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Temperature-dependent planar potential for channeling
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By effectively thickening the atomic planes, thermal agitation alters the potential between a plane and

a channeled particle as evaluated by Lindhard in the "rigid" case. The influence of temperature on this
"planar potential" has been calculated and the following universal expression derived:
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x is the distance to the geometrical plane, u T is the thermal root mean amplitude, both in units of
Thomas-Fermi screening radius a, Zl and Z2 are the atomic numbers of the target and the particle,
and N~ is the atomic density of the plane along which channeling is considered.

I. INTRODUCTION

A charged particle entering a crystal parallel or
neIrly parallel to an atomic plane may have its
trajectory maintained between two adjacent planes
of the same family. The particle is said to be
channeled between the two planes and its range,
under these conditions, is longer than when it trav-
els in a random direction.

After the first computer simulations of such
channeled trajectories and the first experimental
evidences of channeling, a very simple and effi-
cient theory has been proposed by Lindhard. 1t
consists in replacing the atomic discrete plane by
a continuous repulsive plane, the potential between
the plane and the particle being calculated as the
sum of all individual atom-particle potentials.
This planar potential V(x) depends only on the dis-
tance x between the particle and the plane, and has
the following expression:

V,(x) = 2~Z,Z,e2 ~,[(d+ 3 n2)'/2 -x],
where Z~ and Z2 are the atomic numbers, respec-
tively, of the target and the particle, e is the
charge of the electron, X~ the atomic density of the
plane under consideration, and a is the Thomas-
Fermi radius. This result is not drastically
changed if one calculates the channeling conditions
in a more sophisticated way, with a transfer-ma-
trix method.

The calculation of Vz (where R stands for "rig-
id") has been done in the case of a rigid plane P2,
all atoms being at their fixed ideal sites. The in-
fluence of thermal vibration was later introduced
in the case of silicon by Erginsoy et al. ' and has
been shown to soften the potential V(x) for small
values of x and to decrease the value of V(0). This
softening has also been demonstrated experimen-
tally. The purpose of this work is to give an ana-
lytical expression of the potential Vr(x) at a tem-
perature T.

We shall first determine a sensible density func-
tion f(z) of nuclei around the ideal position P2 of an
atomic plane (Sec. II). The potential Vr (x) will then

be obtained by integrating the contributions, at
point x, of planar sheets f(z) dz,

v, (x) = v, lx-z lf(z)«

x being the distance of the particle to plane Po {Sec.
III). Lastly, an analytical expression U r(x) repro-
ducing to a very good approximation Vr(x) will be
given in Sec. D/'.

II. DENSITY FUNCTION f(z)

Using y cosy =z (see Fig. 1), we write this prob-
ability along ~:

-2 -1/2
P„,(z dz = 1—

2sR R oos'q) oosS '

For isotropic Einstein oscillators, the weight of
oscillators (p) is sing dp so that the total non-nor-
malized density in z is

cos &g/g Z2 -a/2
P„(z)= tang dq

0
R2 cos2p

which, after integration, becomes

(I z2/ft2)l/ 2

P,(z) =in
z/fl

Let us describe the nuclei of atomic plane P as
a set of identical linear oscillators, all centered
on plane Po. We shall assume them to be classi-
cal, harmonic, and isotropic oscillators.

Let one atom oscillate along y'y (see Fig. 1) with
an amplitude R. The probability density of the at-
om along direction y'y (defined by angle p between
y'y and the normal z'z to P,) is

2 -1/2
P, (y) 2

I
R
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FIG. 1. Oscillation along y'y of an atom belonging to
plane Po.

FIG. 3. Atomic density as a function of distance z to
the plane. Solid line: function E'(z), formula (4); closed
circles: function f(z), formula (6).

Now let %=Ay be the potential energy of the os-
cillator along y'y. At temperature T, the proba-
bility of finding the amplitude R is proportional to
e "~ and now the non-normalized atomic den-
sity is

E(z) =2A P„(z)e "s /~rRdR .
0

It is convenient to replace the Gaussian e '
by the

development

g(t) =[I —t'+ (2/SWS) ts]e(t- v 3),
where H is Heaviside step function. The highest
difference between this polynomial and ihe Gaus-
sian is equal to 0. 04 at t = v 3 [where g (t) = 0].
Moreover, as can be seen in Fig. 2, the function
P//(z) is well approximated by

0.5 &.5 —t t.(z) = (I/R) [(R/z) —I]'" .

