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Theory of exchange narrowing in one and two dimensions
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We show that the theoretical approximations in the Kubo and Tomita theory of electron paramagnetic
resonance are such as to make its application to one- and two-dimensional systems dubious. A
self-consistent theory based upon the independent-mode approximation, that does not have the defects of
tne Kubo and Tomita theory, is described, and line shapes are calculated for the strongly narrowed
limit. Both theories are in significant disagreement with the experimental results on tetramethyl
manganese chloride.

I ~ INTRODUCTION

Recent EPR experiments' in one-dimensional
exchange-coupled systems have been interpreted
in terms of the Kubo and Tomita3 (KT) theory of
exchange narrowing, which has been applied suc-
cessfully for many years to three-dimensional sys-
tems. We show here that the KT theory is funda-
mentally inadequate to describe these experiments,
and discuss an alternative theory. The difficulty
arises from the fact that in one dimension the
dominant contribution to the "mass" operator (or
"correlation function of the fluctuating torques")
in the spectral density of the q= 0 magnetization
mode comes from modes with wave vectors in the
neighborhood- of q= 0, where the dipole interaction
strongly modifies the spectrum of the fluctuations.
The KT prescription for calculating the spectral
density is based upon second-order perturbation
theory, and treats the fluctuations responsible for
the line broadening as though they were unaffected
by the dipolar interaction. Specifically, the KT
theory represents the correlation function for the
q= 0 mode, at infinite temperature, '. as

(2b)

where 8 is the Liouville operator for H, 2[A]
= (I/O) [H,A]. Equation (1) is equivalent to (3):

d@(t) = i(O34 (t) — @(~)d7 e(t) .dt ~p

An exact expression for the generalization of 4
to nonzero q, (S (q, t)S'(- q, 0)), which we will de-
note by Z'(q, t) (Ref. 4), can be derived, that is
similar to (3)

dZ'(q t) .,
)= &('d p~t

Hamiltonian H~, @(r) is given by

+(~) =([H,(~), S-(0, 0)l

x [H, S'(0, 0) ])/—S(S+ 1), (2a)

where H~(t) = exp[(i/5) (H+ Hz) t]Hz& exp[-(i/@) (H
+Hz)t], Hz is the Zeeman Hamiltonian. In the case
that H~ commutes with H~, i.e. , neglecting the non-
secular part of Hn, (2a) can be written as

+(~) = ([H„S-(0,0) ]e-"'
x [H, S'(0, 0)])/-, S(S+ 1)

C (t) =(S (o, t)S'(o, o))
~t

=exp impt- t-7 + 7 d7
~o ) where

@;(t-~)Z'(q7) dv,
0

(4)

x(S (0, 0)S'(0, 0)), (1)

where (A) =—TrA, &uo is the resonance frequency in
the absence of a perturbation leading to broadening,
and +(7) is a correlation function describing the ef-
fects of the perturbation. Equation (1) is completely
general as long as @(g) is not specified. The KT
prescription for obtaining +(r) is to expand the
right- and left-hand sides of (1) in powers of the
perturbation, and identify + with the second-order
perturbation term. For the Heisenberg Hamilto-
nian H, where the perturbation-is due to the dipole

4;(~) =([H+H„S (q, o)]e""
x [H+Hn, S'(- q, 0)])/3 S(S+ 1),

is a modified Liouville operator for H~+H+H~,
and Hz is the Zeeman Hamiltonian. Equation (5) is
valid for the full dipole Hamiltonian, but we will
only consider the effect of the secular terms in this
work. The lowest-order expansion of e '"0'@(t) in
powers of Hn agrees with +(t), since [H, S'(0, 0)]
= 0. This expansion is not uniform in the time vari-
able, since for any nonzero value of coD, the long-
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time behavior of @0(t) is very different from the
long-time behavior of +(t). The difference arises
from the presence of the dipole Hamiltonian in the
propagator in Eq. (5), which yields a finite lifetime
for the modes in the vicinity of q= 0. In three di-
mensions, this difference is unimportant, since the
relative weight of the modes in the vicinity of q= 0
is negligible. +(t) decays essentially to zero in a
time that is characteristic of the short-wavelength
fluctuations, i.e. , I/m, „=(t)(t), [Z(0, t)] decays in a
time &u,„/mn» I/&u, „, where u&n is a characteristic
frequency for the dipole Hamiltonian. In the limit
that ~,„/~n-~, we can neglect the variation of
Z(t) in the integral in Eq. (4) and the equation be-
comes identical to Eq. (3), with the linewidth given
by f0@(~)d~ and foe '"0'@(~)dr in Eqs. (3) and (4),
respectively.

