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A self-consistent diagram technique is developed in terms of a 4 X 4 Green’s function and a
symmetrized 4 X 4 X 4 X 4 interaction vertex to investigate the effect of spin fluctuations on the
self-energy and thermodynamic potential in superfluid *He. In addition to reproducing the results of
Brinkman, Serene, and Anderson (BSA), the resulting T -matrix approximation leads to the appearance
of a new class of anomalous diagrams not considered by BSA. These new contributions involve a
coupling of the particle-particle and particle-hole channels and give rise to an effective paramagnetic
enhancement of the particle-particle T matrix below T .. They are shown to further increase the
stability of the Anderson-Morel state relative to that of the Balian-Werthamer state near T .. Results
are stated in terms of the five fourth-order invariants. The specific-heat discontinuity is calculated and

discussed in the context of recent experimental results.

I. INTRODUCTION AND DISCUSSION OF RESULTS

In a recent paper Brinkman, Serene, and An-
derson' (BSA) have shown in detail that, in super-
fluid *He below T,, spin fluctuation effects,? if
they are sufficiently strong, can stabilize the anis-
otropic Anderson-Morel (AM) state with respect
to the pseudoisotropic Balian-Werthamer (BW)
state. The anomalous diagrams included in their
calculation of the free energy are the same as
those considered previously by one of the present
authors® in the self-consistent “T-matrix approxi-
mation.” However, in view of the recent self-
consistent theory of the random-phase -approxima-
tion (RPA) susceptibility in superfluid *He by one
of the present authors,* it seems natural to include
an additional class of anomalous diagrams in the
free-energy calculation.

According to the self-consistent-approximation
scheme?® the 4 X4 self-energy £ is given by the
functional derivative

% =2i68/6G,

where & is a certain approximate starting function-
al, related to the thermodynamic potential £, and
G is the full 4 X4 single -particle Green’s function.
The irreducible vertex part f‘, occuring in the
Bethe-Salpeter equation for the two-particle cor-
relation function, is then given by*

[= -i6%/6G .

It was shown in Ref. 4 that in the simplest approxi-
mation one can think of, i.e., Hartree-Fock for &,
or, equivalently, RPA for the susceptibility, T
becomes a completely antisymmetric tensor of the
fourth rank with respect to the combined particle-
hole and spin variables. The most interesting con-

11

sequence is the appearance of new types of anom-
alous diagrams in both the particle-hole and the
particle-particle scattering channels.

Since it is absolutely necessary to include these
new types of anomalous diagrams in a self-con-
sistent calculation of the RPA susceptibility below
T,, it appears natural to calculate the free energy
in the corresponding approximation. At first
glance one might assume that the contribution of
the particle-particle channel to the free energy
would be negligible in comparison to the strongly
paramagnon-enhanced particle-hole channel. In a
normal nearly-ferromagnetic system this is in-
deed true since, as is well known, the summing of
particle-particle ladder diagrams merely leads to
a replacement of a repulsive bare interaction by
a smaller effective interaction, or “pseudopoten-
tial.” Below T,, howeve~, new processes, which
have no counterpart in the normal system, can oc-
cur: A particle-particle pair can, with the help of
the anomalous propagators F and F, effectively
propagate in an intermediate state as a particle-
hole pair as shown in Fig. 1. This intermediate
particle-hole propagation can lead to an effective
paramagnetic enhancement of the particle-particle
T matrix below T,. In a similar manner, the par-
ticle-hole channel can contain elements of the par-
ticle-particle channel. Our detailed analysis shows
that proper inclusion of this new class of anoma-
lous diagrams leads to substantial correction to
the BSA free-energy difference between the AM
and BW states.

Let us briefly describe more explicitly this ap-
proximation, which we call the generalized 7-ma-
trix approximation. It consists of setting up the
Bethe-Salpeter equation for 7 with an irreducible
vertex part I, identical to that of the RPA corre-
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lation function, and then calculating the self-en-
ergy from the relation

$=2i6® /6G = -2iTG .

This approximation will be justified more directly
by rewriting the S-matrix expression for the ther-
modynamic potential  (Ref. 5) in terms of Nambu
four-component field operators and vertex func-
tions I'. In this way one sees that one obtains ap-
proximate functionals & from diagrams made up
of G and T'. The particular functional &{G; I¥} for
the T-matrix approximation corresponds to the
particle-hole T-matrix approximation for the nor-
mal system® and yields the self-energy given
above. It includes correctly the infinite partial
sums of diagrams which we believe are most im-
portant in a nearly-ferromagnetic superfluid sys-
tem.

