
PHYSICAL RE VIEVY B VOLUME ll, NUMBER

Nuclear-resonance study of Rbs' in RbMnF,
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The Rb" nuclear spin-lattice relaxation time in the antiferromagnet RbMnF3 has been measured from
1.5 to 300 K. The results, extrapolated to infinite temperature, agree within experimental error with
theory using newly evaluated spin-pair correlation functions, The temperature dependence is compared
with Moriya's theory in the paramagnetic region.

I. INTRODUCTION

RbMnF3 is one of the most ideal magnetic mate-
rials occurring in nature —a simple-cubic antif err o-
magnet described well by the isotropic Heisenberg
Hamiltonian. The physical magnetic properties of
the system are described theoretically in terms of
the spin correlation functions, the evaluation of
which is the subject of continual interest. Nu-
clear-magnetic-resonance relaxation times provide
good tests of the short-range correlation functions.
In a previous paper' the F' relaxation times were
reported over a wide range above and below the
Neel temperature. Here we give (i) the results of
measurements on the Rb 7 nucleus over the same
temperature range, (ii) show that the results, ex-
trapolated to infinite temperature, can be calcu-
lated within experimental error using newly derived
correlation functions, and (iii) compare Moriya s
adaptation of the gneiss molecular-field approxi-
mation to the data in the paramagnetic region.

Kp ——g„p,„lp ~ H+Q Ip' F). ' S. (3)

where F&,- contains both the contact and dipolar in-
teractions.

In RbMnF3 the Mn" ions ($= —,') form a simple-
cubic magnetic system that is described by the
isotropic Heisenber g Hamiltonian

1
2 (4)

(2)

where p, and p represent x, y, or z. The value of
A is reported as —11.4~10 cm '

by Payne et al.
and —(12.10+0.73)x10" cm by Walker and
Stevenson. The third term is the dipolar interac-
tion where g is the gyromagnetic ratio and 1(L~ is
the Bohr magneton. The summation is taken over
all sites occupied by Mn ions. Vfe rewrite the
Hamiltonian (1) as follows:

II. THEORY

A. General

The relaxation of the Rb 7 nuclei is assumed to
be caused by the hyperfine interaction with the Mn"
ions. The Hamiltonian for the pth Rb nuclear spin
I~ subjected to an external field H is given by

where the exchange integral J is nonzero only be-
tween nearest neighbors and has the value 6.8
~0. 6 K. '

The nuclear spin-lattice relaxation time T& is
given by Moriya for the Hamiltonian (3) as

1 1
dt coscopt

~CO

PCS= —g„p„I~ H+Q Iq ~ Aq) ~ S;

1 3(I, ~ r„)(S,~ r„)
+gN p'Ngp Bg 3 2 ip

(I)
The first term is the usual Zeeman energy where
g~ i.s the nuclear g factor and p, N is the nuclear
magneton. The second term is a contact hyperfine
interaction resulting from a fractional unpairing of
the S electrons of the nonmagnetic Rb' ion due to
the Mn" d-electrons's spin S& in the Rb-Mn bond. 4'5

The summation is restricted to the eight nearest-
neighbor Mn" ions. A&& is the contact hyperfine-
coupling term and assumed to have the form

Xg Q[(F~)+iP~~)(E~~). —3E",.",)I
VgV

x ((Q$",(f)g$ .', (0)))

where &p is the nuclear resonant frequency. Since
cop ls of the order of 10 sec and the correlation
functions decay on a time scale of 10"sec, cos~pt
may be set equal to 1. The z direction is along the
average local field at the nucleus, 6S& ——S; —g, ),
where (0) represents a thermal average of the
operator 0 in terms of the Hamiltonian of the elec-
tronic spin system, and fAB) = ,'(AB+ BA). -

Our main interest is in the calculation of Tj in
the paramagnetic region where the spontaneous
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magnetization is zero. Because of the isotropic
exchange integral we can write Eq. (6) as follows:

TABLE II. Variation of T~ with the range of the time
integral of the two-time spin-pair correlation function
for S=2 a d

2
~

where

oo(r„)= dt a(r;;. , t)

a(r, .. . t) = (s,'. (t)s',., (0)) . (6)

The quantity oo(r, ,', t) is the two-time spin-pair
correlation function and oo(r;; ) is its time integral
which is equal to the spectral weight function at
zero frequency. Once ao(r&&. ) is known, the nu-
clear -spin-lattice relaxation time can be calcu-
lated.