For finite e,„/e~ these numbers are not the same
but they do approach ea,ch other in the limit that
this ratio diverges. In one and two dimensions, the
contribution of the modes near q= 0 is more im-
portant, dominating the decay completely in one
dimension. The time scales of 4 and + are com-
parable so that the two formulations are no longer
equivalent. Equation (5) remains exact, but there
is no rea, son to believe that Eq. (3) remains valid.
The higher-order curnulants that were neglected
in defining (I'(w) can give contributions that are com-
parable (in powers of ~n/~s) to the terms that are
formally of lowest order in ~~. This is a general
feature of the motional narrowing phenomenon.

If we consider the physical situation a.s the decay
time of )I'(r) increases, with )I'(0) a constant, it is
na, tural to divide the problem into a "slow" and a
"fast" regime according to whether the decay time,
w, of + is smaller or larger than the decay time of

The inadequa, cy of the KT theory in the slow
regime is best illustrated by the fact that in the ex-
treme slow limit, i. e. , the random fields respon-
sible for the linewidth are static, it yields a Gaus-
sian line shape independent of the distribution of
the fields, whereas in fact, the line shape depends
on the probability distribution of the fields and in
the simplest case is simply the Fourier transform
of tha, t distribution. ' This inadequa. cy appears to
have been appreciated in Ref. 2. The details of
the line shape in this regime are reflected in the
higher-order cumulants, which have been neglected.

In the extreme fast regime, the line shape will
always be Lorentzian. The higher-order cumulants
give negligible corrections, since they contain ad-
ditional time integrations that reduce the contribu-
tion of these terms by factors of v, +(0)' 2. The
case tha, t the fluctuations are produced by the modes
of the Heisenberg system is in the fast regime for
three dimensions, and as we shall see also for two
dimensions. In one dimension, the resultant line-

r (q, a)= j e'"+;(t)dt (6)

and n =+ or 0. +, (t) differs from (5) only in the
replacement of S'(q, 0) by S'(q, 0). From Eq. (5)
it follows tha, t for small q,

I' (q, ~)=r (o, z)+a (z)q',
the first term being the result one would obtain if
the Heisenberg Hamiltonia, n were omitted from the

width, I', satisfies 1 v;-=1 and hence this case is on
the boundary between the slow and fast regime.

II. ONE DIMENSION

Neither (2) nor (5) is exactly calculable, but both
may be calculated approximately using the kinetic
theory developed by Reiter, and Barreto and
Reiter. ' This will be done in a later work. In or-
der to obtain relatively simple qualitative re-
sults that will make clear the points above, we
will make an independent-mode approximation to
evaluate (2b) and (5). In one dimension, we will
consider only the case that the magnetic field is
along the chain axis, in which ca.se only the secular
terms appear in Hn. The operator [HD, S (0)] is of
the form QE(q)S (q)S (- q). The independent-mode
approximation for the correlation function appear-
ing in (2) and (5) is shown in Eq, (6) (see Ref. 6 for
a discussion of the limitations of this approxima, -
tion). [We note that although the time dependence
of the correlation function on the left of Eq. (6) is
determined by Z, the time dependence of the cor-
relation functions on the right of Eq. (6) is properly
taken to arise from 2. ]

&S'(q, t)S-(- q, t)S'(q', 0)S'(- q', 0))

=6„.&S'(q, t)S'(- q, 0)) (S-(q, t)S'(- q, 0)) . (6)

We will use the long-wavelength approximations
for the dependence of (S (q, t)S (- q)) throughout
the zone in evaluating + and +. This approxima-
tion is a.symptotically correct as the ratio of v~/arz
approaches zero, in the sense that the correction
to the spectral density at any finite but fixed mul-
tiple of the line width corning from a region in the
zone outside of some fixed and arbitrarily small
interval about q= 0 can be made vanishingly small.
In (2) the long wavelength behavior is diffusive, so
that