Finally, the thermodynamic potential can be ob-
tained from the integral over the coupling con-
stant 1,3

C(tax ==
Q—Q():—%Zf A—GE,
0

by inserting the expression for by given above (£,
is the thermodynamic potential of the noninteract-
ing system). This program is carried through with
the aim of determining the difference in Q between
the AM and BW states.

We restrict our calculations in the present paper
to temperatures near T, since the Bethe-Salpeter
equation for 7 is rather complicated; there are
four separate sets of four coupled equations for the
16 components of T with respect to the particle-
hole space and, in addition, each of these quanti-
ties depends on four spin variables. Accordingly,
we solve these equations by systematic expansion
in a series in terms of anomalous propagators F
and F, up to fourth order, corresponding to the
fourth-order term in A of BSA. The spin variables
in these equations are treated by expanding the
components of I and 7 in terms of the complete
set of tensor products of two Pauli matrices.?

Our generalized T-matrix approximation re-
produces the result of BSA that the feedback effect
due to the change in the spin fluctuations just below
T, can stabilize the AM state. The new anomalous
diagrams considered here yield a correction to the
fourth-order free-energy difference of BSA that
also favors the AM state. The actual magnitude of
this correction is, however, rather difficult to
calculate accurately. An estimate yields a 20%
correction to the BSA free-energy difference.

We have expressed the fourth-order spin-fluc-
tuation energy for p-wave pairing in terms of the
five invariants introduced by Mermin and Stare?’
and by Brinkman and Anderson.® We find that the

various coefficients are affected quite differently
by the new terms and thus the magnitude of the
correction depends strongly on the type of state
under consideration. For example, for the BW
state the correction is large while for an AM state
in a magnetic field in the A phase®'® the new cor-
rections have no effect at all.

We have also expressed the specific-heat dis-
continuity at T, in terms of the Brinkman-Ander-
son spin-fluctuation parameter ,''® and find that
the effect of the new corrections is that a smaller
0 is now required to fit the specific-heat data. The
specific-heat discontinuity at the polycritical point
is reduced from the BSA value. We also suggest
that the T ,5/T, vs 8 curve is shifted because the
critical value of & at which the free energies of the
AM and BW states become equal is reduced from
the BSA value of 0.47 to 0.41.

Recently Osheroff and Anderson'' have noted that
within the framework of BSA, a larger value of 6
is required to fit the specific-heat discontinuity
at the melting pressure than to fit NMR data or
the measured T ,,/T, ratio. We have also calcu-
lated the effect of the new anomalous diagrams on
the determination of 6 from the NMR data. This
0 is shifted down by approximately the same
amount as the specific heat 6. We also point out
that the processes shown in Fig. 1 may have a sig-
nificant effect on other quantities in the superfluid
phase such as the Landau-Fermi liquid parameters
and various collective modes.

In Sec. II we develop the general theory. This
theory is applied in Sec. III to the calculation of
the thermodynamic potential near T, and a discus-
sion of the results is given.

II. THERMODYNAMIC POTENTIAL IN THE
T-MATRIX APPROXIMATION

The expression for the thermodynamic potential
€ as an integral over the coupling constant X is

(@)

(b)

FIG. 1. Typical examples of anomalous diagrams
dictated by self-consistency requirements. The particle~
particle scattering (a) contains an intermediate particle-
hole ladder, while the particle-hole scattering (b) con-
tains a particle-particle ladder.
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given by® (all expressions in this section are writ-
ten for zero temperature):

1. ldA"—'—+'“’+—
Q-9,=-ii | —G@E,1MZ1",3). 1)
()

Here and in the following we use the notation:
1=k,w, @, where a,=4+,47 7 etc.; the 1" means
that a, — af =47, 47, 4,4, etc.; the bars on top of
repeated numbers mean summation or integration
over all the variables. £, is the thermodynamic
potential of the noninteracting system.

