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Numerical calculations have been performed to obtain the exact infinite-temperature time-dependent
spin autocorrelation function G {t) for a linear chain of N spins {S= 1i2) interacting by
nearest-neighbor Heisenberg exchange for N = 5,7,9 and 11 by a method different from that of
Carboni and Richards. Exact results for the first 20 moments and estimates for M» to M, o of the
frequency autocorrelation function for the infinite chain are provided. Excellent agreement is obtained
with some recent results obtained by Morita, who, however, gives terms only up to M». G{t) does
not show a simple monotonic diffusive {-t ") behavior within 45/J, the time domain up to which
we believe our result for N = 11 to be equivalent to that of the infinite chain although it is reduced
to about 10% of its value at t = 0.

I. INTRODUCTION

The Heisenberg model for a linear chain of N
spins, which is described by the Hamiltonian

N

R= 2J QS; ~ S,,q, (I)
i=1

where S,. is the spin vector for the ith particle and
J is the exchange constant, has attracted the atten-
tion of theoretical physicists for a long time. '

Early authors treated the model primarily as an
interesting many-body problem whose solution
would enhance our knowledge of the nature of mag-
netism in more realistic three-dimensional sys-
tems. Recently, interest in this problem has been
rekindled due to the realization that in several sys-
tems the interaction of magnetic ions can be well
described by Eq. (I).

The thermodymanic properties of the classical
(S=~) Heisenberg model have been obtained exactly
by Fisher. The ground-state (T =0) properties of
the quantum (S = —,') chain are also amenable to ana-
lytic solution and have been studied extensively by
various authors. ' des Cloizeaux and Pearson
obtained the elementary excitation spectrum for
the antiferromagnetic chain. A significant contri-
bution was made by Bonner and Fisher, who diag-
onalized R numerically. By considering chains of
increasing length, they were able to make accurate
extrapolations for the various thermodynamic prop-
erties of the infinite chain. These results have
been used in determining J from experimental
measurements.

Theoretical studies have been further stimu-
lated by recent experiments probing the spin
dynamics of linear magnetic chains. Many of the
physical observables in room-temperature experi-
ments involving magnetic inelastic scattering of
neutrons, EPR, and nuclear spin-lattice
relaxation can be related to the high-tempera-

ture time -dependent spin correlation functions
G„'(t), defined by

G„'(t)= Tr(e'"'S;e ''S„'-)/Tr(I),
where the trace can be taken over any complete
set of states. Although several microscopic theo-
ries38 have been proposed to evaluate G„'(t),
these invariably involve decoupling approximations
at some stage of the calculation which lead to er-
rors in the predicted behavior of G'„(t)in the long-
time region. The first few coefficients in a Tay-
lor-series expansion of G„'(t)around t = 0 are known
exactly. "" These are also the moments of F„'(&u),
the frequency Fourier transform of G„'(t) Various.
approaches to obtain the long-time behavior of
G„'(t)using these moments, however, have so far
not been very successful. The asymptotic behavior
of G„'(t)as t-~ is of considerable interest in itself
and is expected to show a t ' tail on the basis of
spin-diffusion theory.

The classical Heisenberg model has been applied
by several authors ' to explain observations in
(CH&)4NMnC13(TMMC) in which the Mna' ions (S= —', )
form a linear chain. For the more difficult S= —,

'
ca.se, Carboni and Richa, rds (CR) performed ab
initio calculations for F„(&u)for finite chains of N
spins with N as large as 10. Particular attention
was focused on Fo(&), the autocorrelation function,
because it could be calculated more accurately
compared to other correlation functions. They ob-
tained histograms for F~o(~) for chains of increas-
ing length, performed extrapolations for N- ,
fitted their result to a smooth linear function by
neglecting a low-frequency divergence, and finally
obtained an analytic expression for Go(t) valid for
t up to 2h/J. Their results stimulated further in-
vestigations 1 ' into the problem. We have ex-
tended their work on Go(t) to N= II. Further, we
have obtained exact results for Go(t) for ti= 5, 7,

1980



TIME -DEPENDENT AUTOCQRREI ATION FUNCTION. . . 1981

9, and 11 by adopting a method which is quite dif-
ferent from that of CR, as is noted in the following
points. (i) We do not coarse grain the discrete
frequency spectrum obtained to form histograms.
(ii) We evaluate G'0(t) directly and demonstrate that
our result for N= 11 is expected to reproduce that
of the infinite chain up to t -4k/J. (iii) As a by-
product, we also obtain the first 20 moments and
estimate the next 10 moments of F~o(v) for the in-
finite chain, whereas only the first 10 moments
have been previously determined.