&S'(q, t)S'(- q))= l&S (q, t)S'(-q)&= -S(S I) e "' .
In (5), because of the inclusion of the dipole terms
in the propagator the long wavelength behavior is
more complicated. However we can show from (4)
that the form of Z (q, z) -=J'Oe'"Z (q, t) is

Z (q, z) =t-,'S(S+ I)[z+(o.~,)+gr (q, z)]-', (7)

where
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commutator in Eq. (5). D (z) differs for I2=+, 0,
but the difference vanishes linearly as p)p/p)z -0
so that we will, with negligible error in the case
of tetramethyl manganese chloride (TMMC), re-
place D (z) by D(z), its value in the Heisenberg
system. For the frequencies of interest, i. e. ,
&u —up = I'(0, 0), there will be negligible variation
of D(z) and we may replace it by its value at zero
frequency, so that we have finally

r'(q, z) = r'(0, z)+Dq',

rP(q, z) =Dq'. (io)

The approximations that were made in obtaining
(10) are all strictly valid in the limit &dz - ~, &up,

and v~ finite. Using the independent-mode approx-
imation, I"(0, z) can be determined self-consis-
tently. This is the only approximation needed to
solve the problem in the above limit. We have,
using (6) in Eqs. (2a) and (5), and taking the long-
wavelength limit for the correlation functions,

@(~)= -'S(S+ I)p)' Q F(q)'e ' '" (iia)

@ p(~) = I cd2p Q F(q)'e ~'~ Z '(q, f), (11b)

We can approximate F(q) by F(0), again with a
vanishing error as ~~ -~, and replace the upper
limit on the sums in Eqs. (11) by infinity. From
Eqs. (11a) and (1) we obtain

O (f) S(S I) egcdPI e ('t /tP) (i2)

where I/tp= Q(2Qa /9)ID)'/', Q2 = —,'S(S+ 1)p)~2F(0) .
From Eqs. (7)-(9) and (lib) we obtain, in terms
of the function I'*(z) —= I"'(0, z —p)p), an equation that
determines 1" self- consistently:

where

F(q) =Q cos(qr;, )(I —3 cos28;,.)(r„/II)2, p)~ =giIza '.

p(z) = r*(z)/r*(0), z' =z/r*(0),
we have

p(z)'[- iz'+ p(z)]=1 .

(is)

(19)

The curve shown in Fig. 1 was obtained by solving
Eq. (19) numerically and substituting the result for
p(z) [= I'*(z) when 1*(0)= 1] into Eq. (14). We have
compared it with the KT result for the same value
of the physical parameters. The value of I/tp in
the case that I'(0) = 1 is (16/9I/) = 0. 825. The cor.
rections to this approximation may be estimated by
using the Taylor series expansion of p(z),

1 ~ ]. PP(z) = I ——,Iz -
2 z + ~ ~ ~ . (20)

From (14), we expect that about half the contribu-
tion to the integral in Eq. (13) will come from
values of q such that D(q2) & I', so that it is reason-
able to use Eq. (20) in Eq. (12). If we keep only
the linear term in Eq. (20) we see that the sole ef-
fect of keeping the dependence upon q in the inte-
gration for z = 0 is to replace 2D by 3D. Since D

I-DIMENSIONAL EPR LINE SHAPE

where qp= II/a. For values of z on the order of
I'*(0), the argument of tan ' in Eq. (15) diverges
as p)z/sr~ - ~, and hence the equation simplifies to

I"*(z)= &'(2/2)(2Dq ) [-2z+ I'*(z)] ' . (l6)

The frequency scale for the spectral density, Eq.
(14), is set by I'*(0) which is

r+(0) = &(&a2/6D)I/2, (i7)

It should be noted from (15) that @p(I) will decay on
a time scale of 1'*(0), which is the same time
scale as the response function, Zp(t), as previously
noted. In terms of the dimensionless quantity

r*(z)=in2+ [z+2iDq +il'*(z+iDq )] . (13)

The solution of this integral equation [Eq. (13)]
provides an exact solution for Z'(0, z) within the
independent-mode approximation, i. e. ,

