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As part of a continuing search for materials useful as magnetic coolants and thermometers in the
millikelvin region, the magnetic heat capacities of the cerium diglycollate compounds

Na;[Ce(C,H,O5);] - 2NaClO, - 6H,0 (CDG) and Na;[Ce(C,H,05);] - 9H,0 (TCDG) have been investigated
at helium temperatures. The Casimir-du Pré method involving adiabatic susceptibility measurements was
used. As only polycrystalline samples of CDG could be prepared, the thermodynamic equations
generally valid for the application of the method to such samples have been examined. The expressions
obtained were checked by a comparison of the results from powder and single-crystal measurments on
cerium magnesium nitrate (CMN), before the method was applied to CDG. Expressed as the coefficient
b in the “high”-temperature expansion C,/R = b/T? + -, the resuls are 3.78(20) mK? from the
powder measurmeents on CDG and 3.57(3) mK? from measurments on a single crystal of TCDG.
Judged from their small magnetic heat capacities, both CDG and TCDG should be comparable to or

better than CMN as refrigerants and thermometers.

I. INTRODUCTION

In some organic cerium compounds containing
tris(diglycollato)- or tris(dipicolinato)-cerate (III)
complexes the separation of the cerium ions is
very large, 9-10 A, %2 This results in extremely
weak spin interactions and the materials should
therefore follow Curie’s law down to very low tem-
peratures (7<10 mK). As a consequence they may
be useful as magnetic coolants and thermometers
in the millikelvin region, supplementing the widely
used cerium magnesium nitrate Ce,Mgs(NOs),,

« 24H,0 (CMN).

Studies of the magnetic properties of CDP, tri-
sodium tris(dipicolinato)-cerate(III) 15-hydrate,
have previously been made in this laboratory. 3~5
In the temperature range investigated, 0,05-4.2
K, the expected good magnetic behavior was in-
deed found, but a study at even lower temperatures
subsequently made by Webb and Wheatley® showed
that the magnetic ordering in CDP may occur at a
somewhat higher temperature than in CMN, so that
CDP is probably not as useful as CMN for low-
temperature applications. We therefore decided
to take up work on other similar compounds, with
the hope of finding one which might in fact follow
Curie’s law to lower temperatures than CDP and
CMN. The first material chosen was the trigonal
trisodium tris(diglycollato)-cerate(III)di(sodium
perchlorate)-hexahydrate (CDG).

It is very easy to prepare polycrystalline sam-
ples of CDG. The material is stable in air at room
temperature and is unchanged after repeated cool-
ing down to helium temperatures. It crystallizes
in the space group R32,7 with the cerium ions on
the trigonal axes.! Its E tensor must therefore be
axially symmetric, as is the case with the likewise
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trigonal CMN.® The volume per cerium ion in CDG
is 790 A®, compared to 916 and 593 A% in CDP and
CMN, respectively, so that its “magnetic dilution”
is greater than that of CMN, although not quite as
great as that of CDP. However, the distance to the
nearest neighbors is 9. 81 f&, compared to 8,97 and
8.51 A in CDP and CMN, respectively, which sug-
gests that CDG could have weaker interactions than
either of these two compounds. The next-nearest
neighbors are at 11,03 A. All this made CDG a
very promising material at the outset of our study.
However, even after serious efforts over more than
a year, we have to report that it has not yet been
possible to grow any crystals of trigonal CDG large
enough for magnetic single-crystal work. In spite
of this we decided to try to investigate the magnetic
properties of CDG, using the polycrystalline sam-
ples at hand.