In our “generalized T-matrix approximation” the
self-energy is equal to

(17, 3) =2i56%% =-2iT(1%,2%,3,9)G@4,2%),
2)
where the 7 matrix is defined by the equation
T(1%,27,3,4)=17(1", 27,3, 4)
+iT(17,57,6,4)G(6,7")
xG@8,5M)T(T",27,3,8). (3)

The irreducible vertex part I' occuring in this
equation is the same as that in the corresponding
equation for the two-particle correlation function
in the Hartree-Fock approximation.* The analyt-
ical expression of I in terms of the bare (or mod-
el) interaction vertex function I'(1, 2, 3, 4) (where
1=k,w,0,, 0,=4,¥, etc.) can be written as follows:

r@7,2%,3,4)=3[I(,2,3,4) +I'(3,4,1,2)
"I‘(ly 3’ 2: 4) - F(4y 2) 3) 1)
- r(ls 47 3; 2) - F(3; 2) 19 4)] . (4)

Here the prescription is to retain only the one I
on the right-hand side which has the correct di-
rections of arrowheads corresponding to a], aj,
a,, a,: outgoing (V) for the first two numbers and
ingoing (no 7) for the last two numbers. All the
other components of I, for instance, the one for
three ingoing and one outgoing arrows, vanish
identically. Since the bare vertex function I'(1, 2, 3,
4) is taken to be antisymmetrized® with respect to
1 and 2, and also with respect to 3 and 4, one sees
from Eq. (4) that T is antisymmetric with respect
to the interchange of any two variables.

The origin of this T-matrix approximation can be
elucidated by constructing the functional & from
the expression for © -, in terms of the S matrix®
and H;,, where

Hy =1c" D)™ @)r(d,2,3,9)c@c@). (5)

In Ref. 3 it was shown that the starting functionals
® of the self-consistent approximations can be ob-
tained from the diagrammatic approximations to

Q -, by replacing the zeroth-order Green’s func-
tions by dressed ones. Since we have to consider
in the superfluid state not only the normal pairings
c’c™ but also the anomalous pairings, ¢'c’ and
ct'c™’, it is convenient to introduce a new interac-
tion Hamiltonian defined by

H,, =¢"M)¢"@)T(1",27,3,96@)$3)
=5c"@)c"@)T(,2,3,4)c@)c()
+c(1)c@)T'{E,3,2,1)c"@)c'(3)
-c"M)e@)rd,4,3,2)c"@)c(3)
—-cDc'@)r@E,2,1,4)c@)c3)
-c"@Me@)r({,3,2,4c@)c’(3)
-c(Dc'2)r@,2,3,1)c'@)cB)]. (6)

Here we have defined, in analogy to the Nambu
formalism four-component field operators by

$() = (clkyty), cilesty), erlesty), cilkyty)), (1)
such that the Green’s function is equal to
G(1,2)=-{TH(1)$"(2)) . ®)

If we now replace in the S-matrix expression for
Q - Q, the H,,, by the H], of Eq. (6) and take, as
in the normal phase, only the pairings

d(1)¢T(2) =iG,(1,2), 9)

but not ¢’¢" and ¢"'¢"", we obtain the same types
of diagrammatic contributions (with the correct
signs and powers of i) as from the exact expres-
sion. This is because Eq. (6) contains all six dif-
ferent classes of permutations of the operators ¢
and ¢ in H;, [see Eq. (5)]. However, the numeri-
cal coefficient of each diagram must be determined
by comparing it with the actual number of corres-
ponding diagrams in the ¢, c", I' technique. This is
similar to the procedure in the normal phase where
the factors in the diagrams in the symmetrized
technique are determined by a comparison with
those in the nonsymmetrized technique.® The dia-
grams of the G, I' technique merely serve as a
guide to the different methods of pairing in the
superfluid phase.

The functional & of the T-matrix approximation
corresponds now to pairing the operators ¢, ¢', of
a given Hy, only with the operators of the two adja-
cent Hj,. In this way one obtains for the nth-order
contribution in T', if we introduce an overall addi-
tional factor of 3 (for the factor 1/ see Ref. 5):

"= _(1/20)G(3,1NH T, 2%,3,9)GE,2Y). (10)
Inserting Eq. (10) into the middle term of Eq. (2)
and making use of the antisymmetry properties of
T one finds that in fact to each order » the right-
hand side of this equation is borne out. The nu-
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merical factors associated with the different dia-
grammatic contributions to &™ are obtained by in-
serting into Eq. (10) the different components of
the T-matrix given by the equations in Figs. 2

and 3. A comparison of these numerical factors
with the actual factors (obtained from the exact
S-matrix expression by considering the corres-
ponding pairings of the ¢ and ¢’ operators) shows
that our T-matrix approximation is correct in all
orders n = 3. The first-order diagrams (Hartree-
Fock, see Ref. 4) are overcounted two times, and
the second-order diagrams three times. However,
in calculating the spin-fluctuation contribution to
Q we shall subtract out the first-order contribution
anyway (see below). The second-order diagrams
could be subtracted also, but since only infinite-
order collective effects are of interest this error
can be neglected.

