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Modified Callen decoupling in the Green's-function theory of Heisenherg antiferromagnets
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The modified Callen decoupling (MCD) is extended to Heisenberg antiferromagnets with exchange
between more than nearest neighbors. The results are illustrated by application to type-I order in the
three cubic lattices. It is shown that type-I order in simple cubic and body-centered-cubic lattices is

especially simple —and therefore especially stable —due to several accidental symmetries. The more
general case is typified by type-I order in a face-centered-cubic lattice, which shows an instability at
intermediate temperatures for all values of the exchange constants when S = 1/2. The MCD results are
compared to the Pade-approximant estimates of the Neel temperatures and are shown to explain the

anomalous behavior found for spin 1/2,

I. INTRODUCTION

Most of the work devoted to the Heisenberg
model has been restricted to nearest-neighbor ex-
change and the simplest types of magnetic order.
It has usually been assumed that removal of these
restrictions merely complicates the mathematics
without producing any qualitative differences.
This assumption has been supported by the molec-
ular-field approximation (MFA)' 4 and the random-
phase approximation (RPA), 5 ' which fail to show
qualitative changes when second- nearest-neighbor
exchange is included. However, more careful
consideration of these approximations has revealed
that certain competing interactions can cancel,
allowing small corrections to drive the usually
assumed magnetic order unstable. Qn the basis
of qualitative arguments, phase transitions to new

types of magnetic order have been predicted and
used to explain certain anomalies that occur in
the Pade-approximant estimates of the critical
temperature s. '

To further investigate the corrections to RPA
for Heisenberg magnets that do not necessarily
satisfy the usual simplifying assumptions, we have
used a modification and extension of a Green's-
function decoupling technique first introduced by
Callen for the study of ferromagnets. The origi-
nal Callen decoupling~ (CD) introduced corrections
to RPA that eliminated the spurious T'-term in
the low-temperature magnetization' and produced
excellent agreement with the Pade-approximant
Curie temperatures' ' in the high-spin limit.
We have shown in a previous paper that a modified
Callen decoupling" (MCD) is capable of retaining
the advantages of CD and, in addition, producing
very good agreement with the Pade-approximant
Curie temperatures for all spins. We also extend-
ed MCD to include exchange between more distant
neighbors in a ferromagnet and found the same
agreement with the Pade results for first- and sec-

ond-neighbor exchange in all three cubic lat-
tices " '6

All Green's-function theories involving Callen-
type decouplings attribute the most significant
corrections to the correlations between spins. The
elimination of the restriction to nearest-neighbor
exchange is therefore especially interesting since
the spin-spin correlations lead to different re-
normalizations of different contributions to the
magnon energies. The magnon-energy spectrum
is determined by "effective-exchange constants, "
which depend on temperature, magnetization, and
applied magnetic field. The wave-vector depen-
dence of the magnon energies changes as these
parameters are varied.

Antiferromagnetism proves to be more complex
than ferromagnetism because the ith neighbors
of a given site are generally not all on the same
magnetic sublattice. Since the correlation func-
tions depend on the relative orientation of the spins
as well as their separation, the contributions to the
magnon energies also have different renormaliza-
tions for different alignments. The resulting mag-
non energy spectrum not only has a k-dependent
renormalization, but its shape can be qualitatively
different than any RPA spectrum.

The dependence of the renormalization factors
on the alignment of the spins results in a, large
qualitative difference between type-I order in sc
(simple cubic) and bcc (body-centered-cubic) lat-
tices on the one hand and the fcc (face-centered-
cubic) lattice on the other. Indeed, MCD provides
a semiquantitative foundation for the qualitative
explanations of the anomalies in the Pade-approx-
imant critical temperatures, which we proposed
earlier. MCD supports the assumption that the
corrections to RPA are "regular. "

We shall discuss the application of MCD to
Heisenberg antiferromagnets, using type-I order
in the cubic lattices to illustrate the results.
Section II contains a description of the essential
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steps in the MCD method and Sec. III describes
the various techniques that are used to calculate
the critical temperatures. Section IV discusses
the relatively simple type-I order found in sc and
bcc lattices and Sec. V describes the added com-
plications found in other cubic antiferromagnets,
using fcc type-I order as an example.

