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The hydrodynamic properties of an m -component Bose fluid are explored, with attention to the
consequences of the invariance of the Hamiltonian under the group U(m) of unitary transformations in
the component space. It is pointed out that the hydrodynamics of the multicomponent systems (m > 2)
differs in significant respects from that of the ordinary superfluid (m = 1). For example, in the
superfluid phase, the multicomponent system has propagating modes with w « k? at long wavelengths,
similar to the spin wave in a Heisenberg ferromagnet. In the normal phase, the multicomponent system
has m? — 1 new diffusive modes, corresponding to the conserved generators of the group SU(m),
whose fluctuations diverge in the critical region. On the basis of dynamic scaling and the mode-mode
coupling approach applied to these new modes, we predict a dynamic critical exponent z = ¥/v, where
¥ is the cross-over exponent for a symmetry-breaking perturbation of the axial type.

I. INTRODUCTION

The static and dynamic properites of the m -com-
ponent Bose fluid have been studied recently by a
number of authors,’~!® with emphasis on the criti-
cal behavior near the superfluid transition. One of
the reasons for this interest is that many proper-
ties of the system simplify in the limit m -, and
techniques have been developed for calculating
various properties (e.g., critical exponents) as a
series expansion in (1/7)."* Thus, the large-m
system may be a useful tool for testing and expand-
ing various general ideas about critical phenomena,
dynamics, etc. Furthermore, one may hope that
various specific large-m results may be extra-
polated in some manner tom =1, so that one may
thereby study the properties of an ordinary Bose
liquid, such as liquid He*.

The purpose of the present article is to point out
that the hydrodynamics of the multicomponent sys-
tem differs from that of helium'® in an important
respect, and that the critical dynamics should dif-
fer accordingly. In particular, the m -component
system has a number of conserved densities not
present in helium—namely the generators of the
group SU@n),'® under which the Hamiltonian is in-
variant. (These new conserved variables include,
among others, fluctuations in the relative densi-
ties of the various components.) Because the sus-
ceptibilities for these quantities are found to di-
verge fairly strongly at T, the associated diffusion
rates in the normal phase tend to be slower near
T, than thermal diffusion, which is the important
diffusive mode in the one-component system. In
the superfluid phase, the conservation laws for
the generators of SU@n) lead to the appearance of
m —1 new propagating modes with an energy spec-
trum quadratic in the wave vector k, similar to the
spin waves in a Heisenberg ferromagnet.!” These

11

modes again have a “characteristic frequency”
small compared to that of ordinary second sound,
in the vicinity of T,.

The dynamic critical exponent of the order pa-
rameter at T, may be guessed by applying the dy-
namic scaling hypothesis'®!® to the new “spin-
wave” modes found below T,, in the same way that
the exponent for helium was obtained from the tem-
perature dependence of velocity of second sound
near T,. Alternatively, one may use scaling hy-
potheses and the mode-mode coupling theory of
Kawasaki and others,?*?! to deduce the scaling ex-
ponent from the nonlinear interaction of the order
parameter fluctuations and the new SU (n) diffusive
modes above T,. In either case one predicts that

z=9/v, 1.1)

where v is the exponent of the temperature depen-
dence of the correlation length, ¢ is the “cross-
over exponent” for an axially anisotronic pertur-
bation studied by Riedel and Wegner,?? Wilson,?3
Fisher and Pfeuty,?* Hikami and Abe,® and oth-
ers,? and z, the dynamic scaling exponent, is de-
fined by the wave-vector dependence of the char-
acteristic frequency of the order parameter at

T 18:

c

W, o k? . (1.2)

Equation (1.1) should be contrasted with the re-
sults for the case m =11819;

z=3(d +a/v) for a>0, (1.3a)

z=%d for a<0, (1.3b)

where d is the spatial dimensionality (2<d < 4) and
a is the specific-heat exponent. Equation (1.3) is
obtained, for example, by application of the dynam-
ic scaling hypothesis to the frequency spectrum of
second sound in the superfluid. A second-sound
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mode at long wavelengths is also found in the su-
perfluid phase of the multicomponent system, with
a frequency that scales with the exponent (1.3b).
Since a finite fraction of the order-parameter fluc-
tuations are found in the second-sound mode as
well as in the spin-wave modes, it appears that
there is at least a partial breakdown of the “re-
stricted dynamic scaling hypothesis”!'® at long
wavelengths below T.

Equation (1.1) agrees precisely with the result
reported by Abe and Hikami® from a direct calcu-
lation of z to first order in 1/m, for 2<d <4. (The
agreement between z and ¢/v, to first order in
1/m was in fact noted in Ref. 9.) On the other
hand, Kondor and Szépfalusy,”® and Suzuki and
Tanaka'® have found results which agree with those
of Abe and Hikami, and of the present paper for
2<d <3, but disagree with them for 3<d <4. These
authors assert®!° that Abe and Hikami’s result is
incorrect for 3<d <4 due to an incorrect evalua-
tion of a set of Feynman diagrams. Calculations
of the dynamic critical exponent for € - 0 at fixed
m, by Suzuki and Igarashi and by Kondor and
Szépfalusy, also disagree with both (1.1) and (1.3).%¢

Since our result (1.1) for the multicomponent
system, like the result (1.3) for the ordinary Bose
fluid, depends on a dynamic scaling hypothesis or
on some other assumption that has not been rigor-
ously established, the possibility certainly exists
that our results are incorrect in part or all of the
range of d and m. The present author believes,
however, that there may be more reason to ques-
tion the general validity of the approach used by
the previous authors, as will be discussed in Sec.
V.

