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Zero-temperature properties of matter and the quantum theorem of corresponding states:
The liquid-to-crystal phase transition for Fermi and Bose systems*
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The zero-temperature properties of matter with an interaction pair potential of the Lennard-Jones form
are studied in the context of the quantum theorem of corresponding states. In particular, the phase
transition between the fluid and crystalline phases is studied for systems obeying either Fermi-Dirac or
Bose-Einstein statistics. It is found that the solidification pressure of a Fermi system is much lower
than that of a Bose system with the same mass and pair potential. We find that it is illuminating to
extend the usual thermodynamic variable space to include the corresponding-states quantum parameter

q = h'/mao' which is defined in the text. It is shown that phase transitions occur at zero
temperature as q is varied; in particular, a first-order liquid-solid transition is described in detail and a
model is discussed in which a second-order magnetic transition occurs at a critical value of q. It is
suggested that the full complexity of the phase-transition behavior, which is observed at finite
temperatures arising from various properties of the potential, will also be observed at zero temperature
mainly as a fundamental consequence of the quantum-mechanical zero-point kinetic energy.

I. INTRODUCTION

'The quantum theorem of corresponding states
(QTCS) was originally proposed and discussed by
de Boer and co-workers. ' ' Essentially, they ex-
tended the well-known classical theorem of cor-
responding states' to include the effect of quantum
mechanics and applied it to successfully predict
the properties of He', which had not yet been ob-
tained experimentally at the time of their work.
More recently, the QTCS has been used by Ander-
son and Palmer' and Chao and Clark to estimate
the properties of zero-temperature neutron matter
and, in particular, to estimate its solidification
pressure. This question, which is of primary im-
portance in deciding what fraction (if any) of the
interior of a given neutron star is crystalline neu-
tron matter, has been studied by many authors' "
with conflicting results. Its resolution is of funda-
mental importance for the understanding of neutron
stars and is one of the major motivating factors
for undertaking the present work. In the course of
this study we believe that we have found a frame-
work which is a most suitable one for studying the
zero-temperature properties of all matter and will
therefore be useful for the study of neutron matter,
in particular.

In the present work we study extensively the
zero-temperature properties of matter (interacting
via a pair potential of the I ennard-Jones form)
within the context of the QTCS. The main results
of our calculations are given in Sec. V, in which we
present calculations of the zero-temperature en-
ergy and pressure and of the nature of the liquid-
solid phase transition. In many ways our results

are extensions of the results of Refs. 1 —3. In par-
ticular, we find that the solidification pressure at
zero temperature is strongly dependent upon whe-
ther or not the system obeys Bose-Einstein or
Fermi-Dirac statistics. For example, if He' par-
ticles were bosons, the solidification pressure
would be greater by at least a factor of 2. From
the curves presented in Fig. 10, it is clear that
an extrapolation based on one curve, which, ig-
noring statistics, includes the solidification pres-
sure for both He' and He, cannot yield even quali-
tatively significant results for larger g values.

The QTCS is discussed in Sec. II. We find that it
is notationally convenient to use a parameter q
[defined by Eq. (2.3c)] rather than the de Boer
parameter A*. The significance and value of this
parameter are discussed in Sec. III. In particular,
we show that it is illuminating to conceptually ex-
tend the space of thermodynamic variables to in-
clude q. In terms of this variable, one may derive
analogs of all of the usual thermodynamic and sta-
tistical-mechanical relationships. In particular,
phase transitions can take place at zero tempera-
ture as q is varied; this can be seen clearly in
Figs. 8 and 9 in Sec. V. In this paper we study
mainly first-order transitions, although in Appen-
dix A we study briefly a model which exhibits a
second-order transition as q is varied. We believe
that further studies of phase transitions in this
context would be most valuable.

Finally, all our conclusions are based upon cal-
culations with systems for which the I ennard-
Jones potential has been assumed. 'The question
of how these conclusions would be changed for dif-
ferent potentials is an important one for future in-
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vestigation. In particular, a study utilizing poten-
tials such as describe the interaction between two
nucleons would undoubtedly yield most interesting
and important results.

II. QUANTUM THEOREM OF CORRESPONDING STATES

The QTCS, in essence, states that any thermo-
dynamic function of a class of systems with a pair
potential of the form

Bose-Einstein or +e~m~-Dirac statistics. Thus,
if the function &* is known, all of the thermody-
namic properties of the entire class of systems
are known. Furthermore, if various experimental
results are plotted in terms of these reduced vari-
ables, a simplified view of these systems often
emerges.

For completeness, we shall now give a brief
derivation of the QTCS. The Hamiltonian for the
systems we will consider has the form

v(r) = ev*(r/o), (2.1) (2.6)
if written in terms of properly defined reduced
variables, will be the sarge function of these vari-
ables for each system in this class. ln (2.1) e iS
the coupling constant (with dimensions of energy),
o is a range parameter (with dimensions of length),
and v*(x) is the same dimensionless function of its
argument for each member of this class of sys-
tems. In this paper, all of our numerical results
will be for systems where v(r) has the Lennard-
Jones form; i.e. ,

where n = x, y, z and x; is the nth component of
the position vector of the ith particle,

and we assume periodic boundary conditions for
the cube 0 ~r, &L, so that V=L'. We may now

make the transformation of variables x,. = v; /o, —

so that the Hamiltonian may be written
v*(x) =4(x "-x '). (2.2)

(2.6)
To state the QTCS precisely, we introduce the
following reduced variables: Here the boundary conditions are now for the cube

0 ~x, ~L/o (or for the volume V/c') and
T*= kT/e, — (2.3a)

where 0 is Boltzmann's constant and T is the tem-
perature;

(2.7a)

V*= V/No', (2.3b) zo = v*x.. (2.7b)

where V is the volume and N is the number of par-
ticles; where

q
-=h'/m eo', (2.3c) x'„= P (x, „-x,.)'.

where h is Planck's constant h divided by 2r and
m is the mass. We have found this parameter no-
tationally more convenient than the de Boer param-
eter A*, where A*=—h/(me) 'o and q=(A*/2v)'.
Values of q, A*, and the parameters for various
systems and their pair potentials are given in
Table I. The question of what these values should
be for systems composed of nucleons is discussed
in Befs. 5 and 6.