II. THE MCD METHOD

We consider the Heisenberg Hamiltonian

Z= —g J~ g S~ ~ S, —p, Q h~S~',

where h& is a staggered magnetic field. The ex-
change integrals, J& „are assumed to have the
symmetry of the lattice, but are not restricted to
nearest neighbors.

We shall define the retarded, temperature-de-
pendent Green's functions in the usual manner

translationally invariant. With this restriction,
we only need two Green's functions: G,(f, l, e),
for which f and l are on the same magnetic sub-
lattice, and G~(f, l, &u), for which f and l are on dif-
ferent magnetic sublattices. Since bcc type-II
order and fcc type-IIL4 order do not satisfy this
restriction, our results are not directly applicable
to them, although they can be treated by using
four sublattices (and four Green's functions) with-
out further approximation.

To simplify the equations of motion, we use a
slight modification of a trick developed for the
ferromagnetic case. ' ' By restricting the sum-
mation to those members of the jth shell of neigh-
bors that are on the same sublattice as the central
site, we can define the partial Fourier transforms
of the exchange constants

J„.(k) =J, P e'"

G(f, f, t) = —~~(f)&&[s/(f), s (o)]&& = &&sy, sl &&,

and follow Callen in terminating the infinite hier-
archy of equations of motion in first order with a
decoupling approximation of the form

+ ((s;s,'; s, )&- o «s,'; s;)&

—o.&s, s&'&((s,'s, )) .
The plus (minus) sign is used when the site g is on
the up (down) magnetic sublattice, and

(4)

We shall use the MCD expression for the decou-
pling parameter

2S 8+1 S SS+1 S

which is known to give good predictions for the
properties of Heisenberg ferromagnets. '3 There
are no further adjustable parameters.

The decoupled Green's function equations of mo-
tion can be Fourier transformed with respect to
time and take the form

(u G(f, l, tu) = 2o'5g, ) + p,hg G(f, f, &u)

—2o g J«[G(f, l, v) —G(g, l, &u)]

+2o.g J,z [&S&S,'& G(f, l, ~)

e (k) = —~"'~"'"(s s'&
f

with a similar equation for P~(k).
By defining

(6)

f„=f1/XJ„.(0)]P. J„.(k) tt, (k) (9
k

(and fz analogously), we can write the renormal-
ized, or "effective, " Fourier transformed ex-
change constants as

J', (k) =g J, (k) =g J,g(k)(1+2of,y) (io)

and

J,(k) =P J„,. (k) =P J„(k)(i —2~f„,.) .
J

The equations of motion can then be written as

&uG, (k, &u) =2a+[ph +2oW(k)]G, (k, &u)

—2o J (k)G„(k, &u) (12)

where the 4,. 's are the vectors connecting a central
site with the members of the jth shell and the super-
script s indicates that the sum is restricted to
neighbors on the same magnetic sublattice. J,&(k)
is defined by a similar restriction to neighbors
that are on different sublattices. These restric-
tions are also used to define partial Fourier trans-
forms of the correlation functions, so that

—(s;sy) G(g, l, (u)] . (6)

Because the antiferromagnetic state does not
have full translational symmetry, it is necessary
to divide the lattice into sublattices in order to
solve Eq. (6) by spatial Fourier transformation. "'"
We shall only present the solutions of the equations
for cases in which the magnetic sublattices are

&uG„(k, &u) = —[ph +2oW(k)]G„(k, &u)

+2oJ„(k)G,(k, (o),

where

W(k) =J, (0) —J, (k) —J (0) . (14)
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These equations have exactly the same form as
the corresponding RPA equations and can be solved
directly in the same way. a'7' The essential dif-
ference is that J', (k) and J„(k) are now self-consis-
tent functions of the temperature, magnetization,
and magnetic field.

Using the usual techniques, we find that the mag-
non energies are given by

Z 2(k) = [2oW (k)]2 —[20'(k)]2, (16)

and the f 's are

~=-', s(s+i)4-'+o(4-') . (2o)

The hyperbolic cotangents
(19) can also be expanded,
goes to zero in this limit.
for the Neel temperatures

in Eqs. (16), (17), and
since the magnon energy
The resultant equations

are

S S„=—', S (S+ 1) (
—Q (D„' + D'.) (21)

pleteness and as a foundation for later discussion.
When o-0, C - ~ and we can expand Eq. (18) as

and

~%II

g J„.(k)
'

cot [-,'PZ(k)]
2NJ„(o) „.