Z'(0, z) =i —,'S(S+ 1)[z+p)p+iI'*(z+&op)] '. (14)

We shall not solve this equation exactly, but will
obtain an approximate solution by ignoring the q
dependence of I'* within the summation on the
right-hand side of Eq. (13). In this case, the sum
in Eq. (13) can be done explicitly and we obtain the
result that I'*(z) must satisfy

Fg( ) g2(2Dq2)" I/2[ z ~ Fg(z)] I/2

0.8

0.6

O4

0.2

2.0
m(l =3)

22Dg 0X "taII 1+ . ~( )
(15) FIG. 1.. Comparison of theories for the same value of

the physical parameters.
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enters Eq. {16)to the —, power, this correction
would decrease I'*(0) by about 6%%uo. For larger
values of z, I"* is less important in the integral,
which becomes dominated by the iDq term, and
we would expect the corrections to be even less.
We note that approximating I'*{z)by 1"*(0)under the
integral yields an unphysical (i. e. unobserved)
maxima at finite frequencies for the line-shape
function, ReZ(0, v+ ie ).

It can be seen from Fig. 1 that the difference be-
tween the self-consistent theory and the KT theory
is small (& 10%) even at zero frequency. The cor-
rections to the approximate solution are in a direc-
tion that improves the agreement. At high frequen-
cies, both theories yield

ReZ(0, (u+ ie) = r+ (0)/W2(o'"+ O(1/(u') (21)

the differences between the two results appearing
in the coefficient of the 1/&u term in the high-fre-
quency expansion. The KT theory, despite the
theoretical objections to its validity in the one-di-
mensional case, gives a result that agrees well
with the self-consistent theory (within the indepen-
dent-mode approximation). The major discrepancy
between the two theories is in the long-time be-
havior, since the KT theory predicts

limZ'(0, f) CC e " 'o' 3/2
(22)

g ~ae

whereas the self-consistent theory yields

iimZ'(0, f) ~e '"". (23)
g +00

It is evident that the inadequacies of the KT theory,
the truncation of the cumulant expansion, and the
inclusion of the time dependence of the fluctuations
in the form given in Eq. (3) rather than Eq. (4),
have compensated each other to a large extent.

Neither theory gives a satisfactory description
of the experiments on tetramethyl manganese chlo-
ride. In Table I we have compared the experimen-
tal and theoretical values for the full width at half-
maximum. The lattice parameter (c = 6.49 A)8 and
hence 0 are known precisely, so that the major un-
certainty in the theoretical expressions is the value
of D for the one-dimensional Heisenberg chain.
The exchange constants are known accurately [H
= —~g;„V;;S; ~ S, , V;„,~= V= (- 14.2+ 1.2) 'K] so
that the major uncertainty in the calculation of
I"*(0) is the relationship between D and V, which
we take to be D=1.33SVa2, the value inferred from
numerical simulations. There is considerable un-
certainty as to the value of the constant appearing
in this relationship, and theoretical calculations
differ by a factor of 2 between themselves. ' We
will take this factor of 2 to be the uncertainty in
the value of D, and it is this factor which produces
the theoretical uncertainties shown in Table I. It
is evident that the experimental and measured

TABLE I. Comparison of theoretical and experimental
linewidths. Experimental value is the result of recent
high-sensitivity measurements by J. P. Boucher and dif.—
fers slightly from the value cited in earlier work (1360
G) (Ref. 1).

Linewidth (G)

Experimental Self-consistent Kubo and I'omita

1300 2400+ 380 2220 ~ 350

values for the line width differ by far more than
the uncertainty in the theory, and hence that some
of the assumptions are questionable. We have as-
sumed that an accurate model for the system was
an isotropic Heisenberg linear chain with dipolar
interactions, and we have made some approxima-
tions, given that model, to obtain a solution. Since
the experimental line width j.s smaller than the
theoretical value, there are strong restrictions on
any corrections to the model. Interchain exchange
would lower the line width by increasing the effec-
tive bandwidth for the fluctuations. The ratio of
the intra-chain (J) to inter-chain (J',) coupling con-
stants can be estimated from the magnitude of the
ordering temperature. " It is found that (J,/J)'~2
= 0.63(KT„/KT„) where KT„ is the actual ordering
temperature (1.1 'K) and KT„ the Weiss Noel tem-
perature (78'K), so that J,/J~2x 10'. This is
far too small to reduce the theoretical line width
significantly. This is further demonstrated by the
line shape itself. If the inter-chain coupling were
significant, the line shape would tend toward being
Lorentzian. In Fig. 2 we have compared the theo-
retical line shapes, with the width as an adjustable
parameter, to the experimental data. The fit is
rather good, and furthermore, the lineshape is far
from being Lorentzian.