Our method of calculation is explained in Sec.
0, the results are discussed in Sec. III, and Sec.
IV provides some concluding remarks.

II. CALCULATION

Let us consider a linear chain of N exchange-
coupled spins (S= —,') where the Hamiltonian R is
given in Eq. (1).

Baxter ' has recently diagonalized a more gen-
eral Hamiltonian ana, lytically but the matrix ele-
ments necessary to obtain G„'(t)have not yet been
evaluated. We therefore adopt the standard meth-
od ' ' of numerical diagonalization of X.

We first confine the spins to a ring and impose
a periodic boundary condition

S;,~=S; (3)

for each i.
One can now introduce a translation operator T

which moves each spin one lattice spacing towards
its left and another operator S', the z component
of total spin. T, S', K form a set of commuting
operators which can be simultaneously diagonal-
ized. All the eigenvalues and eigenvectors of 3C,

in a representation in which T and S' are diagonal,
can be obtained by numerical diagonalization in a
straightf orward manner. The eigenvalue equations
are listed below:

T ln, m &
= e"'"'"l n, m ),

S'ln, m) =min, m ),
@in, m& =e„„n,m&,

(4)

J&& 0T (5)

holds. 3 Under this condition, one can make the
usual high-temperature approximation for the
equilibrium density matrix. The relevant spin
correlation functions can be shown to be given by
G„'(t)for different values of y. We now focus our
attention on Go(t) defined by

where n takes the values 1, 2, . . . , N and m takes
the values

1 1 1
+~N, ~N —1, . . . , —~N.

For room-temperature experiments in most lin-
ear chain systems the condition

G', (f) = tr(e*'x'S;e *"'S;)/tr(1) . (8)

One now makes the following observations:

(j) (p, glSoln, m& =6, (p, mlsoln, m ) . (8)

(ii) [R, R]= 0, (9)

where R is the spin-inversion operator. This gives

( n, ml3cln, m& =(n, —mlxln, —m) . (10)

(iii) (n, m X n, m&=(X —n, ml+I~ —n, m&. (11)

Using these properties Eg. (7) canbe simplifiedto

Go(&) = 2 p f„~cos[(e„„—E~ ~)t] (p, m
l
So n, m )

l

ngPg m

(P-n) (»)
where f~ is the degeneracy parameter which weighs
each transition probability properly. Using Eq.
(12) one now evaluates Go(t) for any given time.

A Taylor-series expansion of Go(t) around f = 0
gives

Go(t)= Vo+~ 2, &2at
~ ( —1)' 2~

2k!

where go= —,
' and p.2„is the (2k)th moment of the

frequency Fourier transform of Go(t) .
From Eg. (12) one gets

p, 2g=2 Q f„p(&„—6p ~) l (p, mlSO n, m)
l

nqPq m

(P~ n) (14)

We have evaluated Ggo(t) for f lying between 0 and

45/J and pz~ for k= 1, 2, . . . , 15 when N= 5, 7, 9,
11.

The computer wa, s programmed to evaluate the
matrix elements of X and also the transition prob-
abilities, 1(P, m I So'I n, m) I

~. The largest matrix
that had to be diagonalized was 84&84 for N=11
and the total number of different frequencies in that
case was about 40000. All computations were per-
formed on the University of Pittsburgh's PDP-10
computer, which precluded use of double precision
for the complex eigenvectors, although eigenvalues
obtained are in double precision. The relative dif-
ficulty involved in going from N=9 to N= 11 is il-
lustrated by the total running time in each case,
6 min for N= 9 to almost 5 h for N= 11. We have
checked our eigenvalues against those of Bonner
and Fisher and they agree to within seven signif-
icant digits. A second check is a comparison of
our p. for 0= 1-5 with those obtained by Morita

Evaluating the trace in a representation in which
X is diagonal yields

c;(t)= pe" '~'"~ (p, q~s; n, m) ~') tr(t).
n, m

(7)
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TABLE I. Moments for the autocorrelation function.