" z(k)
(i6) lim(2a f„.) = " J»(k)(D„' +D~',), (22)

2NJ„(0)

f+ = g Jz(k) ' coth[ —,'PZ(k)], (17)
2NJ»(0) „- Z(k)

where P =1/AT
As shown by Callen, ' the magnetization is then

lim(2'~, .) = 2 " P J»(k)(D~' —D~,), (23)
2NJ~~ (0)

where

DN, = W(k)+ J(k) .

(s - c)(i+c )""+(s+1+c )c""
(l ~@,)2S+1 C22+1 (is)

In computing the high-temperature staggered
susceptibility,

where X, = lim(p. o/h), (26)

C = —p cot [—,'pZ(k)] —1
2N Z(k)

(19)

Equations (14)-(19) are then solved self-consis-
tently to obtain the physical properties of the sys-
tem.

III. THE CRITICAL TEMPERATURE(S)

There are several methods of obtaining the crit-
ical temperature now that we have solved the equa-
tions of motion. It has been tacitly assumed in
most previous work that all methods lead to the
same result. This is, of course, necessarily true
for an exact treatment, but is only justified for a
Green's-function approximation in the simplest
cases. Since we need the results of all methods
to discuss the fcc antiferromagnet, we shall pre-
sent each one explicitly.

The basic idea is to consider a physical quantity
of interest as a function of the temperature and
look for some sort of singularity. Three possibil-
ities for an antiferromagnet are:

(1) The spontaneous sublattice magnetization
~-0 (I, =o);

(2) the staggered susceptibility (h& =+Il-0);
(3) the physical susceptibility (fl& =H-O).

Most Green's-function work uses just the first pos-
sibility, but in cases in which discrepancies arise,
it is important to remember that the Pade approx-
imant method involves only the analysis of the high-
temperature susceptibilitie s.

The first method has been extensively discussed
in literature. We shall give the results for com-

we use Eq. (20) to obtain equations for the inverse
temperature as a function of X~. These equations
are then investigated to find the highest possible
value of X~, which occurs when

S S = —,S(S+1)(—P(D' +D'„)

lim(2o'f») = Q Js)(k)(D2. +D2,)
NJ, J(0)

and

(27)

(26)

lim(2o f») = 2 g J»(k)(Dz' —D2',), (29)
NJN (0) 2

where

g, = P,2y2'+2W(k)+ 2J~(k) .
In RPA, it is very easy to find T~. Equations

(28) and (29) are no longer relevant. We simply
set y2' =0 and perform the integral in Eq. (27).
This automatically gives T~ = TN.

In MCD, the situation is considerably more com-
plicated. In addition to the necessity of keeping
Eqs. (28) and (29), the quantity W(k)2 —J~(k)2 can
be negative for some values of the wave vector.
This means that the magnon energy then becomes
imaginary if X~' goes to zero and the whole formal-
ism breaks down. The formalism gives a critical

il X2 = —2 Mln (Ds(q]' .
The resulting critical temperature, which we shall.
denote by T&, is then found as the self-consistent
solution of the equations
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temperature for the finite value of the staggered
susceptibility given by Eq. (26).

The third method is to apply a physical magnetic
field (h& H) -—for high temperatures and look for
singularities in the physical susceptibility.

yP =lim(po/a) . (»)
0 P

Here, we no longer have antiferromagnetic order
(for a nonzero field, (S&)=a for all sites) and we
analyze the system by the methods used for ferro-
magnets. The necessary equations are discussed
in Refs. 9 and 13 and can also be rederived from
the equations in Sec. II by setting J„; equal to zero
throughout. Since y~ never diverges for an anti-
ferromagnet, we find a finite critical susceptibility,

p, yP' = —2 Min[ J (0) —J'(k) ], (32)

and the critical temperature Tp is given by the
equations

1

k T = —', S(S+()(—g{lPk'+2{/(0) —Z(k)])'

(33)

Consequently, the integrals over both terms in
Eqs. (21)-(23) are identical and we need only cal-
culate the first one in each equation. We can fur-
ther simplify the calculation by noting that the
normalized integral over the Brillouin zone of the
whole lattice is equal to the integral over the Bril-
louin Zone of the magnetic sublattice. The former
not only involves simpler boundary conditions, but
is also identical to the corresponding integral for
the ferromagnetic case if we associate —J~, (k) for
the antiferromagnet with J,(k) for the ferromagnet.
This gives us a symmetry between the Neel and
Curie temperatures, which is only valid for the sc
and bcc lattices.