A good approximation of E(&) is then

E'(z) = — (I —o.R2+PRs) (R —z)i/2 dR,

where we have written

n =A/& 1', P = —', MS n' ".
After integration, it is found that

E~(z) z 1/2 [(3/~)l/2 z]8/2 [5 2 ~s~z ~z2

+ (4/sv 3 ) z'] a [z —(3/u)'/'] . (4)

~ 0.5
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FIG. 2. Upper curve: atomic density of atoms having
the oscillation amplitude B vs distance z to the plane;
solid line: function Pz (z). Closed circles: function

p&(z) (both in arbitrary units). Lower curve: Gaussian
function; open circles: polynomial approximation I, (t).

The distance zr = (3/n)' ' is a cutoff distance of os-
cillation due to the behavior of function g(t) which
becomes zero if t&v 3. It is such that the Boltz-
mann factor is reduced to 0. 04 times its maximum
value. ~T is proportional to the square root of the
temperature T if T&8&. More precisely, from
z r = (3k T/A) /, introducing the tabulated quantity
~r = (—', (gP)„)' 2 where (n2),'/~ is the mean quadratic
displacement, it is easily shown that

z, =Sv2u, .

Lastly, an excellent approximation to the func-
tion E' (Fig. 3) is
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x' in (8) is the distance between the particle and an

elementary atomic sheet situated at &: It is such
that x'= Ix -z l (see Fig. 5). We now calculate the
potentials V,„,(x) and V„,(x) in the two respective
cases where the particle is "outside" or "inside"
the atomic plane.

A. First case: x &z& (case of Fig. 5)

1.0

The potential in M is the sum of the two poten-
tials V„and V, due, respectively, to the "right"
and to the "left" halves of the plane:

rf T
U (x+z)f(z)dz, V„= U (x z)f(z)—dz .

0 0

0.5

Qne has, for example,

V 15 Vz-5/2 ( r
1 16 0 T zi /2(z x 10

1/2
ZS -S/2 2 "1 ~ T ~1 3/2

=g~ Vp r, ,g/2(zr+x+I) tan
I
(X+ 1) X+1 3ZT

I

10 X
—2(x+ 1) (zr)'/' (g)

FIG. 4. Planar channeling potential vs distance ~ to
the plane. Solid line: Linhard's potential, formula (1);
closed circles: hyperbolic potential, formula (8). Unit

length is Thomas-Fermi radius g.

f(z) 15 z-5/2 I'(z z)P/z1/2]

which is the now-normalized density which will be
used hereafter. It will be noticed that f(z) and E(z)
are far from the Gaussian distributions used in
Refs. 5, 7, or 8.

After the calculation of V„one obtains

(10)

1/2
15 V0 Z TV,„,=,~,/2, ,s/2(zr yx+1) tan

~(X+ ) X+1

] . (x+ 1)1/2+ (z )1/2

( 1) I ( + )j
( I) ( )

—4(x+1) (z,)'"

III. EVALUATION OF PLANAR POTENTIAL VT (x)

To calculate potential Vr from formula (2) we
now have to choose an appropriate expression for
V&. It may be seen in Fig. 4 that the hyperbolic
potential

U„(x') = 2V, a/(x'+a),

with

Vp= wZ(Z2e Xpav 3,
is very close to—and simpler than —Lindhard's
potential given by formula (1). This potential Us
is essentially that used by Mory' working with two
adjacent planes. In the following we shall adopt a
as the length unit, so that we now write

U (x') =2V, /(x'+1) .
X

Hereafter, x will be the distance of the chan-
neled particle M to the center P0 of the atomic
plane of density f(z) and of width 2zr. The distance

FIG. 5. Potential in M (abscissa: ~) is the sum of
elementary potentials due to atomic sheets of abscissa z
and density f(z).
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„,(zr+1 —x)'tan ' (1-x)'/'(1-x)
(z )2/2 1/2

( )g/z if x 1

1.5

1.0

(z )1/2 (x 1)1/2

[(z )1/2 (x+ 1)1/2] [xl /2 (x 1)l/z]2

C. Total potential

The total potential is

V,(x) = V,„,a(x-z, )~ V.„,a(z, -x), (12)