2k

2

6
8

10
12
14
16
18
20
22
24
26
28
30

1.000 00
11.000 0

163.000
2905. 00

57 728. 0
1.223 00 x 10

N=7

1.000 00
11.000 0

163.000
2909.00

60 704. 0
1.473 93 x 106
4. 162 59 x 10
1.36026 xlo~
5.080 67 x10~0

2. 132 04 x 10i2

1.000 00
11.000 0

163.000
2909.00

60 704. 0
1.47405 x10
4.17472 x10
1.380 66 x 10
5.316 95 x10
2.369 24 x 10
1.21123x10
7.032 53 x10 5

4.584 19 x 10

1.000 00
11.000 0

163.000
2909. 00

60 704. 0
1.47405 x106
4.174 72 x 10
1.380 67 x 108

5.31729 x10
2. 37O O2 x1O"
l.212 58 x 10
7.O53 15 x1O"
4.614 00 xloiv
3.356 34x10~~
2.685 46 x102'

1.000 00
11.000 0

163.000
2909.00

60 704. 0

1.474 O5 x1O'
4. 174 72 x 10
1.38067 x10
5.31729x10 0

2. 37O O2 x1O"
1.2126 x10
7.053 x10
4.61 x10~~

3.36 x10
2. 7 x 1021

for the infinite linear chain in an entirely different
manner.

III. RESULTS

The pz,
' s for k = 1, 10 obtained here are expected

to be the same as those for the infinite chain. A
simple proof of this is as follows.

The conventional expression for p, 2& can be ob-
tained directly from Eq. (5), and contains 2k R:

p, „=tr(ISC, [3C, . . . , [K, S ]] ~ ~ ]S )/tr(1) . (15)

The traces are usually evaluated in a representa-
tion in which S'; is diagonal for each i. However,
except for p, a and p, 4,

' a straightforwa, rd analytic
evaluation of p, » becomes rapidly unmanageable.
Only recently Morita has obtained terms up
through p, ,o for the linear-chain case and terms up
through p8 for other lattices.

The so-called moment expansion [Eq. (13)] is a,

particular form of linked-cluster expansion and a
study of Eq. (15) reveals the well-known fact that
clusters containing only up to k+1 particles can
contribute to p,». If the spins are arranged on a
ring, all possible diagrams connecting, 2, 3, .. . ,
0+1 particles for the infinite chain are also al-
lowed for the ring if we are dealing with a near-
est-neighbor Hamiltonian —provided, of course,
that the ring contains 4+1 particles. Therefore
the moments obtained from an exact solution of the
N-spin problem are expected to be the same as
those for the infinite chain up to and including p,~ 2.
These moments are shown in Table I.

Comparison with Morita's calculation shows
excellent agreement for all moments up to p.&0, in-
cluding p, 6, which does not agree with that of
McFadden and Tahir-Kheli, and we believe one
should be cautious in using their result. The high-

1.0
. ~ ~ ~ ~

N= 9
N = 7
N= 5
Carboni and Richards

0.5

~eg)~QQQ~OhAFi' ~ ~+ Oeeeor
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I
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I I I

3.0 4.0

FIG. 1. Normalized infinite-temperature autocorrela-
tion function for a linear Heisenberg chain for different
values of ¹ Carboni-Richards (Re.f. 60) results are
also shorn.

er moments, to our knowledge, have not been pub-
lished before. ~

An interesting feature emerges from the fact
that the N-spin solution not only gives moments up
to p, ar a exactly (except a small discrepancy in ps' a
for N= 5 and N=7, arising because of the small
number of spins) but also gives fairly good esti-
mates of p.», p,~,~, etc. , as well. This result
implies that in one-dimensional systems (k+1)-
pa, rticle diagrams do not dominate p,». Therefore
a few of the higher moments for N=11 are expected
to be good estimates for those of the infinite chain.