We may now give a precise statement of the
QTCS. We will do it in terms of the Helmholtz
free energy F (whose natural variables are T, V,
and N), although any other thermodynamic poten-
tial would be just as satisfactory. It is that this
free energy may be written

We may now consider the partition function Z in
the canonical ensemble, although these considera-
tions are valid for any statistical-mechanical en-
semble. We have, using the first part of (2.4),
(2.6), and the standard expressions for Z,

TABLE I. Reduced quantum parameters A* and g for
various substances along with the mass (in amu, i.e, ,
1,66024x 10 g), the coupling constant e (in deg) and 0
(in A). We used k = 1.38054x 10 erg jparticledegree
and @ = 1.05450 x 10 2 erg sec.

Substance

(2.4)

where F* (which we may call the reduced free en-
ergy) is a, dimensionless function of its arguments
with its functional form depending only on the form
of v*(x) and on whether or not the particles obey

He
He'
He

Hg

Ne

3.016
4.003
6.0
2.016

20.18

10.22
10.22
10.22
37.0
35.6

2.556
2.556
2.556
2.92
2.74

3,084
2.677
2.187
1.735
0.4389

0.2409
0.1815
0.1211
0.0763
0.0049
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Z = Z (T, V, N) = exp(-F/kT)

= Tr[exp( —H/kT)]

= Tr&exp[-e(qf+~)/kr]} (2.8a)

however, from (2.8a) we have

Bz pexp[ c(p-l+w)/kp])
T,V,N 8TJ

(3.4)

=Z*(T*, V*, N, rl), (2.8b)

which follows by inspection and the boundary con-
ditions for the x, . The proof of the QTCS follows
directly from the well-known formula

since the trace can be taken over an arbitrary set
of states; this result is just the finite-temperature
version of the Feynman-Hellmann theorem. " If
we now complete the differentiation in (3.4) and
use (3.3), we find

F = -kT 1M = -~T *lM *=- eF (2.9)
v = ~(f) = (%/n, (3.6)

Since the trace in (2.8) depends in an essential way
on whether or not the particles obey Bose-Einstein
or Fermi-Dirac statistics, the form of F* (and,
of course, Z*) depends in an essential way on "the
statistics. " Thus, for a given v*(x), the QTCS
may be viewed as treating Bose-Einstein and
Fermi-Dirac systems as two different types of
systems, each of which has a different dependence
on the quantum parameter q.

III. THERMODYNAMICS AND STATISTICAL MECHANICS

In this section we wish to discuss and summarize
many of the results which follow from th'e depen-
dence of the free energy on the parameter q. From
a conceptual point of view, this parameter (which
depends only on the product m eo') can be varied
independently (e.g. , one can visualize the mass
varying). Thus, it is illuminating to extend the
thermodynamic variable space to include an extra
dimension for q (of course, if there were more
than one component, there would be a different
variable g for each component; the generalization
to this case is straightforward). We may write

dF = -SdT —&dV+ p, diV+y dq, (3.1)

(3.2)

where 8 is the entropy, I' is the pressure, p, is the
chemical potential, and

where K is the kinetic-energy part of the Hamil-
tonian and the ( ) indicate the thermodynamic aver-
age.

We may also consider the case where p is the
independent variable instead of g. Then we may
consider the thermodynamic potential

8: =F —qy = F(T, V, N, qr)

= (H) —TS —qy = c(w) —TS,

(3.6a)

(3.6b)

so that, at zero temperature, 5 is just the average
potential energy iV=W(V*, N, y). It is straight-
forward to construct the ensemble for which F is
the natural potential; one finds

f =exp(-F/k&) =
—H —qy

dq Tr exp kT

(3.7)

This ensemble has the physical significance of con-
sidering systems with all possible values of g
(e.g. , with all possible masses) and selecting the
one of interest by choosing y. Perhaps there are
problems for which this ensemble is especially
well suited.

Since we wish to use this formalism to investi-
gate phase transitions, it is useful to write down
some of the relevant thermodynamic relationships.
First, there is the analog of the Gibbs-Duhem re-
lationship,

N dp, = -SdT+VdI'+(pdq. (3.8)
It turns out that cp has a simple physical interpre-
tation. From (3.2) and (2.9) we have

When two phases (say I and II) are coexisting, we
have

(3.3) (3.9)

from which, with (3.8), we have

(3.10)

Clearly, (3.10) is the generalization of the Clausi-
us-Clapeyron equation. It is straightforward to
generalize all of the usual thermodynamic rela-
tionships to this case.

Since all of the results which will be presented
in this paper are for the case of zero temperature
only, it is worthwhile to summarize the relevant
thermodynamic quantities and relationships for
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E*=E/Ne,

P*=—Po'/c .