In one attempt to crystallize the trigonal CDG by
slow evaporation at room temperature, large sin-
gle crystals of a triclinic phase of trisodium
tris(diglycollato)-cerate(III) nonahydrate were ob-
tained. We denote this compound TCDG below. Its
structure has been determined with x-ray single-
crystal diffractometry by Elding.® The space group
is P1," with a volume of 708 A® per cerium ion.
Each cerium ion has four nearest neighbors at a
distance of 8,10-8.71 Z’\, two next-nearest neigh-~
bors at 10. 36 fk, and six more cerium ions at
11.16-11.62 A. The cerium ions are therefore
somewhat more closely spaced in TCDG than in
CDG, but since magnetic dipole-dipole interactions
also depend on the actual E tensors, this fact does
not immediately rule out a weaker interaction in
TCDG than in CDG. To compare the two com-
pounds we have therefore also investigated TCDG,
using a single crystal.
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The thermodynamic quantity best suited to de-
scribe the microscopic magnetic interactions in a
material is Cy, the heat capacity at constant mag-
netization.!® A determination of C, is possible us-
ing an experimental technique originally proposed
by Casimir and du Pré.*' The usual application of
the method requires that susceptibility measure-
ments are made on a single crystal oriented with
one of its principal axes along the measuring fields.
Scalar quantities can then be used to describe its
magnetic properties.!? If instead measurements
are made on a polycrystalline sample with arbi-
trarily oriented crystallites, a tensor description
is necessary for each single grain, Measurable
quantities are obtained from these tensors by aver-
aging over all possible orientations of the crystal-
lites.

Abraham et al.'® have recently worked out some
equations necessary for an application of the Casi-
mir-du Pré method to a polycrystalline sample of
a magnetically very dilute material with an axially
symmetric E tensor., Their final result is the
same as ours [Eq. (14)] but, as we shall show,
their derivation of the basic equations is correct
only for a specially simple magneuc equation of
state My =2\H, /T, where M is the magnetization,
H the field, T the temperature, and « denotes x,

9, or z. Such an equation of state is in fact a good
first approximation for both CMN and CDG under
the conditions of the experiments, but it is useful
to consider more generally valid expressions.
These are given in Sec, II, together with the equa-
tions necessary for the interpretations of our mea-
surements.

A powdered sample of CMN was used by Abraham
et al.'® to check their equations experimentally.
The results showed some fairly sizable discrepan-
cies with the results obtained using a single crys-
tal of CMN, and this disagreement was not re-
solved. We therefore decided to repeat their mea-

surements both on a single crystal and on powdered.

samples of CMN before applying the method to
powdered samples of CDG. We have found that the
theoretical equations do in fact account for the ex-
periments in our case, so that the earlier discrep-
ancies were probably due to some undetected sys-
tematic errors in the experiments.

II. THEORY

We first consider a single crystallite in a pow-
dered sample in a magnetic dc field, and derive the
thermodynamic equations governing its differential
susceptibilities in the general case. The applica-
tion of the Casimir-du Pré theory is then discussed.
Finally, we specialize the derived equations to the
case of a powdered sample of CMN or CDG and
calculate the averaged susceptibility for the case
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in which the measuring field is parallel to the ap-
plied field.

A. Thermodynamic equations

Our magnetic system is a crystal with a fixed
but arbitrary orientation in a field. We describe
its propert1es as functions of the temperature 7'
and field H. To derive our equations we use the
same principles as in the single-crystal case'? but,
since we ultimately have to average over all orien-
tations of the crystallites in the sample, a tensor
instead of a scalar description of the magnetic
properties of the crystal has to be used to take its
magnetic anisotropy into account.

The first and second laws of thermodynamlcs
and the magnetic equation of state M= M(H T) give
us

TdS=CydT+ T<8M> .dH 1)
0T /5

- (oM oM -

dM(a—f> dT+<aH )dH @)

where Cy is the heat capacity at constant field and
S the entropy. The adiabatic and isothermal sus-
ceptibility tensors are defined by xs =(aM/ 9H), and
Xr = (8M/ aH)T, respectively. In the adiabatic case
TdS=0, Eliminating dT from Egs. (1) and (2) then
results in

- — T{aM)\ [oM

Xs= Xr = E,:(ﬁ)ﬁ <ﬁ>ﬁ ’ (3)
where (6M/8 T)ﬁ(aﬁ/a T)i is to be taken as a dyad-
ic. We want to determine the heat capacity of con-
stant magnetization C, since that quantity is the
one mgst directly related to the interactions. By
using M and T as variables we obtain the 7'dS re-
lation

TdS=CydT - T(ﬁ> .dM . (4)
8T /u

We equate Eqs. (1) and (4) and insert Eq. (2) in the
result. This gives (i) a relation between C, and
Cu,y

cr-cu-1(2H). ().,

and (ii) a relation expressing the fact that of the
variables H, M, T only two are independent:

aM\ (oH\ _ <aM ©)
8_-5 r \8T/u 8T /g °
Hence
oM -y (M
cr=Gorr(B) -Gt (B). . @

Equations (3) and (7) are the thermodynamic
equations which connect the differential suscepti-
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bilities with the magnetic heat capacity for a single
crystal, taking its magnetic anisotropy into ac-
count, If our sample consisted of a single crystal
aligned with the field along one of its principal axes
such a formulation would be unnecessarily compli-
cated. We could then simplify Eqgs. (3) and (7) to
obtain the usual single-scalar relationship!?