Various methods have been used to obtain
G'„(t)from a knowledge of the lower moments.
Some of these ' ' assume a smooth function
f(t), usually a Gaussian or its product with a power
series with respect to time, for either the cor-
relation function itself or the so-called "memory
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function. " 4 One then determines the parameters
in the theory by assuming f(t) to have the correct
short-time behavior. Another approach is to form
rigorous bounds54'47 for G'„(t)or to first form a, set
of modified moments, "5 make use of any known
asymptotic behavior of G'„(t), and then estimate
G„'(t). Instead, we have evaluated Go(t) directly
using Eq. (12), which amounts to summing to in-
finite order all diagrams in the moment expansion
which can be embedded in a finite ring of spins.

The normalized autocorrelation functions G(t),
defined by

O
N Q

C9

N
CQ

I.O

0.0
0

IS=—
2

S= co

G(t) =, = 4G'(t)
0

(16)

for N= 5, 7, 9, 11, are shown in Fig. 1. As ex-
pected, addition of spins on the chain does not alter
the short-time region but modifies the function at
longer times. Physically, this corresponds to a
finite speed of propagation of information which
prohibits a spin from sensing spins far away from
itself for a long time. We know, from the nine-
spin solution, that the time domain v up to which
our finite-chain results are the same as that for
the infinite chain is M/8, and the 11-spin solution
is believed to extend v to a time -4h/J. G(t) ob-
tained by CR is also shown in the figure and is in
good agreement with our result.

Recently Lurie, Huber, and Blume (LHB) ob-
tained numerical results for G'„(t)for the classical
Heisenberg chain by performing computer experi-
ments. In order to compa, re our results for Go(t)
with theirs, we scale the exchange integrals by the
relation

FIG. 2. Comparison of normalized infinite-tempera-
ture autocorrelation function for a linear Heisenberg-
chain for different values of S. The continuous curve
is the present calculation for S=2 and %=11. The dashed
curve is taken from Ref. 20, after proper normalization
and change of scale.

divergence is usually interpreted to be due to finite
interchain interactions.

Although we cannot draw any quantitative con-
clusions regarding the nature of this zero-fre-
quency divergence, the slow decay of G(t) (Fig. 1)
does indicate its presence. A simple monotonic
(- t ~ 2) damping of G(t) is not seen within 4I/O;
perhaps because contributions from nondiffusive
modes are not negligible within this time domain,
although G(t) has decayed to about 10%%uo of its value
at t=o.

IV. CONCLUDING REMARKS

so that both the results will have the same second
moment. The comparison is shown in Fig. 2.
Because of the quantum nature, our result shows
more structure. The similiarity between these
two extreme cases in the long-time region implies
that for the Heisenberg model Go(t) is not very sen-
sitive to the actual spin value S and is in accord
with some previous observations.

Considerable attention has been focused on
the low-frequency divergence in Eo(e), first sug-
gested by CR. Fernandez and Gersch subsequent-
ly proved that the divergence is faster than loga-
rithmic, while spin-diffusion theory predicts
Eo((u) -&u as tu -0. Although some recent ex-
periments on TMMC 6' ' support this diffusive
behavior, the situation is not so clear for the S= 2

chains, such as Cu(NH, )4SO4 ~ HaO (CTS),
CuCla 2NC&H4 (CPC), ' or the organic free rad-
ical 2, 2, 6, -tetramethyl-4-piperidinol-1-oxyl
(Tanol), ~ ' where the failure to observe such a

The present analysis shows that much more in-
formation can be obtained from an exact solution
of a finite spin Hamiltonian by calculating the time
correlation functions directly rather than coarse
graining the discrete frequency spectrum obtained,
the method used by CR. Although we have explic-
itly considered the autocorrelation function for a
Heisenberg chain, our method can be applied to
time correlation functions involving any set of op-
erators for more general Hamiltonians. Spin dy-
namics of a general anisotropic Heisenberg chain
is currently under investigation.

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. P. M. Richards for
bringing to our attention Dr. Cook's calculations
and providing us with a copy of his thesis. We are
grateful to Professor D. L. Huber, S. Singh, and
especially to Professor J. C. Bonner and Profes-
sor D. Jasnow for enlightening discussions and
valuable comments on the manuscript.