(3.11a)

(3.11b)

It follows from (2.4) that, at zero temperature,

this special case. We may define E* (the reduced
energy per particle) and P" (the reduced pressure)
by

E 4 —E 4/v2

Pg vl/2

v312+

(3.18a)

(3.18b)

(3.18c)

'Iherefore, the asymptotic values of the various
reduced quantities in the limit g- will yield the
behavior of these quantities for a system with a
pure x "repulsion.

Ee —Es(V4 q) (3.12a)
IV. METHOD OF CALCULATION

pg = P*(V* q) . (3.12b)

We may also consider K* and IV* (respectively,
the reduced average kinetic and potential energies
per pa, rticle).

There are several quantities which are particu-
larly easy to discuss at zero temperature, be-
cause they depend only on q. They are (a) V,"
(the reduced volume at zero pressure), (b)
(the reduced solidification pressure), (c) Vg (the
reduced volume of the liquid at P,*), and (d) V,*
(the reduced volume of the crystal at P,*).

Equation (3.10) may also be simplified at zero
temperature, whence it may be written

(3.13)

'Ihus, the slope of the coexistence curve in the
P* —g plane is determined by the difference in
kinetic energy divided by the volume difference,
just as the slope of the coexistence curve in the
P —T plane is determined by the entropy differ-
ence, again divided by the volume difference.

We also wish to point out that it is possible to
give another view of the QTCS for the Lennard-
Jones potential. Let us consider the potential

v(r) = 4 e[(o/r)" —v(a/r)'], (3.14)

v(r) = 4e[((Y/r)" —(o/r)'],

where

~ -=v'e, v =- o/v~'.

(3.15)

(3.18)

Thus, the QTCS holds for a class of systems such
that

g = 5'/m Eg' = g/v' (3.17)

so that for a Lennard- Jones potential a change in
g can also be viewed as a change in the relative
strength of the attractive part of the interaction
with m, ~, and cr all held fixed. In this case, the
various reduced quantities become

where v can be varied to adjust the attractive part
of the potential; in particular, in the limit v-0,
the potential becomes purely repulsive. Now (3.14)
can also be written as

In all cases
1 bF= F(r, r„;b) = Q exp ——

t&j
(4.2)

where h is a variational parameter. This factor +
is introduced to take into account the effect of
short-range correlations due to the strong short-
range repulsion between two atoms. The particu-
lar properties of a given phase and the effects of
the quantum statistics are introduced via the choice
of the function P. The usual choices are as fol-
lows:

for a Bose liquid;

(4.3a)

(4.3b)p —tz II exp(ir, . k, )(,.
j

for a Fermi liquid, where the wave vectors k,. and
spin functions (,. are chosen to fill the Fermi sea
and 8 is the antisymmetrizer, ' and

[expI- —',A(r,. —R,.)'] (4.3c)

for both Bose and Fermi crystals, where R, is the
position of the equilibrium site of the jth particle
and A is a variational parameter. 'Ihe effects of
symmetrizing or antisymmetrizing the wave func-
tion have been neglected in the choice of Q for a
crystal because the exchange energies are negligi-
bly small in the crystals being considered.

Our calculation is patterned after (and uses many
of the results of) those of McMillan, "Schiff and
Verlet" (hereafter referred to as SV), and Han-
sen and co-workers"'" (hereafter Ref. 20 is re-
ferred to as HL). One virtue of this approach is
that similar approximations are used in calculating
the ground-state energies of boQ. the liquid and
crystalline phases. In particular, the results" for
the solidification pressure of He' and He' are in
reasonably good agreement with experiment.

The problem is formulated as a variational cal-
culation of the ground-state energy using trial wave
functions of the form

(4.1)
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Z*(p; A, b) = rIS'(t/N&, +4[S"((g/x)"),
—S'((g/~)'&. I, (4.5)

where q(t/N), is the reduced kinetic energy and

4((o/r)"), is the reduced energy associated with the
x " term in the Lennard-Jones potential. 'The sub-
script on the expectation values indicates that they
are evaluated at the reference density p, with vari-
ational para. meters (A„b,). The reduced energy at
the scaled density p is then given for the scaled
variational parameters (A, b), where

Given this formulation, it is straigh. forward to
construct the expressions for the ground-state en-
ergies of the various systems. "' " An important
point, which is fully discussed in SV and by Wu

and Feenberg, "is the use of cluster-expansion
techniques to calculate the effect of antisymmetri-
za, tion for liquid He'. Furthermore, as pointed out
first by Mc Millan, "a complete set of calculations
at one density p (which we shall call the reference
density p, ) enables calculations to be made at all
densities by means of a simple scaling procedure.
Fortunately, extensive tables of the results of
these calculations were published"'" and we have
utilized these results for the present investigation.
It was necessary to augment their results with our
own calculations. 'The combined results are pre-
sented in Tables II and III. In addition, we have
fitted these results with polynomials in order to
minimize the effect of scatter due to statistical
error in the Monte Carlo calculations and also to
provide a means of interpolating between entries
in the table. This fitting procedure and the nu-
merical results are given in Appendix B.