The spin-fluctuation contribution to the thermo-
dynamic potential is obtained now from Eq. (1) by
inserting Eq. (2) and subtracting from this expres-
sion the first-order contribution in I*:

1 —_— - - —
AQS=—%f %6(3,1*)0(4,2”
0

X[T(T*,ET,§,Z)_f(I*,ET,QZ)]_ (11)

We have to calculate now the 7' matrix from Eq.
(3), with the help of Eq. (4). This is a set of 2¢
equations for the 2* components with respect to the
particle-hole space (having components with and
without the dagger). This set of equations can be
reduced in analogy to that for the correlation func-
tion* to four separate sets each consisting of three
coupled equations for three independent compo-
nents. Two sets of these equations are shown dia-
grammatically in Figs. 2 and 3. The independent
particle-hole channel components are denoted by
T,T’,T", and those of the particle-particle chan-
nel by S, S, and S”. The full-dotted vertices de-
note the outgoing arrowheads, the undotted vertices
denote the ingoing arrowheads. Note that, in con-
trast to I" and T in the normal phase, the com-
ponents of T are not restricted to only those having
two ingoing and two outgoing arrows. The other
two sets of equations for the components of the 7
matrix can be obtained from the diagrammatic
equations in Figs. 2 and 3 by replacing the dotted
vertices by undotted ones, and vice versa.

These equations shown in Figs. 2 and 3 are
handled by expanding all quantities in terms of the
complete set of tensor products of two Pauli ma-
trices, 7'7% (where v, n=0,1,2,3, and O denotes
the unit matrix), as well as in a power series in
terms of the anomalous propagators F and F. For
instance, one has for the component 7 the expan-
sion:

3
T(1,2,3,4)= 3 [t9(1,2,3,4)
e

v, [o]
+19(1,2,3,4)+£1,2,3,4) ++++]

m
XTgIMTCZOS. (12)

Here the superscripts (0), (2), (4),... denote the
order in F and F and, of course, the numbers on
the right-hand side of Eq. (12) no longer include
the spin variables. The spin-conserving form of
the bare (or model) interaction function I" can be
written as follows:

0203

3
T(1,2,3,4)=3 V,(1,2,3,47%, 7
V=0

S vy (13)

£y Vv 70105704055
where the potentials are related by

V,=V,=V

Ve=Vi=Vi=3(V, +Vy);

Vi=5B@V,-V,). (14)

Upon inserting the first or the second form of T
given in Eq. (13) into the equations shown in Figs.
2 and 3 one can separate everywhere the spin vari-
ables 0,,0, from 0,,0, in the same way as in Eq.
(12). Then the equations can be solved by succes-

6 E
=1/z RN R RE
G F
G E
+ :
F G

G
- - -2 [T 7]
F

G
G
F
F
G

;
.

- 172

G

FIG. 2. Diagrammatic equations for the particle-hole
components T, 7', T'’, of the T matrix. The last
equation shows the relation between the fourth component
T'"" and T. The dotted (undotted) vertices denote out-
going (ingoing) arrows. The full lines G and G are the
normal components, and F and F are the anomalous ones
of the 4 x 4 Green’s function G.
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sively equating equal powers of F and F, and taking
traces with respect to the spin variables. We
make the usual approximation® of replacing the
functions V,(k,, k,, k;, k,) and V,(k,, k,, k,, k,) by
functions that are averaged in an appropriate way
over the momentum variables such that they de-
pend only on k, -k, =4 for the particle-hole or &,
+k,=q for the particle-particle channel. Further,
we assume for simplicity that V,=-V,, and thus
Vi=Vi=V;=0 (as is true for the repulsive contact
interaction model where V,=-3I and V, =3I).

For purposes of later reference we quote, in
Appendix A, the complete results for the solutions
of the equations in Figs. 2 and 3, up to and includ-
ing the fourth order in F and F. The enhancement
factor due to the spin fluctuations occuring in these
expressions is given by [¢=(q, ;)]

%) =3V, @[1 - V,@x(@)] 5y, (15)

and the reduction factor due to the iteration in the
particle-particle channel is

T9(q) =3 V,@[1 + V,@%X(@)] . (16)

The generalized unenhanced “susceptibilities” oc-
curing in the Egs. (Al), (A2), (15), and (16), are
defined as follows:

x(@) =2iG (g +R)G (k) ,

X(q) = -2iG(q -RIG(®),

X#e(g) = ~i Tr[TF(q +R) T"F(R)]
xJ#(q) =iG (g +k) Tr[T"T* F(R)]
X26(q) =i Tr[7"F(q +k) T*]G(R),
X4e(q) =i Tr[T'F(q + k) T F(R)].