Additional terms in the Hamiltonian that did not
commute with S'(0) could reduce the line width if
they were of such a sign as to effectively cancel
part of the dipole interaction. However, the dipole
interaction has a characteristic dependence upon
the angle of the magnetic field with the crystal
axis. If only the secular terms in the Hamilto-
nian are considered the line width varies as or~ l1
—3 cos'8 t' ', where 8 is the angle between the chain
axis and the magnetic field. If there are additional
terms, the variationwouldbe i~~(l —3cos~G) —A I'I'
where A is some effective interaction strength. To
lower the value of the line width by the factor of
1.7 needed to get agreement with the experiment
at 8 = 0 would require such a, large value of A that
the angular dependence would be drastically modi-
fied. The experiments show, however, ' that the
variation in line width is very close to ) 1 —3 cos 8 I

It seems extremely unlikely that a narrowing me-
chanism can be found that would modify the model
consistent with the constraints imposed by the
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24—

20—
3

o 16
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quence, a calculation of the line width in a two-di-
mensional system requires that the terms F(q) be
kept under the summation to achieve accurate re-
sults, and that the spectral density of the fluctua-
tions be known for all q, i.e. , the spectrum can-
not be simply characterized by a diffusion constant.
We are primarily interested in a comparison be-
tween the KT and self-consistent theories and will
not attempt an accurate calculation of the linewidth.
In addition to the independent-mode approximation
we will assume that the diffusive form of the cor-
relation functions can be used throughout the entire
zone, that the zone can be replaced by a circle of
the same area, and that F(q) can be replaced by
F(0). It is also the case that if In(aye/vo) «1n(&uz/
wz, ), which we will assume, then the nonsecular
terms are negligible compared to the secular terms
and can be neglected. With these simplifying as-
sumptions, proceeding exactly as for the one-di-
mensional case, we obtain, for times such that
BwDt/aa» 1, that the KT theory predicts

&u /(a H' ~/& )

10

(24)

FIG. 2. Comparison of line shapes with adjusted
value for linewidth. to adjusted to give experimental
half-width, I' adjusted to give overall fit. ~ is experi-
mental half-width, ~=1.15 I" for value of I' used to fit
data.

where

Q' = —,
' S(S+ 1)(u' F(0)'

and

ln tp ——1+
Pp

e 'lntdt+ lna~/8wD .
existing data.

The approximations made in obtaining a solution
from the model are the independent-mode approxi-
mation, and the approximation needed to solve Eq.
(13). As we have indicated, the latter approxima, —

tion produces only a small error (& 10%). The er-
rors made by making the independent-mode ap-
proximation are unknown, but could easily be of
the order of magnitude needed to give agreement
with the theory. We regard this as the most likely
source of error in the present calculation. A cal-
culation based upon a solution of the kinetic equa-
tions" for the four-point correlation functions is
required to resolve this question. We also point
out that there is no reason to suspect that the cor-
rections to the independent-mode approximation
are not significant in two and three dimensions
also, although numerical calculations of the EPR
width within this approximation are in good agree-
ment with the experiments, ' in three dimensions.

III. TWO DIMENSIONS

In two dimensions, the nonsecular terms are
present in the Hamiltonian for all orientations of
the field, and there are significant contributions to
the linewidth from fluctuation modes throughout the
zone, even in the limit that m~- ~. As a conse-

If we define R as 8wD/Qa', then as R- ~, the line
shape that results from (24) is asymptotically
Lorentzian, with a linewidth, I/f* =Q a /8wDlnR2.
It should be noted that the factor Q~aa/8wD is just
the result one would expect in the fast limit, so
that the effect of the long wavelength fluctuation is
entirely included in the factor ln& .