1984 AMIT BUR AND I. J. LOWE

*Work supported by National. Science Foundation under
Grant No. GP-32861.

For an account of the historical development in linear
magnetic chains see E. H. Lieb and D. C. Mattis,
Mathematical Physics in One Dimension (Academic, New
York, 1966).

For a review on thermodynamic properties of linear
magnetic models see C. J. Thompson, in Pj'gase-Tran-
sitions and Critical Phenomena, edited by C. Bomb and
M. S. Green (Academic, New York„1972), Vol. 1, pp.
177-226.
For a systematic survey, see the recent review article
by L. J. de Jongh and A. R. Miedma, Adv. Phys. 23,
1 (19V4).

M. E. Fisher, Am. J. Phys. 32, 343 (1964).
H. A. Bethe, Z. Phys. 71, 205 (1931).

6L. Hulthen. Arkiv Mat. Astron. Fysik 26A, No. 11
(1938).

R. B. Griffiths, Phys. Rev. 133, A768 (1964).
C. N. Yang and C. P. Yang, Phys. Rev. 147,. 303
(1966); 150, 321 (1966); 150, 327 (1966); 151, 258 (1966).

R. J. Baxter, Ann. Phys. (N. Y. ) 70, 323 (1972).
J. des Cloizeaux and J. Pearson, Phys. Rev. 128, 2131
(1962).
J. C. Bonner and M. E. Fisher, Phys. Rev. 135, A640

(1964).
P. M. Richards, Phys. Rev. Lett. 27, 1800 (1971).

3S. A. Scales and H. A. Gersch, Phys. Rev. Lett. 28,
917 (1972).
S. W. Lovesey and R, A. Meserve, Phys. Bev. Lett.
28, 614 (1972).
F. B. McLean and M. Blume, Phys. Rev. B 7, 1149
(1973); 7, 5017(E) (1973).
H. Tomita and H. Mashiyama, Prog. Theor. Phys. 48,
1133 (19V2).

7K. Tomita and K. Kawasaki, Prog. Theor. Phys. 49,
1858 (1973).
T. Todani and K. Kawasaki, Prog. Theor. Phys. 50,
1216 (1973).
C. G. Windsor, Kent on Inelastic Scattering (Interna-
tional Atomic Energy Agency, Vienna, 1968), Vol. II,
p. 83.
N. A. Lurie, D. L. Huber, and M. Blume, Phys. Rev.
B 9, 2171 (1974).
P. C. Hohenberg and W. F. Brinkman, Phys. Rev. B
10, 128 (1974).
M. T. Hutchings, G. Shirane, B. J. Birgeneau, and

S. L. Holt, Phys. Rev. B 5, 1999 (1972).
3H. Ikeda and K. Harakawa, J. Phys. Soc. Jpn. 35, 722

(1973).
Y. Endoh, G. Shirane, R. J. Birgeneau, P. M. Rich-
ards, and S. L. Holt, Phys. Rev. Lett. 32, 170 (1974).
For a review on magnetic resonance studies on one-di-
mensional systems see D. Hone, AIP Conf. Proc. 5,
413 (1971).
R. E. Dietz, F. R. Merrit, R. Dingle, D. Hone, B. G.
Silbernagel, and P. M. Richards, Phys. Bev. Lett. 26,
1186 (1971).

VR. R. Bartkowski and B. Morosin, Phys. Rev. B 6,
4209 (1972).
M. J. Hennessy, C. D. McElwee, and P. M. Richards,
Phys. Bev. B 7, 930 (1973).
W. Duffy, J. E. Venneman, D. L. Strandburg, and

P. M. Richards, Phys. Rev. B 9, 2220 (1974).
3 Z. G. Soos, T. Z. Huang, J. S. Valentine, and R. C.

Hughes, Phys. Bev. B 8, 993 (1973).

T. Z. Huang and Z. G. Soos, Phys. Rev. B 9, 4981
(19V4).
F. Borsa and M. Mali, Phys. Rev. B 9, 2215 (1974).

33D. Hone, C. Scherer, and F. Borsa, Phys. Rev. B 9,
965 (1974).