We shall now write down the energy expressions
for the liquid and solid in a form such that the
scaling property is given explicitly. Following SV
we introduce the scaling parameter S defined by

(4.4)

which relates the tabulated results at the reference
density p, to results at any other density p. The
basic scaling equation for Lennard-Jones systems
is, in terms of the reduced parameters of the

QTCS,

(4.7)

'Then the expectation values of inverse powers of r
for the Bose liquid are given by

((g/r)")~z o
——

~ po dr g~(r; po, bo) (g/r)" . (4,6)

For the Bose liquid the expectation value asso-
ciated with the reduced kinetic energy is simply

(t/N), = 5b,* ((o/r)') (4.9)

((g/r)")~x ..=-'p. dry, (r; p., b.)k'(4.~)(g/~)",

(4.12)

with k (x) = 3(sinx —x cosx)/x'. The expectation val-
ue associated with the reduced kinetic energy of
the Fermi liquid is

(t/N), = k*,(1 —e„*,) +5b,* ((g/y) )

(4.13)

where kF, is the Fermi wave number at the ref-
erence density, k~, =—k~,v, and the exchange single-
particle kinetic energy is determined by

The scaling equation for the reduced energy of the
Bose liquid is then

~La(p; b) = 5nS'bo*'((g/r)'&iso,

+ 4[S"((g/r)") ~~,.—S'&(g/r)'&~~, .l .

(4.10)

The three expectation values for the Bose liquid
are tabulated in Table I of SV at a reference den-
sity p, =0.01967 atoms/A' (0.3283 atoms/g') and

are reproduced with some additions in our Table
II.

The energy expression for a Fermi liquid in-
volves additional terms due to the Fermi energy
and various exchange energies. 'The expectation
values of (o/r)" are given by

((o/r)"), = ((g/r)"), —((o/~)"), , (4.11)

where the exchange integral is

A= 8'A 0~

b =b,/S.

(4.6a)

(4.6b) , = -20 dy y'(1 ——,'y + —,'y')u~(2k~, y; p„b,),

In reduced form, A*=Ag' and b* b/g Of c=ours.e,
there is no A parameter for the liquid variational
wave function.

'The explicit expression for the expectation val-
ues depends upon the phase and statistics of the

system. The energy for the liquid phase is con-
veniently expressed in terms of the Bose radial
distribution function:

(4.14)

with

u~(k; p, b) =—p dr exp(ik r)[g~(r; p, b) —I] .

(4.15)

Thus the scaling equation for the Fermi-liquid re-
duced energy is
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E* (p, b) =E* (p, b)+ —,',q& kp, (l —e„*,)
S—nS'b,*'((o/r)')»,

—4 I
S"((o/r) "),.—~ '((o/r)'), .] .

(4.16)

The exchange terms in (4.16) were not tabulated in
SV. We have therefore included them in our Table
II only for those b, values calculated by the present
authors. We have included in (4.16) only terms up
through the two-particle term in the cluster ex-
pansion with respect to statistics, since it was
shown in SV that higher terms have a small effect
upon the ground-state energy.

Finally, we present the scaling equation for the
ground-state energy of the crystal. This expres- g, (r; p, A, b) =——Q G, (r; p, A, b),

1

p,.
(4.18)

sion will be the same for both Bose and Fermi
crystals because, for the cases we consider here,
the exchange energies are negligibly small and
have not been incorporated in the equations. The
scaling equation for the crystal is

E,"(py A, b) = gS'[-',Ao*+ 5bg" ((o/r)'), ,]
+ 4[~"((c/r) ")..—~'((o/r)'). .],

(4.17)

where the expectation values are evaluated using
(4.8) with the liquid distribution function g~(r; p, b)
replaced by a spherically averaged radial distri-
bution function for the crystal, namely,

where

'dr;, IdR, ]dr . . . ) d —,~d, , . . . ~d F
(4.19)

with

R„.=-(r, +r,.)/2, r„.=r, —r, (4.20)

The expectation values of (o/r)" in the crystal are
given in Table I of HL. We have supplemented
these numbers with additional entries necessary in
this study and present all cases in our Table III at
a reference density of p, =0.02803 atom/A' (0.4680
atom/o').

With these scaling equations for the reduced en-
ergies and the available tables, it is a straight-
forward matter to ca,lculate E* as a function of V*
and q. These results and an analysis are given
in Sec. V.

V. RESULTS AND DISCUSSION

In this section we present the results of our cal-
culations. They a,re all based upon calculations of
E~ as a function of V* and q. In Figs. 1-4 we pre-
sent, in each case, E*(V*) for the Fermi liquid,
the Bose liquid, and for the crystal for four dif-
ferent values of q. In each case, the energy of the
Fermi liquid is higher than that of the Bose liquid,
mainly due to the Fermi energy. As we mentioned
in Sec. IV, this effect is not important for the cry-
stals because the exchange energy is so small.
From these curves it is intuitively clear that rela-
tive to the crystalline phase the Fermi liquid is
less stable than the Bose liquid; i.e., the Fermi
liquid will crystallize at a lower pressure than the
Bose liquid for the same value of q. In fact, our
results suggest that if He4 had been a fermion, it
might very well have been a crystal at zero tem-
perature!

In Fig. 1 we present the curves for g sufficiently

small so tha, t the crystalline phase is stable for
both fermions and bosons at all pressures. In Fig.
2 we present the curves for q=q~ =0.171, the value
of q for which the Bose liquid and crystal coexist
at zero temperature and pressure; for values of
q & g~, the ground state of the Bose system at zero
temperature and pressure is a liquid. In Fig. 3
we present the curves for g=g~=0. 197, the value
of q for which the Fermi liquid and crystal coexist
at zero temperature and pressure. On this graph
we also show the Maxwell construction which
yields P,* for the Bose system. In Fig. 4 we pre-
sent the curves for q =0.260, which is somewhat
greater than the value of g for He'. Clearly, P,*
for a Fermi system is much lower than that for
a Bose system with the same value of g. In Fig.
5 we present E,* as a function of q. This graph
(which should be compared with Fig. 2 of Ref. 1)
shows clearly the difference between the Fermi
and Bose systems and also the discontinuity in
y* which shows that one may view the situation as
a first-order phase transition in the E,* —q plane.