The self-consistent theory is simpler in two di-
mensions than in one dimension because the result
is less sensitive to the frequency dependence of
I'*(q, z). We will therefore assume that

(S (q, t)S'( q)) =-'S(S+ 1—)e '"' ' "e'"o',

(S'(q, f)S'(- q)) =-'S(S+1)e"', (25)

I'*(q&) = (Q2a /8wD)ln(1+4wD/a2(I' —ie) ) . , (26)

Identifying I'*(0) with I", we obtain the self-consis-
tent equation for I"

I'= XQ a /8wD,

X=ln(1+R /2X) .
(2'Ia)

(27b)

for the purpose of calculating 4'0(t). We find, using
Eqs. (5), (6), (8), a.nd (25), that
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In terms of the dimensionless frequency v = (a&

+ (uz)/I',

rz'(o, ~) =i-.'s(s+ 1)

/
/ /

x Iv)'+i —iX 'ln(1- ico')] ' . (28)
l4

We have assumed R2» 1 in order to simplify (28)
slightly.

The solution of Eq. (27a) for X, as R'- ~ is
X=lnR~. From (28) we see that the line shape be-
comes a Lorentzian in this limit, and that I' agrees
with the KT result, i. e. , I'= 1/f*. For finite
values of R, neither line shape will be Lorentzian,
nor will the linewidths agree. We have compared
the two theories for finite values of 8 in Fig. 3.

Richards a,nd Salomon' have used the KT theory,
together with a phenomenological form for +(f), to
calculate the linewidths at T= , in K2MnF4, a two-
dimensional antiferromagnet. They obtain good
agreement with both the linewidth and its angular
variation. For the values in in&~ that are appro-
priate for that system there would be significant
differences with the self-consistent theory. The
neglect of the variation of F(q) in the present work
precludes any direct comparison with experiments
as does the neglect of the nonsecular terms. The
differences in the line width predicted by the two
theories will be much smaller than the changes
produced by including these effects in the calcula-
tion. We regard the accuracy of the fit by Richards
and Salomon to be due to a judicious choice of the
phenomenological form for +(f). Their work does
not resolve the question of whether a model that
includes only dipola. r and exchange interactions
gives a satisfactory description of the experimental
results, within the independent-mode approximation.

IV. CONCLUSIONS

The criteria for the validity of the KT theory
are that (a) the fluctuation modes producing the
narrowing decay rapidly compared to the linewidth
of the mode being considered, and (b) the fluctua-
tion modes are relatively unaffected by the inter-
action that couples them to the mode of interest.
In two dimensions, this is the case, since the
modes with wave vector q such that Dq2» 1" domi-
nate the contribution to +0(t). As a consequence,
the line shape is Lorentzian, the effect of the sys-
tem being two dimensional showing up only in the
linewidth varying as (~z~/vz)ln(&uz/a&z) rather than
a&z2/&uz, a,s in three dimensions.

In one dimension, the dominant contribution to
+o(t) arises from modes for which Dq2 & I', and
hence both criteria fail. That the KT theory is not
grossly in error, within the independent-mode ap-
proximation, even for this case, indicates that the

l2

3
M

0
M

IO-

2.0
I I

4.0 6.0 8.0

(~/ & 0 g~R2) 2
8Tr D

I

IO.O

I

(2.0

FIG. 3. Comparison of simplified model line shapes
for two-dimensional systems. 1nR ~ is equivalent to
Q)glcoE 0.
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errors introduced by violating (a) and (b) have can-
celed each other to a large extent.

The only approximation needed to reduce the ex-
change-narrowing problem to a closed-form solu-
tion Eq. (13), in the strongly narrowed limit, i.e.
~E -~, co~, and ~0 fixed, is the independent-mode
approximation. Since the discrepancy between our
self-consistent approximate solution and the exa.ct
self-consistent solution based upon the independent-
mode approximation is much smaller than the dis-
crepancy with the experimental linewidth in tetra-
methyl manganese chloride, we conclude that the
independent-mode appro imation is unable to pro-
vide a quantitative microscopic calculation of the
linewidth, and is the primary source of error in
the existing theory. This may also be the case in
two and three dimensions.
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