amn

The solution of the T matrix [see Eq. (12), etc.,
for the other components, and the Egqs. (Al) and
(A2), etc., for the expansion coefficients] and the
expression for T' [see Eqs. (4) and (13)] are now
inserted into Eq. (11). After integration over the
coupling constant A we obtain for AR®, up to and
including the fourth-order terms in F and F, the
expression given in Appendix A [Eq. (A3)]. It
should be pointed out that the particle-hole suscep-
tibility x(q) and the particle-particle susceptibility
X(q) occuring in this expression depend on the
“normal” Green’s functions G (see Ref. 3) which
still depends on the magnitude of the energy gap.

Since we are interested here mainly in the free-
energy difference between the AM and BW states
for T near T, and, in analogy to the approxima-
tion of BSA, normalize the order parameter so that
the second-order terms in F and F in Eq. (A3) are
equal for the two states, we consider explicitly
only the fourth-order terms in F and F. Retaining
only the terms with the highest number of enhance-

ment factors [see Eq. (15)] and lowest number of
reduction factors [see Eq. (16)], we obtain from
Eq. (A3)
AQW =g

d3 d 3
ﬁ oy )@
v i=1

X[ xpr(@) —4T (@) 9" (@) |[xFe (@) - 4F Q@) 0(9)].

(18)
Here we have defined the new unenhanced “suscep-
tibility” ¢ by

@) = X&) X% (@) + X223 (@) xEs(q) - (19)

This expression for AQ® agrees with the corres-
ponding one of BSA, apart from the new correction
terms @™ due to the particle-particle scattering.

III. CALCULATION OF THE FREE - ENERGY
DIFFERENCE BETWEEN AM AND BW

In this section we outline the calculation of the
difference in AQ° between the AM and BW states
to order A® from Eq. (18). Generalizing to finite
temperature T the frequency integration over q,/2m
in Eq. (18) is replaced by iT times the sum over
the frequencies iv, =i2m7T, and the frequency in-
tegrations over k,/27 in Eqs. (17) by ¢T times the
sum over iw,=i(2n +1)7T. The integration over
|q| is converted into an integration over y=q/2kp.
The potentials V,(q) occuring in the expressions
for the enhancement and reduction factors in Eqs.
(15) and (16), respectively, are now specialized to

G
= _1/2 —1/2
5

G E
- - w2 ] 5]
F

G
F
ﬁ
- TS -

3

[T 1]

i
]
F
[r] |
?
f?

.
G
G
?
.
G
G
G

FIG. 3. Diagrammatic equations for the particle-
particle components S, S, S/, of the T matrix. The
last equation shows the relation between the fourth
component S’’’ and S’.
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those of the repulsive contact interaction where
V,=V,=V,=3I [we define I =IN(0), where N(0) is
the density of states]. Introducing further dimen-
sionless susceptibilities (denoted by a bar on top)
by the definitions

N(0)A*
16E.T

> =

AQ@ = _

In the expressions for the susceptibilities, Eq.
(17), the integrations over the energy variable ¢,
and the azimuthal angle ¢, with respect to the po-
lar axis along ¢ can be carried out analytically.
Then the results of the summations over w, can be
expressed in terms of the digamma function §. For
the AM state the gap matrix can be represented
as’

A(R) =VE Ak, +ik )T (AM), (23)
and for the BW state it is equal to

A(R) = A(=k, 7> +ik T +k,T) (BW). (24)
Going to the limit A/T -0 we find for the AM slale:

Xpr= 301 +32)3 Tr(7" 77 ™) Rzp(a, m) (25)

PUF = 2@ +320,50,,0(a,m), (26)

where we have defined
J

S

X#r@, iv,) = (8/T)?[N(0)T/2v5q]X s , (20)
@™ (@, iv,) =N©O)(A/T)}[N(0)T/20:q]0™, (21)

we find from Eq. (18) the following expression to
order A*:

W1 +2—N_X—(07)] (22)

a=v,q/21T=(2E./1T)y . 27

The functions Xzr and @ are given by the following
integrals over x=§*k:

O
X[Rey(z +3m +3iax) - ¥(z)],  (28)

¢l m)_ (f m +ax?
X[Rep(s +3m +3iax) — zp(%)])z ) (29)

Note that the integrands in Eqs. (28) and (29) are
even in m. Analytical expressions for the inte-
grals occuring in Egs. (28) and (29) are given for
a>m=>1 in Appendix B.