In Figs. 6 and 7 we plot V* as a function of q for
the Fermi and Bose systems, respectively. We

may compare these graphs with Fig. 1 of Ref. 1.
Clearly, as q increases V,* (the reduced volume
at zero pressure) also increases, indicating that
one may view the effect of the zero-point motion
as causing the particles to behave as if they were
"larger" than the potential would indicate. De
Boer' describes this as a "blowing up" of the par-
ticles due to a repulsive internal pressure gene-
rated by the zero-point kinetic energy. On these
two graphs we also plot V~~ and V,*, the reduced
volumes of the coexisting fluid and crystal at the
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solidification pressure P,*. There are two signi-
ficant features of these curves: (a) Unlike Vo~,

V~ and particularly V,* appear to approach a con-
stant value as q increases beyond its critical value;
and (h) although V~ and V,* are approximately in-
dependent of p, they are still considerably larger
than the "core" of the potential would suggest.
While V,*=—2, the reduced volume for close packing
at a nearest-neighbor distance of the core diam-
eter, 0, is V*=0.707. This is the reduced volume
one might expect for the classical (q =0) system at

very high pressure. The classical reduced volume
at zero pressure is V,*(q =0) =0.916, which is only
slightly larger than the close-packing volume and
still much smaller than the solidification volume
V,* of the quantum solid. Thus while at zero pres-
sure the apparent "size" of the quantum particles
"blows up" with increasing q due to the zero-point
kinetic energy, there seems to be a definite size
below which the particles may not be compressed
and remain in the liquid phase. That this minimum
"size" is considerably larger than the core size is

TABLE II. Values of x„*=((cr/x)")1~, x„*„—= ((0/x)")zz, and e,* for the fluid for different
values of the variational parameter b *=b/ o'; all quantities are dimensionless. The reference
density p0=0.01967 atoms/A . Those quantities for which there are exchange" averages were
generated for the present work; the rest are reproduced from Table I of SV.

0.9880
0.9940
1.0140
1.0150
1.0360
1.0490
1.0560
1.0770
1.0840
1.0980
1.1190
1.1190
1.1390
1.1600
1.16QO

1.1810
1.2010
1.2010
1.2220
1.2430
1.2640
1.2640
1.2840
1.2840
1.2970
1.3050
1.3050
1.3260
1.3360
1.3460
1.3670
1.3670
1.3880
1.4090
1.4090
1.4290
1.4500
1.4500
1.4850
1.5200
1.5600
1.6000

1.0028
0.9914
0.9601
0.9550
0.9210
0.8898
0.8910
0.8626
0.8477
0.8367
0.8124
0.8070
0.7897
0.7690
p. 7612
0.7468
0.7274
0.7205
0.7096
0.6934
0.6780
Q.6746
0.6642
O.66O2

0.6537
Q.6512
p, 6446
Q.6383
0.6280
0.6269
Q. 6164
0.6111
o.6o6v
0.5970
0.5899
0.5881
0.5791
0.5727
0.5571
0.5461
0.5314
0.5203

0.1226

0.1050

0.0949

0.0854

0.0750

0.0659

0.0563

0.0534

0,0502

0.0469

0.0435

0.0396

0.0363
0.0336
0.0315
0.0291
0.0273

0.8753
0.8648
0.8151
0.8076
0,7660
0.7322
0.7338
0.7006
0.6842
0.6698
0.6418
Q. 6383
0,6177
0.5934
0.5878
0.5701
0, 5505
O. 5434
p. 5312
Q.5128
0,4956
0.4950
Q.4820
0.4801
Q.4717
P.4677
0.4639
Q.4544
O.4469
Q.4400
0.4326
0.4295
0.4221
p.4123
0.4085
0.4039
0.3950
0.3913
O.3V 64
0.3655
Q.3516
0.3412

0.1226

0.1019

0.0906

0.0798

0.0686

0.0588

0.0489

0.0459

0.0427

0.0394

0.0361

0,0323

0.0291
0.0267
O.O24V

0.0225
0,0209

0.9415
0.8928
0.8070
0,7873
0.6876
0.6059
0,6062
0.5380
0.5072
0.4763
0,4225
0.4195
0.3766
0.3385
0.3375
0.3051
0.2769
0.2705
0.2526
0.2296
0.2100
0.2098
0.1935
Q.1934
0.1831
0.1771
0.1v49
0.1640
0.1575
0.1509
0.1378
0.1398
0.1312
0,1214
0.1216
0.1115
0.1050
0.1067
0.0958
O.O8V6

O.OV81

0.0718

0.1760

0.1235

0.0988

0.0775

0.0587

0.0438

0.0312

0.0280

0.0243

0.0210

0.0177

0.0145

0.0119
0.0010
0.0089
Q. 0074
0.0065

0,010 74

0,01122

0.011 58

0,01191

0.012 37

0.012 80

0.013 37

0.013 62

0.013 79

0.014 08

0.014 36

0.014 71

0.015 02
0.015 39
0.015 60
0.015 97
0.016 21
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a manifestation of quantum effects. We should note
that the remarkable insensitivity to q of V,* (and to
a lesser extent V~) may be a specific property of
the relatively hard core of the Lennard-Jones po-
tential. This property needs to be investigated for
softer-core potentials such as the Yukawa core of
the nuclear potential. The fact that U,* is larger
for the fermion system than the Bose system in-
dicates that the quantum statistics also affects
this minimum "size" V,*.