T(BM/3TY  Xs

C, =
. Xr Xr=Xs’

(8)

where M and H are the magnitudes in the measur-
ing direction of the magnetization and field, re-
spectively.

In a similar calculation for a crystallite in a
powdered sample Abraham ef al.'® derived the
equation

- 1 81-V.I - |-t -
Xs= [l—c—< ) H] * Xr (9)
M
by using Eq. (2) and a relation
T dS=CydT~H.dM . (10)

A comparison of Eq. (10) with the exact relation-
ship (4) shows that Eq. (9) can be used only when
the magnetization obeys the condition

M 1 - =
(ﬁ)ﬁ—— T Xxr*H. (11)

This is the case for the simple equation of state
Mg, =N H,/ T, which describes CMN and CDG ade-
quately under the actual experimental conditions,
but already when the magnetization has to be ex-
pressed as M, =\, H,/(T -0©) Eq. (11) is invalid,
so that Eq. (9) will give an incorrect result.

B. Casimir-du Pré condition

With an oscillating measuring field of frequency
w/2m, the magnetic susceptibility of a paramag-
netic system is in general composed of a real part
and an imaginary (phase-lagging) part which are
‘both functions of the temperature, the applied dc
field, and the frequency:

‘)-Z(T,ﬁ,w)=‘)2'(T,_I:I, w)—i&."(T,ﬁ, w) . (12)

The basic concept of the Casimir-du Pré theory
is that of a spin temperature, which requires the
spins to reach an internal equilibrium in a short

[

g5 + o giHG+ g2HE

- N#B/ks

Xs= 7 TA(ZHE + g2 H + g2HT) - qglgH H,
z
- qgigiH H,
where we have put ¢=Nu%/16k; C, T2, Since M of

Eq. (13) obeys the condition in Eq. (11) this is the
same equation as the one derived by Abraham et
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time compared to the spin-lattice relaxation time
TsL. This is usually the case at low temperatures,
since 7g;, becomes quite long while the spin-spin
relaxation times Tgg remain essentially independent
of temperature and quite short.'* The value of the
spin-lattice relaxation time will in general be de-
pendent on the orientation of the crystal in the dc
field and for a powdered sample we then have a
range of relaxation times 7.,;, = 7= Tpx. If we can
choose our measuring frequency such that 1/ TSL, min
K WK 1/Tgs, max, the measuring field recognizes the
spin system of each grain as being thermally iso-
lated from ¢t the lattice. That is to say, for each
grain X' = xS(H T) and x”—g Likewise, if w

< 1/7s1, max the measuring field recognizes each
spin system as being in thermal equilibrium with
the lattice. Hence X = xp and x”—O Measure-
ments of x’ on a powder sample under these condi-
tions will therefore give the proper average of ‘)'Zs
and xT corresponding to the thermodyna.mlc theory.
xT can also be estimated by measurmg Xs(H 0),
this is, in fact, what is usually done.

C. Application to powdered CMN and CDG

The trivalent cerium ion has a single 4f electron,
Spin-orbit coupling results in a multiplet Fy,,
which splits in the crystal field. At helium tem-
peratures only the ground-state doublet is expected
to be populated. The ions can then be described in
terms of a fictitious spin, S'= +. For materials
like CMN, CDG, and TCDG with very large sepa-
rations between the magnetic ions, the interaction
energy between spins at different sites is predomi-
nantly of the dipole-dipole type and very weak. The
actual experimental conditions [1.3= T'(K)=4.2,
0= H(Oe)=600] then permit us to write the mag-
netization as