For the BW state we obtain:

Xer=[ETr(F/r 7 ) (1 = 42) + 5 Tr(F°7H ) (1 = 42) +5 Tr (¥ ) (1 - 32)

+3 i Tr(F'BH 10 - 7V 107 194,45
2 qqu
+3 Tr(7V Pt + 7 1 19,4,
+i3 Tr(FV 1074

-7t To)ayaz]ii‘ﬁ‘(a, m) ’

5"“ = (6,8, + 51./22];1 + éusaz)({)m?]x +5p221y +6y3213)¢(a, m).

(30)

(1)

Inserting Egs. (25)-(31) into Eq. (22) and carrying out the summations over v and u from 1 to 3, and the
average over the solid angle ,, we obtain the following final result for the AM stale:

N(O)A‘1
(@ _
AQAM 16E T

and the BW state,

f (1 T+, ) [3.155,(@) +0.9S,(a@) +1.25,(®)], (32)

AQ(;\)N = "N(O)A jo‘ dy (1 —-T[+ %73)2) [Sl(a) - S,(a) +S(v)]. (33)

16E,T
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Here we have defined the following sums over m:

+ o0

Sl(a): Z [;(FF(a,m)]zy (34)

m=—°

S(@)= 3 Grale,mpte,m) (3 M2
(35)
si@= 3 ot mp(F LB g

Comparing the S,(a@) terms in Egs. (32) and (33)
we see that these terms agree with those of BSA,
yielding the same value, 3.15, for the ratio of
AM to BW. The new terms involving S,(a) lower
the free energy of the AM state still further while
raising the BW free energy. The terms involving
S,;(@) yield, as we shall see below, a negligibly
small contribution.

The new correction terms in Egs. (32) and (33)
depend critically on the “particle-particle” suscep-
tibility X defined in Eq. (17). In calculating this
quantity we have taken as an upper estimate for
the cutoff in the integration over ¢, the (bare)
Fermi energy E and find to a good approximation:
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We have calculated numerically the three sums
defined in Eqs. (34)—(36) with the help of Egs.

(28), (29), and (37). Since 1 -7 is small we have
approximated 1/7 in Egs. (35) and (36) by 1. In
Table I we present the numerical values for a
number of values of @. One sees that all three
sums depend rather weakly on the parameter «
for the range of values of @, or vy [see Eq. (27)],
which are most important in the integrals over y
in Egs. (32) and (33). Note that o is very large,
more precisely, a~1.2X10% as estimated from
Eq. (27) with Ez~6 Kand T,~2.5 mK. Moreover,
the ratio of S,(@) to S,(a) is seen to be almost con-
stant, i.e., S,(@)/S,(a)=~0.15.

We have not actually calculated the integrals
over y in Egs. (32) and (33), but from the numeri-
cal values presented in Table Iit is clear that the
correction terms due to S,(@) lower the energy in
the AM state still further by about 5% while raising
the BW free energy by about 15%.

Finally, we have calculated the corrections to
the coefficients of the five fourth-order invariants
which have been introduced by Mermin and Stare”
and by Brinkman and Anderson.® The general form
of the gap matrix can be written for p-wave pairing
as follows':

A(R) =dy by (THT2) (38)

yg ( +4(E /21 T)? >
m?+ a? In terms of this 3 X3 order parameter d,; the di-
mensionless susceptibilities [defined by the Egs.
+1 — (m/q)arctan(a/m) . (37 (20) and (21)] take on the following form:
—
XFIJ—A (OaB-Qan)[Gvudmdﬁz (dgvdﬂu +d;pdﬂv)]iﬁF(a,m)’ (39)

0" =0723[(d%,0) (s p) +c.c.]@(a,m).

(40)

Inserting these expressions into Eq. (22), carrying out the average over d,, and expressing the sums over
m in terms of the functions S, and S, [see Eqs. (34) and (35)], we find the following result:

(@~ _ 212
aRt= T16E, Tf (1 1_1+3,2 ) [ =S,/8)|d2|%+0.5d% d¥dg;dg,

+(T+435,/8,)d% d%ide;ds, - (2 +5S,/S))