In Fig. 8 and 9 we plot P* versus V* for various
values of g for both Fermi and Bose systems. The
curves look very much like those for P-V iso-
therms for gases. There are two differences. One
is that there is a finite volume at zero pressure.
The other is that this seems to be no critical point,
which is, of course, expected for a liquid-solid
transition. Finally, in Fig. 10 we plot P, versus
q for both Fermi and Bose systems. Again P,*

TABLE III. Values of x„*~ = ((a/x)")~ for the crystal
for different values of the variational parameters b *=b/0'
and A ~ =202; all quantities are dimensionless. The ref-

0
erence density po= 0.028 03 atoms/A . The first four en-
tries were calculated for the present work; the remain-
ing were taken from Table I of HL with the fifth through
thirteenth entries scaled from p = 0.02515 atoms/A3 to
this reference density.

is much smaller for the Fermi system. Further-
more, the graph is remarkably linear, although we
have been able to attach no significance to this
result.

Since we have utilized well-known methods and
published results, ' "our results for the proper-
ties of both isotopes of helium are the same as
those results. A comparison of these results with
experiment is given in Ref. 20; it is found that the
agreement between theory and experiment is quite
reasonable. The most notable discrepancy is that
the calculated volume change upon solidification
He' (6V,",„,. = Vz* —V,*=0.82) is larger than the ex-
perimental volume change (EV,*„~, =0.22), so that
the calculated He' solidification pressure (P,*
=0.083) is lower than experiment (P~=0.30). Nev-

ertheless, the generally good agreement between
theory and experiment for these two isotopes indi-
cates that this calculation will give a qualitatively
correct description of zero-temperature properties
of Lennard-Jones systems with even larger quan-
tum parameters.

However, it is clear that one can not employ the

-O, l

l.0032
1.0224
1.0224
1.0417
1.Q610
1.0610
1.0803
1.0803
1.0803
1.0803
1.0996
1.0996
1.0996
1.1400
1.1400
1.1400
1.1600
1.1600
1.1600
1.1600
1,1600
1.1600
1.1800
1.2000
1.2000
1.2000
1.2000
1.2000
1.2400
1.3000

4.2992
3,7618
5.3740
4.8366
4.2992
6.4488
3.2244
4.2992
5.3740
6.9863
4.2992
5.3740
6.9863
4.0000
5.0000
6.0000
3.0000
4.0000
5.0000
6.0000
7.0000
9.0000
4.0000
3.5000
4.0000
4.5000
5.0000
6,0000
4.0000
6.0000

l.3865
1.3822
1.2861
1.2942
1.2714
1.1891
1,2976
1.2462
1,2017
1.1573
1.2152
1.1773
1.1317
1.1937
1.1598
1.1317
1.2072
1.1649
1.1372
1,1132
1,0923
1.0548
1.1454
1.1420
1.1280
1.1100
1.1000
1.0820
1.0894
1.0085

1.1687
1.1606
1.0500
1.0579
1.0251
0.9310
1.0534
0.9959
0.9454
0.8944
0.9620
0.9172
0.8720
0.9310
0.8923
Q. 8609
0 9454
0.8981
0.8673
0.8400
0.8173
0.7787
Q.8764
0.8732
0.8569
0.8376
Q.8261
0.8069
0.8152
0.7281

1.0542
1.0004
0.7873
0.7896
0.7386
Q. 5761
0.7756
0.6732
0.5892
0.5095
Q. 6094
0, 5339
0.4665
0.5397
0.4825
0.4369
0.5534
0.4845
0.4409
0.4050
0.3741
0.3407
0.4496
0.4400
0.4190
0.3940
0,3790
0.3560
0.3595
0.2535

'9 = O. I50
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FIG. 1. Reduced ground-state energy E* as a function
of the reduced volume V* for the fluid and crystalline
phases of a Lennard-Jones system with a quantum pa-
rameter of g=0.150. The results for both Fermi-Dirac
and Bose-Einstein statistics are shown. The crystalline
curve is insensitive to statistics. This value of g is
sufficiently classical, i.e. , small, that the stable phase
of such a system at zero pressure and temperature would
be crystalline.
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methods used in this paper to study systems with
arbitrarily large values of the quantum parameter
g. As this parameter increases, the value of the
parameter A which minimizes the solid energy
at a particular volume decreases. 'This means
that the exchange energy in the solid increases as
the quantum parameter increases. The present
method ignores exchange in the solid and is there-
fore limited to values for which the exchange en-
ergy is negligible. In addition, the usefulness of
the present parametrization of the variational
wave function has been demonstrated only for g
=0.18 and 0.24. It is not likely thai this param-
etrization will be adequate for very large values of

Therefore, the present study has been limited
to volumes V* and quantum parameters for which
the values of the variational parameters A* and
5* that minimize the energy, when scaled to the
reference density, lie within the range of param-
eters tabulated by HL and SV. For this range of
parameters the exchange energy is negligible and
the varional approach used in the present work has
been shown to yield good results.