T,(- f J, f, J,) = r, ( f
J, f, J,) . (37)

The critical value of li. le' is just —2J,(0). When
this is substituted in Eqs. (32) and (33) and all k

values in the integral are shifted by —,'k, we again
obtain Eqs. (21)-(24) for the critical temperature.

To sum up, for type-I order in sc and bcc lat-
tices,

and &x=&s =Tv ='I'c (ss)

lim(2(rfi) = s "PJ, (k)({i,'Xp'+2[J(O) —J(k)]] ' .
NJj (0)

(s4)

IV. TYPE-I ORDER IN sc AND bcc LATTICES

and

J, (k) = J, (k+K) (s5)

For both the sc and bcc lattices, type-I order is
characterized by having all nearest neighbors anti-
parallel and all next-nearest neighbors parallel. '
The simplicity of this type of order greatly re-
duces the work required and has resulted in the
majority of calculations being limited to these two
cases (usually with the further condition that J~ =0).
The MCD equations also reflect this simplicity
and exhibit several symmetries not generally pres-
ent.

To begin with, only J~, (k) and J,a(k) are non-
zero. This means that there are only two re-
normalization factors and the magnon energies
can be expressed in terms of the RPA energies
for some effective exchange constants J~, and J,~.
Since the RPA magnon energies always take on
their minimum value of zero at k=0, the staggered
susceptibility diverges at T~ and we can set Xs =0
in Eqs. (26)-(29). Comparison with Eqs, (20)-
(23) then shows that TF = T~.

We can further exploit the symmetry of this
order by noting that if K is a nearest-neighbor vec-
tor of the reciprocal magnetic sublattice,

As a final exploitation of symmetry, we note
that the Curie temperatures for the corresponding
ferromagnetic cases have already been calculated
as functions of the exchange constants. In particu-
lar, expansions of the critical temperatures in
terms of the ratios of the exchange constants have
been published. "

For the special case of J~ =0, an analytic solu-
tion for the critical temperature can be ob-
taj.ned. ' ' ' We find

(39)

where the RPA value for the Neel temperature is
TRPA 7RPA Z4fFA/F( 1) (40)

and F(-1) is the appropriate Watson integral, ~' for
which

1/F( 1) =0.65946-5, sc; 0.717772, bcc. (41)

Equation (39) was first found for the ferromagnetic
case by Tahir-Kheli, ~' who noted empirically,
prior to MCD, that it provides an excellent fit to
the Pade approximant estimates of the Curie tem-
peratures in cubic crystals. Although the Pade re-
sults indicate that T„ is higher than the corre-
sponding Tc, ' '" the difference is usually small
so that Eq. (39) also gives a good fit to the anti-
ferromagnetic data.

To present the MCD Neel temperatures graphic-
ally, it is convenient to normalize them to the
MFA values.

J~i(k) = —J~i(k+K) . (36) & =&N/Ter'" ~ (42)
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FIG. 1. MCD Neel temperatures for an sc type-I anti-
ferromagnet. (Curves are identical to those for the sc
ferromagnet. ) The dashed curve gives the HPA results,
which coincide with those of MCD for S = 1.

This normalization has the 'advantages of removing
the S(S+1) spin dependence and expressing T„ in
terms of a dimensionless number between zero and
one.

We shall plot ~~ as a function of

(43)

(which varies between —1 and 1), in order to in-
clude all possible ratios of the exchange constants
in a single graph.

A plot of ~„versus t for the sc lattice is shown
in Fig. 1. The dashed curve represents the RPA
results, which coincide with those of MCD for S =1.
The lower curve gives the MCD results for S= —,

'
and the upper curve gives the limit of S =~.