(ldg; 172

+(5.5+5S,/S,)d%,d},dydg; ] . (41)
i¥Bi%ai“ Bi

The first numbers occuring in the brackets have
been calculated from S, by setting S, =30 (see Ta-
ble I); these numbers agree with those which have
been given by BSA as the coefficients of the five
fourth-order invariants. The second terms in-
volving the ratio S,/S, ~0.15 (see Table I) yield the
corrections of these coefficients due to the new
susceptibility ¢”#. One notes that the various co-
efficients in Eq. (41) are affected quite differently
by the new terms, the coefficient of the fourth in-
variant, for instance, being enhanced by about 37%.
It should be pointed out that we have also calcu-

f

lated the effect of dxs¢ =X, — X, on the fourth-order
free energy by expanding the zeroth- and second -
order terms in F and F occuring in Eq. (A3) up to
order A* It follows that one should add dx¢¢ to
the expressions in square brackets in Eq. (18) and
replace the t(°) by their normal-state values. We
have done this and find that the only appreciable
change is a replacement 2 - 1.98 in the coefficient
of the fourth term in Eq. (41). We shall not include
this effect in the following discussion.

Consider, for example, the AM state in the pre-
sence of a magnetic field®:



11 SELF-CONSISTENT CALCULATION OF THE THERMODYNAMIC... 1921

TABLE I. Numerical values for the sums in Eqgs. (34)—(36) as a function of the parameter

a, ory [see Eq. (27)].

o 2 5 10 20 50 100 200 500 1000
Si(@) 5.7 114 15.9 19.8 23.8 26.0 27.5 28.8 29.4
Sy (a) 0.55 1.62 2.53 3.27 3.85 3.99 4.04 4.05 4.24
Sz (@) 0.01 0.06 0.11 0.16 0.22 0.27 0.33 0.49 0.74
S,/84 0.10 0.14 0.16 0.17 0.16 0.16 0.15 0.14 0.14

A@p4a+MQ@(A1°>. 42)
0 A,

The bracketed expression in Eq. (41) now becomes
equal to

[(7+35,/5)9]4,[%| a,]*
—(2+5S,/S) (A [2+]A,]%)2
+(5.5+55,/S) (| A, 12+ [4,]%?]. (43)

One notes that the relatively large corrections of
the last two terms in Eq. (43) cancel. Thus for the
A, phase of Ambegaokar and Mermin® the new cor-
rections have no effect at all.

We turn now to a discussion of the specific-heat
discontinuity which is inversely proportional to
the coefficient of the fourth-order term in the free-
energy expansion at 7,. Including the weak-cou-
pling contribution as well as the BSA spin-fluctua-
tion terms and our corrections we obtain for the
transition from normal Fermi liquid to either AM
or BW:

ACAM 5 1.43
=2 , 44
C 61 B0 (44)
ACEW )
143 5)

C, 1-H1-7)8"

n

The Brinkman-Anderson parameter 0 is defined by
0=AFr /(F3y = FRy) . (46)

The superscript zero denotes weak coupling. It
should be kept in mind that d is defined in terms of
AFB% | the fourth-order spin-fluctuation free en-
ergy in the BSA approximation, i.e., Eq. (33) with
S,(a@) =S,(a)=0. n accounts for the new corrections
and has values 1= 0.04 for AM and 7’ =0.15 for
BW.

A truly satisfactory theory should, of course,
provide an accurate theoretical value for 6. The
present theory, however, as discussed by BSA,
yields a 6 much too large to fit experiment, if no
cutoff is employed in Eq. (33). Since an improved
theory would involve a refined treatment of the
spin-fluctuation mechanism,'® we follow BSA and
consider 6 a parameter to be determined from ex-
periment.

One observes from Egs. (44) and (45) that, for
fixed 6, the corrections to BSA increase (de-
crease) AC/C, in the AM (BW) state. The slope
of the AC/C, vs b curve, and hence the pressure
dependence of AC/C,, is increased (decreased) in
the AM (BW) state. The “critical” crossover §,
at which the BW state becomes more stable than
the AM state as & decreases is reduced from the
BSA value of 0.47 to 0.41. Assuming the B phase
to be a BW state, AC/C, at the “polycritical point”
can be obtained by inserting &, into Egs. (44) and
(45). We find AC/C,=1.54 for both BW and AM.
The corresponding BSA value is 1.58. Note that
the specific-heat discontinuity, including correc-
tion terms in the BW state is quite close to the
BCS value of 1.43.

We have also calculated the slope ratio 48/a of
the temperature dependences of the NMR frequency
shift A(v,)? in the A and A, phases.'* The constants
a and B are defined in Ref. 11 by (4,)%= a(t’ +1),
(A,)%=0 for -1 <t'<0 and (A))2=a+Bt', (A,)*=pt
for 0 <¢’, where ¢’ is the new linear temperature
scale. We find with the help of Eq. (43)

1-g46

“HR )5 47)

4 B 4
a

Here 7 is the correction to the expression given in
Ref. 11 and is the same as that occuring in Eq.