In concluding this section, we can say that the
properties of matter at zero temperature show

many similarities to the properties of matter at
finite temperature. 'These results raise many
questions. In the first place, is there also a liq-
uid-gas transition at zero temperature? We ex-
pect that there should be; after all, if q is suffi-
ciently large, the kinetic energy will dominate the
system and this is the main characteristic of a
gas. Would there be a critical point with the kind

of singular behavior observed in real gas-liquid
transitions? We believe that this is an important
point for further investigation. Finally, all of our
results are based on I ennard-Jones-type potentials
where the distance of the minimum is about 10%
larger than the core diameter. What would these
curves look like for potentials of different form or
with potentials with exchange interactions such as
exist in nucleon matter? Again we believe that
these are important points for further investiga-
tion.
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. 17I -O. I—
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0
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—I. I
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2.0 2.5 3.0
REDUCED VOLUME V

FIG. 2. Same graph as in Fig. 1 but for a value of

p = p~ =0.171, which is exactly the critical value for
Bose-Einstein statistics. For this g the liquid and cry-
stalline phases of a Bose-Einstein will coexist at zero
temperature and pressure and only the crystalline phase
of Fermi-Dirac system would be stable.

FIG. 3. Same graph as in Figs. 1 and 2, but for a value
of p= pz

——0.197&pz, which is exactly the critical value
for Fermi-Dirac statistics. For this g the liquid and

crystalline phases of a Fermi-Dirac system will coexist
at zero temperature and pressure, and the equilibrium
phase of a Bose-Einstein system would be fluid. The
pressure required to solidify the Bose system is deter-
mined by the slope of the common tangent to the crystal-
line and Bose fluid curves, which is also shown.
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APPENDIX A

(A4)

+ (1 —6')v,*/4 V*

Since the model allows for an up- and a down-spin
Fermi sea, one may write the reduced energy as
(kP =kFcr, kF is the Fermi momentum)

E*=(~)q(kP)'[(1+ 5)'~'+ (1 —6)'"]

E , =vP.',N /V, (A1)

where &, (N ) is the number of up (down) spins,
so that

In this Appendix we wish to consider a simple
model which exhibits a second-order phase transi-
tion as q is varied. It is one version of the well-
known Stoner-Slater model where the interaction
energy may be written

where

&, =2&(1+6), 5&0,
E~= L3,F)(kp)'+v,*/4V",

A = —,'L)(k p)' —v,*/2 V*,

IJ = q(kP)2/40. 5 .

(A5)

(A6a)

(A6b)

(A6c)

(A6d)

and

N=N, +N (A2)
Clearly (A5) is in the usual Landau-theory form
and (A6c) shows that 4 can vanish for a critical
value of q (say, L), ) as it does for a critical value
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FIG. 4. Same graph as in Figs. 1-3 with a quantum
parameter greater than the critical value for either
Fermi-Dirac or Bose-Einstein statistics; here q =0.260,
which is slightly greater than quantum parameter for
He [g~~3~= 0.2409]. For this g the equilibrium phase for
either Fermi for Bose statistics is fluid. The common
tangent to the crystalline and fluid curve is shown for
both statistics. Note that, as indicated in the text, the
solidification pressure for Fermi statistics is lower
than that for Bose statistics.

FIG. 5. Reduced ground-state energy at zero pressure
E

o as a function of the quantum parameter g for systems
with a Lennard-Jones potential. The results for both
Fermi-Dirac and Bose-Einstein statistics are shown.
The two branches correspond to Fermi and Bose fluids.
These branches meet the crystalline curve (the crystal
is insensitive to statistics) with a definite change in
slope indicating a first-order phase transition at a criti-
cal value of g which is dependent upon statistics.
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of T in the usual formulation. One finds

q, = 3U,*/2 V*(kp)'. (A7)

The value of 6= 6 which minimizes ~* is given by

= ( A/B-)'~', q ~ 7),

=0, q&q, .

With (AB) in (A5), we find F-*(p;A, b) = S'F, (p„A„b,) + S"F,(p„A„bo)
+ q S 'F, (p„A„b,), (Bl)

error in the Monte Carlo calculations. In order
to minimize the effect of this scatter and also to
provide a means of interpolating, it was useful to
find a polynomial fit to these data in terms of a
convenient set of reduced parameters. The basic
scaling equation for the reduced ground-state en-
ergy may be written

=—F. „* —A'/4B, (A9) where S is defined by (4.4) and, by comparison
with (4.5), the F, have t.he general form

It is straightforward to show that at q=q, y* is
continuous, but that

Q(p +
lim Bg, , Bq, QB

C

BA

67)

(A10)

which, since Bp*/Bq= d'&*/Sq', indeed demon-
strates a second-order transition as q is varied.

APPENDIX B

1.00

LIJ

V)
CO
UJ

0.60—
Z0

040-
O

C)

C3
He4(GAL

~ 0.20—

The numbers collected in Tables II and III were
all obtained by Monte Carlo evaluation of the many-
body integrals given in Eqs. (4.7) and (4.19) and

therefore have some scatter due to statistical

F,(p.; A. , b.) = -4((o/~)'). ,

F,(p.;A., b.) =4((o/~)"). ,

F.(p.;A., b.) = (t/&). .

(B2a)

(B2b)

(B2c)

TABLE IV. Values of the coefficients S",&(po) in the
two-dimensional cubic polynomial fit to the quantities
&; (po, &0,&0) in the scaling equation (Bl) for the crys-
talline phase. The reference density is pa=0. 02803

0
atoms/A . The W coefficients are dimensionless.