M = (Np3/4ks T) (g2H,, g2H,, °H,), (13)

where N is the number of magnetic ions, pp is the
Bohr magneton, and %z is the Boltzmann constant.
We assume here all cerium ions in the material to
be magnetically equivalent, and use the directions
of the principal axes of the g tensor as the direc-
tions of the crystallite coordinate axes. From the
magnetic equation of state (13) and Egs. (3) and (7)
we then calculate 323:

- qgZgiH H, - qg2gZH H,
gl% +q(gPHE + g2H?)) - qgigiH H, , (14)
- qgﬁngsz gf[z +Q(gx +ngi)]

r
al.'® from the generally inapplicable equation (9).
We now consider a powdered specimen in a cy-

.lindrical container located in the measuring appara-
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tus in such a way that the specimen has a macro-
scopic rotational symmetry about the magnetic
field axis. The over-all susceptibility is then de-
scribed by a diagonal tensor with two equal com-
ponents perpendicular to the field and one parallel
|
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component, The calculation of these components
from Eq. (14) is described in detail by Abraham

et al.*® In our setup we can only measure the aver-
aged adiabatic susceptibility parallel to the field,
Xu. The expression for this is

sin6dode dyp , (15)

NuiR fz" Jz"f (glcos?ep + gZsin®p)sin®6 + gicos?o
R+ (Nu3H?/4kp D) (g2 cos?d + g2sin¢) sin® 6 + gZcos?6]

Xi= 35k, T

where H is the magnitude of the applied field, ¢,
6, and ¥ are Euler angles describing the orienta-
tion of an individual crystallite in the sample, and
R=Nkg. We have introduced b=C,T%/R in Eq.
(15) and thus neglected all but the first term in the
“high”-temperature expansion C,/R=0/T%+b'/T®
+..., which is consistent with the approximation
used to obtain Eq. (13).

The integral (15) cannot be evaluated analytically
unless the :g' tensor is axially symmetric, i.e.,
gx=8y=g.and g,=g,. CMN does in fact have an
axially symmetric g tensor and, as discussed in
the Introduction, the same should be true for CDG.
To evaluate Eq. (15) under these conditions we
have to consider three cases: (i) g =g; (ii) g.<gu;
(iii) g, > gy. To simplify the notation we define
(0= a=4%) to describe the anisotropy of the g fac-
tor: gZ=ag? gf=(3-2a)g? where g is the rms
value, i.e., g2=3(2g%+g?). The averaged Curie
constant for the powder is then A=Nu%g%/4ky T
Since b is proportional to the mean-square interac-
tion energy we define an internal field of magnitude
H; by H2=bR/X to describe this interaction. Note
that H; defined in this way is a macroscopic prop-
erty of the sample since it depends upon the aver-
aged Curie constant.

Our three cases are now as follows:

NT
W (a=1). (16)

(i) xu=
This is the same relation as obtained from Eq. (8)
for a single crystal with magnetization M=XH/T.

138 (- fro o oo )

_ 2\ V2

Y

3(a — 1)(H/ H,) )1’2) (

-1
xtanh < 1+ a(B/H)

1<a=3).
(18)
In spite of their rather different analytical form,
the three expressions for ¥, in Egs. (16)—(18) have

identical series expansions in powers of H2:

I
Y _(34a -38a+9

Xi=7 =7 5H?
. 16a° -1320% 42160 ~135
35H4 + ..), (19)

as we would expect.

D. Van Vleck paramegnetism

So far we have treated powdered CMN and CDG
as an ensemble of spin systems, where each spin
can occupy one of two energy levels. Using this
simple picture we have calculated the adiabatic
susceptibility and averaged it over all grains in the
sample. Thus the terms “adiabatic” and “isother-
mal” used above only refer to our spin systems and
do not include other intra-atomic interactions. For
each cerium ion in CMN, CDG, and TCDG there is,
however, an additional nondiagonal matrix element
of the magnetic moment connecting the ground state
with excited states in the crystal field. The result
of this is a small field- and temperature-indepen-
dent contribution of Van Vleck paramagnetism,
Xvv, which has to be added to the right-hand sides
of Egs. (16)—(18) to describe the actual measure-
ments., The Van Vleck term can be obtained ex-
perimentally, either as the asymptotic value of y,
at large fields, since Eqs. (16)—(18) show that the
field-dependent part then goes to zero, or as the
high-temperature intercept of the zero-field Curie
law xu(0) =N/ T+ Xyv .