Unfortunately, the available Pade results for the
simple cubic antiferromagnet are limited to near-
est-neighbor interactions. ' ' They lie slightly
above the Pade results for ferromagnets, but,
except for spin —,', are still in good agreement with
MCD. For spin —,', the Pade values for T~ and T~
differ by about 13% (T„&Tc), while MCD gives a
single value that lies about halfway between them
(all three are below the RPA value).

We can also make a comparison with the Pade
results in the limit 8, -0($- 1). In this limit, the
system consists of two independent, ferromag-
netic, fcc sublattices with a nearest-neighbor ex-
change J~. As we have shown previously, the
agreement between MCD and the Pade results is
also very good in this case. "

The cusp that occurs at $ =1 (J, =0) is found in
all Green's function theories. It is associated
with the magnons that rotate the magnetic sub-
lattices with respect to each other and whose ener-
gy vanishes as J, -O. This effect has been dis-
cussed elsewhere in detail for the ferromagnetic
case (for which it is essentially the same), but it
has not yet been investigated by the Pade method. '

When J~ is negative and sufficiently large, type-
I order becomes unstable and a phase transition
occurs. At T =0, this happens for an sc lattice at
a critical ratio of J~/J, = —,'. This value is also
found in simple spin-wave theory, as well as MFA,
RPA, and CD.

However, for higher temperatures, MCD pre-
dicts qualitative differences in the behavior of the
system when the ratio of the exchange constants
is near the critical ratio. As shown by the dashed
curve in Fig. 1, RPA predicts that the critical
temperature goes to zero as I Ja/J, —

& I and
that type-I order is impossible when J~ & ~J, . For
S = 1, the MCD curve coincides with the RPA curve.

For S&l, the correlations support the order and
MCD predicts that the effective ratio of the exchange
constants can be characteristic of type-I order for
nonzero temperatures even when J~ is slightly less
than —,'J, . This makes the curve for the Neel tem-
perature bulge slightly to the left of the critical
ratio as shown in Fig. 1 for S= ~. This effect has
been discussed elsewhere in connection with the
corresponding ferromagnetic problem and can lead
to phase transitions beyond those predicted by MFA
and RPA. '

For S= —,', MCD lowers the curve for T~ sub-
stantially and results in a linear approach to zero
as J~- 4J, . However, this prediction is not to be
taken too seriously, since the magnetization be-
comes double valued when J~ is too close to 4J, .
This reflects an instability arising from a can-
cellation of the effective interactions between neigh-
boring (100) planes. 8 The instability leads to a
new type of magnetic order that probably involves
some sort of canted alignment. As a result of the
change in the magnetic order, the Neel tempera-
tures for spin —,

' are expected to be anomalously
high when J~ is near —,'J, . An analogous anomaly
is present in the Pade approximant results for fcc
and bcc ferromagnets, but the sc case has not yet
been treated.

Figure 2 compares the MCD Neel temperatures
with the Pade approximant calculations for bcc
type-I order. The Pade results are indicated by
x's for S=~and 0's for S= —,'. The RPA curve is
again given by a dashed line.

For infinite spin, the comparison shows that
MCD correctly gives a positive correction to RPA,
as is normal when S &1. The correction is also
of approximately the right magnitude. The MCD
curve lies slightly above the Pade values, but the
Pade results are somewhat irregular. Again, the
limit of Z, -O($-1) shows good agreement.

For S= —,', MCD correctly gives a negative correc-
tion to RPA, but the quantitative agreement is less
satisfactory. The MCD correction seems to be
too large by about a factor of two, resulting in
predicted values that are somewhat too low. In
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MCD predicts an analogous antiferromagnetic-
ferromagnetic-paramagnetic series of transitions
when J, is positive and J~ is slightly less than the
critical value.

0.7— 0-p V. TYPE-I ORDER IN THE fcc LATTICE
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FIG. 2. MCD Neel temperatures for a bcc type-I anti-
ferromagnet. (Curves are identical to those for the bcc
ferromagnet. ) The dashed curve gives the BPA results,
which coincide with those of MCD for S =1. The x's (S
= ~) and the 0's (S = 2) give the Pade results from Hef. 11.

the J&-0((-1) limit, the Pade approximant criti-
cal temperature has been shown to be strongly de-
pendent on the number of terms included in the high-
temperature expansion. " In this limit, the MCD
values are slightly too high.