The specific forms of the +, for the Bose fluid,
Fermi fluid, and crystalline systems must be de-
termined by comparison with Eqs. (4.10), (4.16),
and (4.17), respectively. For a fixed reference
density, the dimensionless functions F, (i = 1, 2, 3)
depend only upon the variational parameters &,
and bo (of course there is no A, parameter for the
fluid phase). The quantities F,. were fitted by
cubic polynomials in the variational parameters
and these analytic expressions were used in the
scaling equations to determine the value of the
variational parameters which minimize the energy
at a given density. The reduced pressure curves
were also obtained by evaluating the volume de-
rivative of the parametrized scaling equation. Be-
cause there is only one variational parameter in
our description of the fluid phase, while there are
two parameters in the crystalline variational wave
function, we have used different forms of cubic
polynomials for the two phases.

The F,. (p;A, b) for the crystalline phase were
fitted by a cubic polynomial of the form

0
0.14 0.17 020 023 026

QUANTUM PARAMETER
0.29 0.32

FIG. 10. Dependence of the reduced solidification
pressure P ~s upon the quantum parameter q for Lennard-
Jones systems with either Fermi-Dirac or Bose-Einstein
statistics. Note that a curve extrapolated though the He3

and He points, ignoring statistics, would give an in-
correct representation of the dependence of P, upon

larger g.

-95.752
2.284 7

-0.081 912
0.002 219 3

208.50
—2.364 5

0.029 354
-164.70

0.648 96
44.728

263.87
-9.8520

0.261 68
—0.002 431

-585.16
12.863
—0.17192

443.40
-4.2144

-114.17

84.949
1.7685
0.014 423

—0.005 297 1
—209.03

-2.9053
0.091 066

172.49
0 ~ 918 78

-39.957
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TABI.E V. Cubic-spline-function parameters C;~, p@, , and D&, in the polynomial fit to the quantities F; (pp ~0) in the
scaling equation iBl) for the Fermi fluid. The reference density is p = 0.01967 atoms/A~. The tabulated parameters are
all dimensionless. There are five discontinuities in this spline function.

C(,. C); D&a

0
1
2

-34.3105
69.5774

—52.2082
13.5248

138.887
—323.125

254.360
-67.4185

38.4306
-92.2189

74.4860
-16.9336

1.144 09
1.19604
1.20620
1.223 27
1.29847

—2.650 87
—2.529 57
-2.439 58
-2,287 87
-1.442 94

1.173 89
1.201 82
1.236 74
1.239 59
1.278 22

13.7311
13.6510
12.0999
11.9164
8.786 28

1.126 40
1.13615
1.157 52
1.19151
1 ~ 202 51

7.489 28
7.78697
7.814 54
6.694 82
6.22696

F, (p; A, b) = P 8"„(p)(b*)'(A*)",
O~j+A~3

(B3)

+;(p; b) = P ~;,(b*)'+P ~(b" -r; )D;,(b*-a;,)',

where 8(x) is a, Heaviside function defined by

0(x)=-0, x&0

1 xo0

(B4)

(B5)

where b*=—b/g, A*=—Ao', and the coefficients &I~(p)
were determined by a least-squares fit to the cry-
stalline F, ( „pA„b,) evaluated from Table III at
the reference density p, =0.02803 atoms/A'. The
It"„(p,) coefficients are presented in Table IV.

In the fluid phase the +,. depend upon only one
variational parameter. It was therefore convenient
to use the more flexible cubic spline functions
rather than simple cubic polynomials. The spline
function is of the form

The spline function, (B4), is characterized by its
third derivative having discontinuities of magnitude
D,.„at the N,. points g, ,

For the Fermi fluid the best fit was obtained us-
ing five discontinuities. The parameters C, , , D,.„,
and g, ~ were determined by a least-squares fit to
the Fermi fluid &, (p» b, ) evaluated at the reference

0

density p, =0.01967 atoms/A' using those b, values
in Table II for which the exchange energies are al-
so entered. The spline parameters for the Fermi
fluid are collected in Table V.

For the Bose fluid the best fit was obtained by
separating the range of b values into two intervals
and fitting each interval separately with one dis-
continuity in each interval. The two sets of param-
eters C... D,.„, andg, , were determined by a
least-squares fit to the Bose fluid &;(p„'b,) evalu-
ated at the reference density p, =0.01967 atoms/A'
using all bo values in Table II. The spline param-
eters for the Bose fluid are presented in Table
VI for the two intervals 0.988 &5*&1.222 and
1.222 &b*&1.450.

TABLE VI. Two sets of cubic-spline-function parameters C;;, g;, , D;; for the polynomial fit
to the quantities I";(pa, b 0} in the scaling equation {Bl}for the Bose fiuid. The parameters are
presented for one discontinuity in each of the two intervals: interval I, 0.988& & *& 1.222, in-
terval II, 1.222&5 *& 1.450. The tabulated parameters are dimensionless.

Interval Cgo C;) C])

-36.1229
183.395
46,6451

70.2092
-427.263
-118.809

-50 ~ 8085
336.629
101.417

12.7993
-89.2978
-25.0240

1.127 20
1.11334
1.104 30

—0.432 945
0.930 576
1.708 08

-30.5998
54.8221

-41.3211

53.7714
-108.057

110.259

-34.9550
72,4583

-97.1528

7.809 15 1.340 03
-16.4222 1.298 22

32.2740 1.330 74

0.055476
0,112 695

—0,205 403
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