III. EXPERIMENTAL

The susceptibility measurements were made in
a mutual-inductance apparatus similar to the one
described by McKim and Wolf, ¢ Alternating cur-
rent, 5-50 mA, at audio frequencies 80-400 Hz,
was used in the primary coil to produce a measur-
ing field with rms magnitude of about 2-20 Oe.
The secondary coil consisted of two similar halves
connected in opposition, and in a measurement the
sample was moved from the lower to the upper half.
In each position the voltage induced across the coil
was compensated by mutual inductances and resis-
tances in a Hartshorn brldge A tuned amplifier
(General Radio 1222-A) was used as a null detector.
The difference in mutual inductance between the
two positions of the sample is proportional to the
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real part of the parallel component of the averaged
susceptibility tensor, while the imaginary part is
proportional to AR/w, where AR is the difference
in resistance setting for the bridge and w/27 is the
frequency used. The coil system was immersed in
liquid helium, which was pumped in order to vary
the temperature of the sample in the range 1.3-
4.2 K. A dc field was provided by a solenoid sur-
rounding the cryostat. The maximum field which
could be applied was about 600 Oe. This solenoid
and the measuring coil system had a common axis
along which the sample was moved. To eliminate
the influence from the veritical component of the
earth’s field on our low-field data (H < 100 Oe)
measurements were taken with the current flowing
through the solenoid in both directions. The mean
result for each current was used.

The variable mutual inductance in the Hartshorn
bridge was calibrated against the susceptibility of
ammonium manganese (II) sulphate, as described
by McKim and Wolf,!® The factor obtained at 210
Hz was 1.494(1) x10"® emu/Oe uH. The smallest
detectable change in inductance was 0.015 uH.

CMN, TCDG, and CDG were prepared as de-
scribed in Refs. 8, 9, and 17, respectively. Ce-
rium carbonate, 99.99% pure with respect to other
lanthanoids, was used as starting material so that
all detectable magnetic effects in the compounds
were due to the cerium ions. X-ray powder photo-
graphs were used to check that the correct com-
pounds had been obtained.

For the powder measurements on CMN and CDG
a freshly powdered sample weighing about 0.2 g
was transferred together with silicone o0il (Dow
Corning 704) to a cylindrical container about 5 mm
wide and 20 mm long. These containers were made
of Teflon and cleaned in aqua regia before every
use. The chemically very inert silicone oil was
used for thermal contact between the powder grains

~and to keep them in a fixed position when a field
was applied at helium temperatures. Checks both
with and without applied fields showed no discern-
ible magnetic effects from the sample holders or
the oil. The single crystals of CMN and TCDG,
weighing 0.1705 and 0. 2515 g, respectively, were
also mounted in Teflon cylinders: CMN with the
trigonal axis perpendicular within 2° to the field
axis, and TCDG with the b axis along the field axis.

IV. RESULTS
A. Method of analysis

With yyv added to the right-hand side of Eq. (19),
it is apparent that a convenient function to use in
the determination of @ and H; is

f(Hz) =[x.(0) - Xu(Hz)]/[Xu(o) = Xvv ] . (20)

This function is independent of temperature and of

1947

0.9 | | T I
o8 | f =]
07| -

L 1.5
0.6 . 1o ]

L .5 _
0.5 0.0
04 | _
0.3 - -
0.2 _
0.1 (H/m;)2 -
0 | | | |

0 1 2 3 4 5

FIG. 1. Normalized curves f as a function of (H/H;)?
[Eq. (20)] for several values of a.