Note that the Neel temperature for bcc type-I
order (Fig. 2) does not go to zero at the critical
ratio of the exchange constants (Za/J', = —', ). In con-
trast to the sc case, the bcc magnon energies only
go to zero at a point (instead of a line) in k space
when the critical ratio is reached and the integrals
determining the Neel temperature do not diverge.
The boundary of the MCD solutions for temperatures
below T~ can be found by looking for the line along
which the effective ratio of the exchange constants
takes on the critical value as a function of the tern-
perature. For RPA, the effective ratio is always
equal to the true ratio and the line is vertical. In
MCD, the critical ratio is a function of the tem-
perature, but has an infinite slope at T = 0.

[Z„(T)/Z„(T) -Z, /Z, ] T'" . (44)

Although the analysis of the MCD equations for
bcc type-II order has not yet been completed, it is
likely that type-II order is stable at zero tempera-
ture when J~ &3J,. If, however, J~ is only slightly
lower than the critical value and S &1, MCD pre-
dicts a first-order phase transition to type-I order
as the temperature is raised and second-order
transition to the paramagnetic state at a higher
temperature. Due to the symmetry with the ferro-
magnetic state when the sign of J, is changed,

Because nearest neighbors of a given site in an
fcc lattice can be nearest neighbors of each other,
the simple antiferromagnetic order found in the sc
and bcc lattices is impossible. As a result, any
antiferromagnetic order that does occur will be
opposed by some of the interactions. This feature
destroys the symmetry with the ferromagnetic
(T„w Tc) and leads to more complex behavior than
found in the sc and bcc type-I antiferromagnets.

Despite the added complexity, fcc type-I order
(J, &0; Jz &0) is easy to visualize. It consists of
ferromagnetic (100) planes which are antiferro-
magnetically aligned with the neighboring (100)
planes. ~ 4' This structure can be derived on the
basis of two assumptions:

(1) All next-nearest neighbors are parallel (as
they must be in the limit 8, -0, Zz &0), and

(2) any two spins are either parallel or anti-
parallel.
tThe four nearest neighbors within the ferromag-
netic (100) plane oppose the order, while all other
interactions support it. ]

If we consider a (010) plane, we see that the four
nearest neighbors within this plane are antiparallel
and the four next-nearest neighbors are parallel,
so that all intraplanar exchange supports the order.
The other two next-nearest neighbors are on next-
nearest-neighbor (010) planes and are also parallel.
The remaining eight nearest-neighbor interactions
connect adjacent (010) planes. However, four of
the spins are parallel and four are antiparallel.
Consequently, in MFA, there is no net interaction
between adjacent (010) planes; the two (010) sub-
lattices can rotate freely with respect to each
other without the restoring forces needed to sup-
port the assumption that the spins are either paral-
lel or antiparallel.

In RPA, we have a similar situation. The mag-
non energy goes to zero on the Brillouin-zone
boundary at k* = (0, 2w/a, 0), which corresponds to
those magnons that rotate the (010) sublattices
with respect to each other.

In both MFA and RPA, the exact cancellation of
the interaction between (010) sublattices is a conse-
quence of the assumption that the energy contribu-
tions from all exchange interactions renormalize
identically. In MCD, the renormalization of the
energy contributions is affected by correlations
between spins and leads to substantial changes in
the physical properties of the system due to the
behavior of the magnons near k* .

The MCD equations are more complicated for
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type-I order in fcc lattice than they were for the
sc and bcc lattices, due to the nearest-neighbor
interactions that oppose the order. We now have
three effective exchange constants (two arising
from J', and one from Z~). This has the effect of
making the MCD magnon-energy spectra qualita-
tively different from the RPA spectra. In particu-
lar, E(k*) is no longer zero; the usual magnetic
order can be either stabilized or driven unstable
by the effect of correlations on the energy renor-
malization.