B. Infinite temperature

TABLE I. Time integral of the two-time spin-pair
correlation function ap(r»&) in units of I' [S(S+1)] l' /6J at
infinite temperature for the simple-cubic lattice.

At infinite temperature a satisfactory result for
the two-time spin-pair correlation functions is ob-
tained from the knowledge of the short time expan-
sion coefficients of c(r,&. , t) in the calculation based
on the generalized-Langevin-equation formalism.
It is also shown that the correlation functions ob-
tained in that calculation have correct long-time
tails. ' The time integrals of o(r;;. , t) are given for
several values of the spin for the simple-cubic
Heisenberg magnet. " In Table I, we reproduce
from Ref. 11, the values of oo(ryy ) which are needed
here. The values for r», = (0, 0, 0) and (a, 0, 0) have
been used to calculate the spin-spin relaxation time
T2 of F in RbMnF3 at infinite temperature and
have resulted in nice agreement with the experi-
mental value. '

We now substitute these values into Eq (6) to.
evaluate T,„. Because of the long-range character
of the dipolar interaction the summations on j and
j' are carried out to r»=(~a, Ta, ~a). In Fig. 1

we show how T& conver ges as a function « ~ r py ~

(0, 0, 0)
(a, 0, 0)
(a, a, 0)

(a, a, a)
(2a, 0, 0)
(2a, a, 0)
(2a, a, a)
(2a, 2a, 0)
(2a, 2a, a)
(3a, 0, 0)

T~ (msec)
S=-—

2

2. 42
2. 20
2. 17
l. 96
2. 00
2. 05
2. 02
2. 02
2. 02
2. 02

T~ (msec)
S=—5

2

2. 39
2. 16
2. 13
1.92
l. 97
2. 01
1.98
l. 99
1.98
l. 98

when the values of oo(r~~. ) up to the ninth nearest
neighbors are taken into account. Table II shows
how T&„converges as longer-ranged correlations
are included —the sum over ) r» ) being taken up to
('z'a, 'z'a, z'a). It is therefore apparent that T,„
converges for both variables.

The value for T& thus obtained is 2.0+0. 2 msec
for both S= —', and S= —,

' by using the value of A re-
ported by Payne et a/. Walker and Stevenson's
data yield a 4% smaller value for T~„.

C. Paramagnetic region

o'(la, ma, na, t) = o( t la, +ma, a na, t),
=a(mrna, ala, +na, t),

~ ~ ~

where r&&. is denoted as (la, ma, na). Then it fol-
lows from Eq. (6) that

1 1 c (l, m, n) o (la, ma, na, t) dt .
r &sr»0

(lo)

We now investigate the temperature dependence
of T& in the paramagnetic region making use of
Weiss molecular-field approximation (WMFA) as
given by Moriya. s Because of the isotropic ex-
change Hamiltonian for the electronic spin system
we have

(0, 0, 0)
(a, 0, 0)
(a, a, 0)
(a, a, a)
(2a, 0, 0)
(2a, a, 0}
(2a, a, a)
(2a, 2a, 0)
(2a, 2a, a)
(3a, 0, 0)

S=—12.
1.660
0.481
0.308
0.243
0.237
0. 199
0. 178
0. 155
0. 145
0. 152

S=—5
2

1.687
O. 499
0.318
0.251
0.246
0.206
0.183
0.160
0. 150
0. 157

Here c(l, m, n) is defined by the equation

c(l, m, n) =gp (y'"", F~, + y~ F~, )

where the first summation is taken only over the
values of j and j ' which satisfy the condition that
(Irz&. I/a, Ir&;. I/a, Ir )&. I/a) is equal to one of the
permutations of (l, m, n) We define t.he Fourier
space transform of the two-time spin-pair corre-
lation function as
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2.6—
x(3(5+1); l, m, n)]],

6=(T- T„)/T„. (18)
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G(t; l, m, n) and G'(t; l, m, n) are the lattice Green's
functions of the simple-cubic lattice and its de-
rivative with respect to t, respectively, and their
evaluation is reported for 0 «E, m, n «5 in Ref. 13.
The Neel temperature T~ is 82. 9 K.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Ir~; I a