the amount of the material used, so that data taken
with different samples at different temperatures
can be treated simultaneously. As can be seen in
Egs. (16)—(19), the parameter H; has the effect of
a normalizing factor; i.e., fcan be taken as a
function of (H/H;)? instead of H?, leaving o as the
only parameter. Normalized curves for.several
values of @ are shown in Fig. 1. The family of
curves is bounded upwards by the curve a =0 and
downwards by the curve with o =1. For fixed val-
ues of H/H;, fis approximately symmetric about

a =1 in the interval 0. 5<a<1.5; i,e., if 0<x

< 0.5, only a minor change in H; is required to
make X, [calculated from Eq. (17) with =1 - x]
equal to X, [calculated from Eq. (18) with a=1+x].
Hence, in the interval 0.5<a<1.5 it is not possible
to determine « and H; uniquely (except for the case
a =1) using susceptibility data only. Figure 1 also
indicates that the relatively small differences be-
tween the curves when o2 0.5 makes a simulta-
neous determination of good values of H; and «
quite difficult. However, we can still try to esti-
mate values of both H; and a with a nonlinear least-
squares method. The one we chose to use has been
proposed by Powell, 18

Starting values of « and H? for the refinements
were obtained by computing the sum of squares S
=3[ fons(H?) = foarc(H?)J? as a function of « and HZ.
Since f,.;.(H?) depends only upon two parameters,
approximate values for these are easily obtained
by finding the region of the absolute minimum of
S(a, H%). It follows from the symmetry of f about
a =1 that the local minima of S(a, H%) along lines
of constant « form an approximately hyperbolic
trough, roughly symmetric about =1,

As described in the Introduction, we decided to
test our theoretical equations experimentally by a
determination of the magnetic heat capacity of CMN
from measurements on powdered samples before
applying the method to an unknown material. Doing
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this, we learned that the particular way in which

o and H; enter our equations makes it quite diffi-
cult to detect even large systematic errors in a
data set. Such a set could always be fitted to a
pair of parameters (o, H%) which, of course, then
had wrong values, even though the agreement be-
tween observed and calculated values seemed to be
as good as when data without systematic errors
were fitted to the correct parameters. We con-
clude that when the Casimir-du Pré method is used
on polycrystalline samples, great care has to be
taken to avoid systematic errors in the experimen-
tal data.

B. CMN

We measured the field-dependent susceptibility
for two powdered samples of CMN at 1. 35 and
1.38 K, respectively; the frequency was 210 Hz
and the measuring field had a rms value of 4 Oe.
In this way the Casimir-du Pré condition, w
> 1/7Ts1, min, Was met and the measured suscepti-
bilities were independent of the measuring field. °
The data were fitted to the parameters o and H? as
described in Sec. IVA. It is well known that g, is
very close to zero for CMN, so the value of o has
to be very near 1,50 for powdered CMN. We
therefore calculated the sum of squares S(a, H?)
for all pairs of (o, H%) obtained by changing o in
steps of 0.01 and H?Z in steps of 10 Oe? in the range
1.30=o=1,50, 2300= H%(0e?)=2500. The abso-
lute minimum of S in this region, 2.6x10™, is at
a=1.50, H?=2420 Oe? but, as could be expected
from the similarity of the curves in Fig. 1 when «
20.5, the value of S increases very slowly along
the bottom of the trough described in Sec. IVA.

At o= 1,41, H2-2300 Oe?, S is only 3.0x 10", The
nonlinear least-squares fit resulted in o =1.50(11),
H%=2420(160) Oe®. The large estimates of the
standard deviations should at least partly be as-
cribed to the flat minimum in S. The experimen-
tal data [H?, f,,s(H?)] are compared with the calcu-
lated curve in Fig. 2, The agreement is good. As

1.0 I T T T I T T T
oslf a
L CMN _
06 " .
- T(K
1.35
04 - o138 j
0-2 — —
10"3H%(0e?) _|
0.0 | | | | | | I 1 1

o 1 2 3 4 5 6 7 8 9 10

FIG. 2. Plot of f as a function of H? [Eq. (20)] for two
powdered samples of CMN. Curve drawn is calculated
using oo =1, 50 and H}=2420 Oe?.