3 M. Ahmed-Bakheit, Y. Barjhoux, F. Ferrieu, M.
Nechtschein, and J. P. Boucher, Solid State Commun.
15, 25 (19V4).

' S. Clement and Y. H. Tchao, J. Phys. (Paris) 34,
583 (19V3).
J. P. Boucher, F. Ferrieu, and M. Nechtschein, Phys.
Rev. B 9, 3871 (1974).

VFor a review on spin dynamics of exchange-coupled
system see W. Marshall and R. D. Lowde, Rept. Prog.
Phys. 31, 705 (1968).
H. Mori and K. Kawasaki, Prog. Theor. Phys. 27,
529 (1962).

3 P. Resibois and M. DeLeener, Phys. Bev. 152, 305
(1966).
M. DeLeener and P. Resibois, Phys. Rev. 152, 318
(1966).
M. Blume and J. Hubbard, Phys. Rev. B 1, 3815
(19V0).

42G. F. Reiter, Phys. Rev. B 5, 222 (1972); 7, 3325
(19V3).
P. G. deGennes, J. Phys. Chem. Solids 4, 223 (1967).

4M. F. Collins and W. Marshall, Proc. Phys. Soc.
Lond. 92, 390 (1967).
D. G. McFadden and R. A. Tahir-Kheli, Phys. Bev.
B 1, 36V1 (19V0).
T Morita J Math Phys 12 2062 (1971)

~H. S. Bennet and P. C. Martin, Phys. Bev. 138, A608

(1965).
H. S. Bennet, Phys. Rev. 174, 629 (1968); 176, 650

(1968).
4~R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev.

182, 604 (1969).
D. G. McFadden and R. A. Tahir-Kheli, Phys. Rev.
B 1, 3649 (1970).
S. W. Lovesey and R. A. Mes rve, J. Phys. C 6, 79

(1973).
~ T. Gaskell and J. W. Tucker, J. Phys. C 6, 3315

(19V3).
3T. Morita, J. Math. Phys. 13, 714 (1972).
T. Horiguchi and T. Morita, Phys. Rev. B 7, 1949
(19V3).
8,. G. Gordon, J. Math. Phys. 9, 1087 (1968).

' O. Platz and R. G. Gordon, Phys. Rev. B 7, 4764
(1973).
O. Platz and R. G. Gordon, Phys. Rev. Lett. 30,
264 (19V3).

BJ. C. Wheeler, Phys. Rev. A 9, 825 (1974).
5~T. Morita, Phys. Rev. B 6, 3385 (1972).
6 F. Carboni and P. M. Richards, Phys. Rev. 177, 889

(1969). Some additional work is reported in P. M.
Richards and F. Carboni, Phys. Bev. B 5, 2014 (1972).
J. F. Fernandez and H. A. Gersch, Phys. Rev. 172,
341 (1968).
H. A. Gersch, Phys. Rev. B 1, 2270 (1970).
R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev.
178, 800 (1969).
The same method has been used in a recent study of di-
polar-coupled spins and briefly reported in A. Sur and

I. J. Lowe, Bull. Am. Phys. Soc. 19, 251 (1974). Al-

so, we have considered odd values of N only, because



TIME —DE P EN DE N T AUTOS ORRE L ATION F UNC TION. . . 1985

at infinite temperature the even-N and odd-N results
converge to the same function (see Ref. 11).

6'8,. J. Baxter, Ann. Phys. (N. Y. ) 76, 1 (1973); 76, 48
(1973).

66J. C. Bonner, Ph. D. thesis (University of London,
1968) (unpublished).

O' F. Carboni, Ph. D. thesis (University of Kansas, 1967)
(unpublished) .
C. K. Majumdar, K. Krishan, and V. Mubyai, J. Phys.
C 5, 2896 (1972).
C. K. Majumdar, V. Mubyai, and C. S. Jain, Chem.

Phys. Lett. 21, 175 (1973).
~ G. E. Pake, Paramagnetic Resonance (Benjamin, New'

York, 1962).
After the completion of our present investigation we
were informed (Ref. 72) of some independent work by
Cook (Ref. 73), who gives terms up to @~8 which agree
with ours in the first three significant digits.

~ P. M. Q,ichards (private communication).
A. C. Cook, Ph. D. thesis (University of Kansas, 1972)
(unpublished) .


