 2 ~ 2)1/2 +y fr

(3.32)

z 3/2fr( & ) — y y a a a + y +y) fr, (1„2 g~ a)1/a&(1 2 ~~ a)1/a +y fr
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1+X2+82-
(1 2 2)Q/4 P x 8 x z

+X r (1 + 2y~ ~ y2)1/2 s (] + 2y~ + yR)1/2
+ y fI (3. 33)

f/. (x, z)=27/ dy
i

day —, (1+2 a ')'' ', 1+2 a x 8
"0 X3+ 2 + y +y fT (1+2yb, +y) '(1+2yb, +y )

~ r y'y
(3.34)

00

p( )
p 1+2yk —z

(1+2y/ +y')"'f" X 8
E (] + 2y~ + y2)1/2 t (1 ~ 2' + y2)1/2 y fr

1+2yA+ g+, , (1+2ya+y')3/4f'
+X r (] + 2yz+ y2)1/2 i (] + 2 z+ 2)l/2 + y'"f

Di
—i— (3.35)

have been calculated numerically and are repr d dro uce in Figs. 6 and 7.

16.-

14.

I/ /
/ /

/
I

/
/

/

/t

/
I

The nondiffusive behavior of e~ is characterized

ered. The bumps characteristic of the conserved
part are again present in f

Because of the possibility of separating experi-
mentally the longitudinal and transverse parts of
the spin af in MnF~, Schulhof, Nathans, Heller and
Linz ' were able to study the temperature and
wave-number behavior of the linewidths.

We therefore propose a microscopically based

interpretation of their experimental results as a
unction of the parameters v, ~/q and g~/q.

As they suggested in Fig. 18 of their paper "
ave drawn in Fig. 8 the following normalized longi-

tudinal and transverse scaling functions

(3. 36)

l,l. iI

I
I

~, ~)q' q

I

I
1

i

10-

0.8-

12-.
0,7-

10. 0.6-

0.5-

0.4-

0.3-

qQrr

$. r

0.2-

0.100
1 2 3 4 5 6 7 8 9 10

FIG. 6 Temperature dependences of the staggered
longitudinal (dashed curves) and transverse (plain curves)
scaling functions of uniaxial antiferromagnets for various
Kg

I'IG. 7. Temperature dependence of the total longitu-
dinal (plain curves) and transverse (dashed curves) scal-
ing functions of uniaxial antiferromagnets for various
K~ q.
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It clearly appears that the agreement with the ex-
perimental results is better than when the latter
were compared with the isotropic theoretical func-
tion. The influence of anisotropy seems thus not
negligible. We have taken the value 0. 054 A ' pro-
posed by RW, "for the anisotropy parameter w~.

"
Although, when ((„/q & 1 the comparison with experi-
mental results of the transverse part fr is gratify-
ing, in the region Kp/q & 1, where most of the ex-
perimental results lie, the influence of anisotropy
is not so evident. Indeed, it appears that the trans-
verse part fr uncouples more slowly from the iso-
tropic function than the longitudinal part.

This reasonable fit with experiment comes from
the fact that we have taken ~„as independent vari-
able. So, we were able to bypass the difficulty re-
lated to the molecular field approximation in the
static behavior of the correlation function (v „„„~
= —,

' instead of v»„= —', or v,~=0. 634+0.2). This
could be understood as an indication that the Weiss
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FIG. 9. Temperature dependence of the staggered
longitudinal (dashed curves) and transverse (plain curves)
scaling functions for planar antiferromagents.

P/

limit does not play in the dynamics of spin systems
a dominant role at the critical point.

The staggered part of the planar antiferromagnet
which has been obtained along the same line is given
in Fig. 9.

The study of anisotropy-exchange spin systems,
using the method developed by Resibois and De
I eener thus permits a microscopic verification, in
the Weiss limit, of the phenomenological scaling
laws proposed by Riedel and Wegner.

Owing to a satisfactory interpretation of the ex-

V'
V »»»»»»»»

KII

I
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J
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J

FIG. 8. Temperature dependence of the staggered
longitudinal (plain curves) and transverse (dashed curves).
scaling functions for uniaxial antiferromagnets. The
curves have been normalized to 1. We compare the theo-
retical results to experimental data on MnF& where:
and o correspond to the longitudinal part for ~z,/q=2. 08
and 0. 84, respectively; ~, &&, *, and V' correspond to the
transverse part for Kz/q 2. 08, 0. 84; 0. 42, and 0. 21,
respectively.

(5) ~= 4i(Plj
r j

(7) --- =4(Pl) j

FIG. 10. Elementary vertices and their contribution.
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perimental results on MnFa (uniaxial antiferromag-
net) as a, function of the parameters a„/q and va/q,
we have proposed the scaling functions for uniaxial
and planar ferromagnets, hoping they might suggest
new experiments.
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APPENDIX

The kernels which appeared in the kinetic equa-
tions, Eqs. (2. 7) and (2. 8), were calculated accord-
ing to the rules presented in R-DL taking into ac-
count the following modifications introduced be-
cause of the anisotropy.

The contributions of the elementary vertices
(Figs. 10 and 11 of R-DL) are now given in Fig. 10.

One must also pay attention to the fact that, be-
cause of the anisotropy, plain and dotted lines are
renormalized by different af, respectively I" and

Furthermore, the traces are taken in the
same way as we have taken the magnitude of the
spin into account by working with reduced variables
[(Egs. (2. 5) and (2. 6)].
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