(44). Inserting the experimental value 48/a=5.33
at the melting pressure' one obtains from Eq.

(47) 6=¢0.52 instead of 0.54 in the BSA approxima-
tion.

An independent determination of 6 can be ob-
tained at the melting pressure where, experimen-
tally, AC/C,=1.85 (Ref. 12) for the transition into
the A phase. From Eq. (44) this yields 6=0.68 in
the BSA approximation and 6=0.65 in the present
theory. Since the new corrections have the effect
of shifting the &’s calculated from specific-heat
data and NMR data by approximately the same
amount, the discrepancy between these values
stated in Ref. 11 remains. Concerning the calcu-
lation of 6 from T ,,/T, data'''* we observe that,
since §, is smaller in the present theory, the BSA
curve of T ,5/T, vs & should be shifted so as to
yield a smaller 5 at the experimental T ,5/7T,. This
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would be in line with the shift in the NMR and spe-
cific-heat discontinuity &’s. However, in order to
make a meaningful comparison with the 6 deter-
mined from the T ,5/T, data, the new corrections
should also be applied in this case.

Finally, it should be pointed out that our esti-
mate of the magnitude of the contribution of the
new anomalous diagrams is uncertain due to the
cutoff required in X. In Eq. (37) we employed as a
cutoff the bare Fermi energy E,~6 K. A smaller
cutoff would lead to a larger contribution. In con-
clusion we have thus confirmed the importance of
the feedback effect of Anderson and Brinkman with-
in the framework of a self-consistent and conserv-
ing theory and given additional theoretical evidence
that the A phase is indeed an anisotropic AM state.
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APPENDIX A

Solution of equations for T, 7’, T”, in Fig. 2 in
terms of expansion coefficients ¢, ¢/, {” [see Eq.
(12), ete.]:

£53(9) = =847 AN (D) D) ;
t30(g) = =8, AT Y- XEe@t D) ;
12(q) =269, (@) [x#e(@)t%(@)
+X83(@)tP(q) + xFR @)
t'u‘i’(q)=-6y22t§2<q)zéj[ LU+ XFe )P ()] ;

J

FAY, DORRE, AND EINZEL 11

ty(a) = =0,,.2T9(-9) Z 2xFe(a)t5a)

ar@t S @];

t(‘l) t(O) Z XFF q)t(2)

8

15a) +xpe (@t D(a)] .
(A1)
Solution of equations for S,S’, S”, in Fig. 3 in
terms of expansion coefficients s, s’, s”:

(0) (q 22(202)( 4)0,50,,;

si3(q) = =419 x 22 ()T Y a)5 . ;

sTUa) = ~419(a) Z X&r
s1(q) =4t Q(-q) [XngF_( )t a)

- A

5

v
+Xcr(9)

q)s/m(q)(‘ﬁyzépz s

(Q)S,(l)(Q)} v20uas

siq) =219/q) [XGF(q)s@(q)

+ ZxFF(q)S’(”(qu (q)s"‘”(q)} Byz;

s(q) = 2tg)2)(Q)[Z 2x%%(@)s52(q)

+XFF(Q)Sg2(2)(q):lév26u2~ (A2)

The spin-fluctuation contribution to the thermo-
dynamic potential, up to and including fourth-or-
der terms in F and F:

AQ°=i (gnq 4 ( Z {n[1 - v, @x(@]+V,@x@} ~{1n[t + V,@%(a)] - V,@%(@)}
y_;tmq xdr(@) - 479(@9"" @)] - 3 3V, @)xFr(0)
+Zt‘°) @DESDIXE) - 410" X(@)] [ (@) - 4T D)o (q)]
+ 37 8IXeHOXE (@ XEAD) + Xk @OXFE @GO T XD L) + x5 7 (@) XEr (@) [T ) 12 +> :
(A3)
APPENDIX B
2] e [Reutt hm s dian) ~y()]~ (A/m)futn +5) - y(h)] tor 1 <m<<a. (1)

_[1 dx_o'lic—z—z [Re(z +

me+ a°x

+3m +3i0x) - ()] ~In[a(1 +m)* + 50 - 2[1 _% arctan (1 fmﬂ

-29(3) [1 —%Larctan (%ﬂ - nrg Ym +3) for m<a. (B2)
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