I 4 | | | | [ ] I
| _10° -1 2|

12 XYy (Oe emul)

10— —
8l CMN ]
61— -
4 -
2 103H2(0e2)

0 R N I N O EN B

0 1 2 3 4 5 6 7 8 9 10

FIG. 3. Field dependence of 1/(x, —Xyy) at 1.37 K for
a single crystal of CMN. Line drawn is calculated using
Eq. (21) with A =0,317 emu K/Oe mole and H}=1643 Oe?,

noted above, this in itself does not, however, prove
that the Casimir-du Pré theory works for powdered
samples; since data with relatively large system-
atic errors might also be fitted to some pair of pa-
rameters o and H, we therefore have to check
that the fundamental constants b, g,, and g, calcu-
lated from the powder data do in fact have the same
values as those found from single-crystal measure~
ments,

From the value o =1,50(11) we immediately de-
duce that g is very close to zero, in agreement
with the known anisotropy. To estimate g, we use
the value of the Curie constant x=0. 211 emuK/
Oemole?’ determined from the zero-field suscepti-
bility measurements together with the value of @,
This gives 1. 83 in excellent agreement with the
single-crystal value 1, 838, 2!

To estimate b we use b=1H%/R, and substituting
the above values we find b=6.14(40) mK?. This
value should now be compared to the single-crystal
value, but there is some uncertainty in this since
a number of independent determinations have given®
values ranging from 4. 2 to 7.5 mK2. We therefore
found it desirable to make our own single-crystal
determination of & for CMN, so that a consistent
comparison with the results of the powder measure-
ments could be made.

Measurements of the field dependence of the sus-
ceptibility were made on a single crystal of CMN
at 1.37K. A value of H%=1643(12) Oe® was deter-
mined using Eq. (16) by a least-squares fit of the
data to the function

1/(xi = Xyv ) =t+(¢/HHH? (21)

where #=T/Xx. The good agreement between the
experimental data and the calculated line is shown
in Fig. 3. The value of HZ found corresponds to
b=6.26(1) mK?, which is compatible with other val-
ues obtained by adiabatic susceptibility measure-
ments on single CMN crystals: Hudson et al. 23
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FIG. 4. Susceptibility at zero applied field as a func-
tion of temperature and rms measuring field (z) for a
powdered sample of CDG.

found 5=6. 3 mK?, Mess ef al.?? b=6.2 mK?, and
Abraham ef al.'® =6, 16(10) mK?, We thus seem
to have a very reliable & to compare with the &
calculated from the powder measurements.

Such a comparison shows that, contrary to the
earlier results of Abraham ef al. ,'® the value of b
obtained from the powder measurements is quite
acceptable even if a relatively large error has to
be assigned to it. We may therefore assume that
the results from the polycrystalline samples of
CDG should provide a reasonable estimate of b
(and also of g, and g;) for that compound.

C. CDG

To find the maximum measuring field which
could be used for CDG without influencing the ob-
served susceptibilities, we measured a powdered
sample at zero applied field for various amplitudes
of the measuring field over a range of tempera-
tures. The results are shown in Fig. 4. It can be
seen that in order to obtain susceptibilities inde-
pendent of the field over the entire temperature
range, measurements should be made with rms
amplitudes not exceeding 4 Oe.

The average Curie constant A for the material
was determined using zero-field data (7, x,) from
two powdered samples. Fourteen and 20 different
temperatures in the range 1.3-4. 2 K were used.
The frequency was 210 Hz. A least-squares fit of
the data to the linear function x,7=X+ xyv 7T resulted
in 2=0.,1536(9) emuK/Oe mole and xyv =0.0036(7)
emu/Oe mole.

The range in which the Casimir-du Pré condition
w> 1/Tg1,, min is Obeyed was found by measuring the
in-phase and out-of-phase susceptibilities, x; and
xi’, as functions of w at an applied field of 55 Oe
over a range of temperatures. An applied field of

1949

this magnitude was sufficient to reduce x; signifi-
cantly from its isothermal value in zero field, as
one might expect from previous experiments on
similar materials.® For temperatures below 2.1
K, Xxi’ was found to be essentially zero and no vari-
ation could be detected in x; over the frequency in-
terval 80—-400 Hz. We conclude, therefore, that
frequencies in this range are in fact high enough to
ensure that the measured x/ for 7=2.1 K is equal
to the adiabatic susceptibility, as required for the
Casimir-du Pré method.