Let us first consider S &1. The renormalization
turns out to be positive LE(k*) &0] for all tempera-
tures, stabilizing the type-I antiferromagnetic
order. Because the lowest magnon energy now

occurs at k = 0, T~ = TN.
The numerical results for infinite spin are given

in Fig. 3. The dashed line gives the RPA results
and the crosses are the Pade values calculated by
Pirnie et al. " Although MCD gives the right qual-
itative prediction that the correction to RPA is
positive and fairly uniform, the MCD curve for T~
is definitely too high. Only in the limit J, -O
($-1) does MCD agree quantitatively with the Pads
results. However, the qualitative agreement does
suggest that the MCD prediction33 that an fcc anti-
ferromagnet with spin greater than one and only
nearest-neighbor exchange has a nonzero Neel
temperature is correct, although T„appears to be
lower than the MCD value. The relatively good
agreement between T~cn and the Pade values is
interesting, but probably not significant.

For spin —,', the situation is quite different. At
low temperatures, the renormalization is again
positive, stabilizing type-I order. However, as
the temperature is raised, the renormalization be-
comes negative, driving the system unstable at a
nonzero value of the magnetization (in MCD, this

FIG. 3. MCD critical temperatures for fcc type-I anti-
ferromagnets when S = ~. The dashed curve gives the
RPA results, which coincide with those of MCD for S =1.
The x's show the Pade results from Ref. 11.
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FIG. 4. MCD critical temperatures for fcc type-I anti-
ferromagnets when S = 2. The dashed curve gives the
RPA results, which coincide with those of MCD for S =1.
The x 's show the Pade results from Ref. 11.

occurs at o = —2S=-,). IThe new magnetic order
probably involves perpendicular alignment of spins
on neighboring (010) planes. a] Since o does not ap-
proach zero continuously, the derivation of Eqs.
(21)-(24) is not valid and T„, which we have de-
fined as the solution of these equations, does not

exist.
The temperature at which type-I order becomes

unstable (which we shall call T, ) can be calculated
directly and, as shown in Fig. 4, lies below the
RPA Neel temperature for all values of the ex-
change constants. This is, as we have seen, the
normal behavior of the Neel temperature for spin

However, as mentioned in Sec. III, we should

compare the Pade approximant results"'3' with

our calculation of T~. Such a comparison is shown

in Fig. 4. Both MCD and the Pade values show

similar anomalous corrections to RPA. For val-
ues of g greater than about 0.5 (J'3/I 4, I &1.5), the

correction is negative as usual, but for $ less than

0.6, the correction is positive. Although the
quantitative agreement between MCD and the Pade
values is not especially good, the qualitative pre-
diction of the anomalous behavior, including the
correct point at which the RPA curve is crossed,
certainly suggests that the MCD picture of a break-
down of type-I order at intermediate temperatures
is correct.

A qualitative difference still exists for the limit

J~ - 0. Here, the Pade method predicts a nonzero
critical temperature (T~~'~ =0. 52 T„F"),"while

MCD fails to predict a phase transition. On the
other hand, MCD 'almost" predicts a nonzero tran-
sition temperature in the limit Jz-0; as J~ is
lowered, T~ approaches zero very slowly (as
I logo@ I ').

The MCD prediction of a finite staggered suscep-
tibility at T~ for spin —, is, of course, incorrect.
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The staggered field associated with the new order
at intermediate temperatures fwhich probably in-
volves rotated (010) sublattices'] is just a linear
combination of staggered fields with the symmetry
of type-I order, so that the staggered susceptibility
must diverge at Ts. The difficulty lies in the
Green's-function formalism, which is not capable
of showing a divergence at this level of approxi-
mation unless the transition is to the usual type of
order.

A final point of interest is the discrepancy be-
tween Tp and Ts for the spin--, fcc antiferromag-
net. This is, of course, a defect in the MCD meth-
od, but it raises the question of whether other
methods suffer from the same defect. In particu-
lar, the Pade approximant method has been applied
to both the physical" and the staggered suscepti-
bilities" for bcc and fcc, spin- —,', nearest-neigh-
bor antiferromagnets. For the bcc lattice, the

Pade method found the same critical temperature
from both susceptibilities (Tp = T~). This agrees
with the MCD predictions. On the other hand, for
the fcc lattice, the Pade work gave T~ =0 and T,
=0.52 T„r". This also agrees with the (incorrect)
MCD prediction that Ts» Tp for very small values
of J~. It would be interesting to see if the Pade
method follows the MCD behavior in that the two
estimates of the critical temperatures are again
equal when 8 )1.
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