0.5

10~ X
5 I

FIG. 6. Planar potential for different values of param-
eter z~ (z~=3&2g~). z~=o corresponds to "rigid" poten-
tial (1) or (8). Discrete symbols (U ~+0 0): potential
Vz, formula (12); solid lines: approximate potential 'Uz,

formula (16).

where V~, and V„, are given by (10) and (11). H
is the Heaviside function. This function Vr(x) is
continuous at x=~~. Discrete values of this func-
tion are given in Fig. 6 for different values of the
temperature parameter z z between 1 and 9. For
z~ =0, the potential is none other than the rigid-
plane potential given by expression (8). When zr
increases it is clear that Vr(0) decreases. More
precisely, Vr(0) is obtained as being equal to
V&„,(0) from formula (11), or as being equal to
2V, (0) from formula (9). We obtain

V, (O) = —„', [(z, +1)'tan '(z, )"'
4 ~5/2

In the case x»zr, the development of (10) leads to

V (x)/V = V,„,/V =2/(x+1) +~[z /(x+1) ] .

—«r) ' Szr ]-
which has the following development:

(13)

The temperature-dependent potential, far from the
plane, is slightly higher than the rigid potential
(8), by the relative quantity ~~, [zr/(x+1)] .

B. Second case: x( z&

V, (O) =2V,(1-—,
' z, + —,', z', +. . . ) .

The variations of Vr(0)/Vo are represented in Fig.
7, where they appear to be very well approximated

The potential in i' is the sum of the unchangedpo-
tential V~ given by (9) and of the two contributions

15 V,
" (z, -z)'dz

ger

15 Vo
o (z r —z)z dz

2 18 zs/z (x+1 z)z1/z

The total potential V,„, "inside" the atomic plane
is then

2 i

1.5

15 V0 2 Z 1/2
5/p, 1,1/8 ( r +x+ 1) 'tan

16 z ~ ~x+1j x+1

I (x+ 1)1/2 xl/z

(x+1)'' —(x+1)] ln(x 1) /2

10 ZT

where

x3/2 8 & x1/2 20 g3/2 + @, FIG, 7. Value Vz(0) of planar potential on the plane vs
thermal parameter z~ (z2 =3 2uz). Solid line: formula
(13); closed circles: approximate expression (14).
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by the function

V'r(0) = 2. 68(z z, + 3 )
'

IV. APPROXIMATE EXPRESSION FOR
POTENTIAL VT (x)

(14)

Expression (12) being rather complex, it is con-
venient to describe potential Vr(x) by a simpler
form. Taking account of the variation of VT versus
x, the simplest choice is

ur(x) =A(1+Br") ', (15)

A. , B, and n being functions of temperature through
the parameter zT. A and B are, respectively, de-
termined by

V (0) —V (1)
A = Vr(0), B =

(i)T

The exponent n is chosen in such a way that ex-
pression (15) describes correctly potential (12) far
from the atomic plane. More precisely, remem-
bering that a is typically of the order of 0. 1 A, n
has been taken such that VT and QT coincide at
x =10. Remembering also that the root mean am-
plitide ur ——(u„)',„ lies typically between 0. 05 A

(diamond at low temperature'~) and 0. 30 A (lead at
the melting point' ), the variations of the thermal
parameter zT have been restricted to the domain
0—10 [see formula (5)].

In those conditions I(i)/0 & x & 10 in units of a;
(ii)/0&sr & 10, which corresponds to the whole do-
main of existence of the solid state], functions A,
8, and n can be fitted by simple expressions, and
the approximate potential (15) becomes

'll )x) = 2. 6 8 V (z + —)
i i () +

zT+ 1.26
-1

xx (1~ 255"5o7X10+ I ST-7 ~ 5l )

Expressed in terms of the root mean amplitude
this expre s sion become s

'Ur(x) =9. 0Z, Zze2N~a(ur 0. 55) ' 3

-1
X 1 +

' T+ ' (1o255-4 ~ 35&&10 lu T-1.77 I )

uT+0. 30

This function is represented for different values
of zr (or ur) in Fig. 6, where it is seen to provide
an excellent approximation to the potential Vr(x).
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