Adiabatic-susceptibility data were obtained from
three different samples at the temperatures 1. 36
K (sample No. 1), 1.39 K (sample No. 2), 1.53 K
(sample No. 1), and 1.69 K (sample No. 3) using
a frequency of 210 Hz and a rms measuring field
of 4 Oe. In view of our experience with CMN we
are satisfied that no significant systematic errors
should enter our data under these experimental
conditions. The sum of square S(a, H%) was com-
puted in the entire range for o (0= ¢ =1.50) and in
the range 1400 < H%(0e?)=2100. The absolute min-
imum was found near o =0.1. Since «<0.5 only
one set of g values fits the measured susceptibili-
ties. S(a, H?) was minimized as for CMN. The
result is o =0.08(6), HZ=2040(110) Oe?. With A
=0.154(1) emuK/Oe mole these values give

b=3.78(20) mK?, g =0.36(11), g,=2.16(3)

as the final set of fundamental constants for CDG.
The experimental data are compared with the cal-
culated curve in Fig. 5. The agreement is good.

D. TCDG

In an experiment on TCDG similar to the one de-
picted in Fig. 4 we found that rms values not bigger
than 4 Oe should be used for the measuring field
for this material. The Curie constant along the b
direction of a single crystal of TCDG was deter-
mined from 33 different temperatures to be A
=0.1736(5) emuK/Oe mole, The Van Vleck term
is xpy = 0. 0019(4) emu/Oe mole. As withCDG, we

1.0 I — — —
o.8lf i
= CDG .
— T(K |
06 o 1.&6)
= v 138 -
0.4 — ©1.53 -
L A 1.69 |
0.2 a
10"3H?(0e?) .
0.0 I 1 L1 I | L I

0o 1 2 3 4 5 6 7 8 9 10

FIG. 5. Plot of f as a function of H® [Eq. (20)] for the
powdered samples of CDG. Curve drawn is calculated
using o =0. 08 and H% =2040 Oe?.
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FIG. 6. Field dependence of 1/(x, —Xyy) at 1.30 K for
a single crystal of TCDG. Line drawn is calculated using
Eq. (21) with A=0.174 emuK/Oemole and Hi=1710 Oe?.

found the Casimir-du Pré condition obeyed for fre-
quencies in the range 90-390 Hz at temperatures
below 2.1 K,

The field-dependent susceptibility was measured
at 1.30 K. The frequency was 210 Hz and the mea-~
suring field had an rms value of 4 Oe. The value
of H? was determined by a least-squares fit of the
data to Eq. (21). The good agreement between the
experimental points and the calculated line is
shown in Fig. 6. With A=0.1736(5) emuK/Oe mole,
the fitted value HZ=1710(11) Oe? corresponds to b
=3.57(3) mK2,

V. DISCUSSION

The experimental result b= 3.78(20) mK?for CDG
may be compared with the value calculatedfrom mag-
netic dipole-dipole coupling., Using the expression
appropriate for a system with anisotropic g values,*
together with our estimates for g, and g, and the
available structural information,! we calculate
Daipote = 3. 48(31) mK?, in excellent agreement with the
experimental value. Since b depends on g?, this
agreement lends reassuring support to the g-value
determination and indirectly to the whole analysis.
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A similar comparison for TCDG is unfortunately
not possible at this time, since this material has
much lower symmetry and there is no information
on the g values or the orientation of the g-tensor
axes. However the experimental value b=3,57(3)
mK? is not at all unreasonable for purely magnetic-
dipole interactions.

The magnetic specific heats of CDG and TCDG
in the region of 1 K are both about 0.6 of that of
CMN, and one may therefore speculate that they
might have lower values also in the millikelvin re-
gion, Such a conclusion must be treated with cau-
tion, since b only measures the mean-square inter-
action energy while the low~-temperature behavior
also involves other correlation energies. Thus, in
the case of CDP which has b=2.26 mK?,? it turned
out that the ordering temperature was actually
higher than that of CMN.® However, in the case of

.CDG one may hope that the unusually long Ce-Ce

nearest-neighbor distance (9. 81 A) could favor
more ideal behavior at very low temperatures.
Certainly the ease with which polycrystalline sam-
ples of CDG can be prepared and handled would
make this material a useful substitute for CMN or
CDP, as well as for the solid cerium complex with
triphanyl phosphine oxide and thiocyanate which has

‘been proposed as a possible coolant and thermome-

ter by Abraham and co-workers, 2% Further

_ evaluation of CDG and TCDG at lower temperatures

would seem to be worthwhile.
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