FIG. 1. Convergence of T&„as a function of j r» I .
Correlations between Mn" spins up to the ninth nearest
neighbor are taken into account.

rr(la, ma, na, t)

=—g I(k, t) exp[ —i(lk„a+mk, a+n ,ka)]
k

=—g I(k, t) cos(lk„a) cos(mk, a) cos(nk, a),

(i2)
where

(i3)

and g, (k) is the static wave-vector-dependent sus-
ceptibility and f'-„(t) is a relaxation function assumed
to be characterized by an exponential decay with a
rate 1 g. Substituting Eqs. (12) and (13) into Eq.
(10) yields

1 ksT 1 g yg(k)c(k)
Tj hg p~N F~

The experiments were carried out using the same
samples and apparatus described in Ref. 3. The
much improved precision, a 2%, throughout the
paramagnetic region and through some of the anti-
ferromagnetic region results from the use of box-
car integration techniques made possible because
of the convenient relaxation time. The data were
taken with the magnetic field applied in the [1,0, 0]
direction except as noted.

A, Paramagnetic region

The data are plotted in Fig. 2 as a function of
1000/T on semilog scales. The value, Tq
= 2.0a0. 1 msec, is found by making a straight-line
extrapolation through the six highest temperature
points. This value is in excellent agreement with
our calculated value of 2.0+0.2 msec. We feel
this is strong evidence for the correctness of the
correlation functions.

The line shown in Fig. 2 is the result of Eq. (16)
using 2. 02 msee as the value of T,„. As is ex-
pected, the WMFA works best at high tempera-

IO

where c(k) is defined by

c(ic) = Q c(l, m, n) cos(lk„a) cos(mk„a) cos(nkvd a).
l& m&gg&p (i6)

Following Moriya, F~ is determined by assuming
a Gaussian decay of the correlation function of the
torque and the WMFA is used for y, (k). We obtain
the expression

T] oa 1 g(")
Tg 6[3(6+1)G(3(6 + 1); 0, 0, 0) —1](5+ 1)~ g(5)

(16)
where

g(6) = Q c(l, m, n) (G(3; l, m, n) + ( —1)'
f& ttt&gg&p

x[G(3(5+1);l, m, n) —3(5+ 2)G'

2
0 6 e

IOOO/T ( K )

FIG. 2. Spin-lattice relaxation times (circles) in the
paramagnetic range as a function of inverse temperature
taken at a frequency of 10.02 MHz. The line is the re-
sult of Moriya's theory using 2. 02 msec as the value of
Tf oa ~
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tures, as can be seen from the slope there, where
the effects of short-range order are not important.
Scherer et a/. have very recently included these
effects in a calculation of the F linewidths in MnF2
and KMnF3 and find an improved fit.

B. Antiferromagnetic region

In Fig. 3 representative values of T& are plotted
vs temperature on log-log scales. Above 10 K the
temperature dependence of the data is virtually
identical to the F data. At T- 12 K, Tj ~ T and
the slope decreases continuously as the tempera-
ture increases. It was suggested in Ref. 3 and
more recently by Lowe and Whitson' that an Ar-
rhenius plot may be more appropriate. We find that

7 -1 (]/3 8)e-l, l'1T~/T msec-1

10 0
0 0

I
IO

0
[O
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0 13.54 MHz

0
000

represents the data very well over the three de-
cades in T& from 12 to 50 K. The magnitude of T&

is 10' times larger than T,(= T~) of F', as it is at
infinite temper ature.

As in the case of the F' resonance we find a dif-
ferent relaxation mechanism in the liquid-He tem-
perature range. It is relatively ten times stronger,
however, than the F' mechanism and has a differ-
ent magnetic field dependence. For fields between
4 and 10 kQ, we find that T&-H'. The temperature
dependence appears to be less than that of 1/T.
Both of our samples, which come from different
sources, give the same results. This relaxation

IO

I

lO

T(K)

I

30

0
0
0
0

TN
I

lOO

mechanism is not understood and more experi-
ments, extending the temperature range to 0.1 K,
are in progress.

FIG. 3. Spin-lattice relaxation times in the antiferro-
magnetic range as a function of temperature.
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