Outline of the paper

In Sec. II, we discuss the symmetry and conser-
vation properties of the multicomponent Bose fluid,
and we note the forms of various static suscepti-
bilities. In Sec. III we derive the dynamic modes
of the normal and superfluid phases from a hydro-
dynamic point of view,'®!7:27=2 gpplicable in the
limit of long wavelengths at arbitrary temperatures
other than the transition temperature or absolute
zero. Dynamics in the critical region are consid-
ered in Sec. IV, while discussion of the ground
state and elementary excitation spectrum at 7' =0,
is deferred to Appendix A. Comments on some
previous studies of dynamics of the multicomponent
Bose fluid are given in Sec. V. Expansions of the
critical exponents entering (1.1) and (1.3), in pow-
ers of 1/m or of € =4 —=d, are listed in Appendix
B.

II. SYMMETRIES AND STATIC PROPERTIES

A. Definition of the system

The Hamiltonian of the system under considera-
tion has the form

H-= Jd"x( " Z[WL&)} [V o &)] + Vop(i)>

2m,,

v [ dtrasu-):0&)p (0], @)

where zpa()?) is the annihilation operator for a boson
at point X and component @, and p(X), the total
density of bosons at point X, is the sum of the in-
dividual component densities o ,&):

pE)=3 pu), @.2)
po&) =9l @l o). @.3)

The colons in (2.1) indicate normal ordering of
the creation and annihilation operators, and the
two-body interaction # is assumed to be short
ranged. Note that the boson mass m, and the in-
teraction # are independent of the component in-
dices. The one-body potential V, is an arbitrary
constant introduced here for later convenience.

It may be readily verified that the following op-
erators (in addition to the total momentum P and
H itself) commute with the Hamiltonian and are
therefore constants of the motion—the total num-
ber N, of bosons of any given component «, the
total number of bosons N, and the operators N,g
and M .5 (a#B) defined by

Nap= [ d%pes @), 2.42)
]MocsE fddx“'aﬂ(i); (2.4b)
pas E%(¢L¢B+¢E¢Q):pﬁa; (2.4C)
hap=1/2)@ L5 ~9f¥a) == Lga- (2.4d)

The m? independent operators N,, Noz, and
M o5 (a<p) are closed under commutation, forming
a Lie algebra.'® These operators do not commute
with the fields y,. In fact, the operators of the
Lie algebra are the infinitesimal generators of the
group Ufn) of unitary transformations on the m-
dimensional complex vector space formed by the
fields ¢,. Of the various operators in the Lie al-
gebra, one linear combination, the total particle
number

N=Y Na, @.5)
o=1

commutes with all the rest. The remaining m? -1
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orthogonal operators form the generators of the
group SUGn), and are new symmetries of the mul-
ticomponent Bose system, not present for m=1.
Equation (2.1) may be interpreted as the nonrel-
ativistic Hamiltonian for a set of identical spinor
bosons, each having spin quantum number
s=m ~1)/2, with a spin-independent two-particle
interaction. The ordinary three-dimensional ro-
tation group O(3) then has a representation in the
spin space, and the Hamiltonian is invariant under
the action of O(3). For m >2, the operators of
O(3) are only a subgroup of the full symmetry
group SU@n). For m =2, however, the group O(3)
is equivalent to the full symmetry group SU(2),
and the generators of SU(2) may be identified with
the ordinary spin-angular-momentum operators.
Thus we have, with the usual convention for a spin-
3 field,

pm&):ox(}z), (2.63,)
“12(}2):0;,&)’ (2.6b)
3o &) =p,&)] =0, &), @.6¢)

where o,, 0, and o, are the three components of
the spin density &.

B. Symmetry of the normal and superfluid states

At sufficiently high temperatures, for any fixed
pressure or fixed density, it is clear that the ther-
mal equilibrium state of the system defined by
(2.1) is a“normal” fluid (liquid or gas), whose
density matrix exhibits the full symmetry of the
Hamiltonian. It follows that

(Pa&)=0, (2.7a)
(Pag &) =( g )y =0, 2.7p)
(po&)=A/mNp&)=1/m)p. @2.7c)

At sufficiently low temperatures, we do not ex-
pect the state of the system to exhibit the full sym-
metry of the Hamiltonian. In particular, for suit-
able choice of the interaction # and of the pressure,
density, or chemical potential, we expect that the
thermal equilibrium state of the system is a “su-
perfluid state” in which the U@n) symmetry is
broken by a Bose condensation in one of the zero-
momentum states of §,. Thus we have

(Ve =Po% s 2.8)

where u , are the components of an arbitrary com-
plex unit vector # in an m-dimensional space, and
¥, is a positive quantity, whose value depends on
the temperature and pressure of the system.

As a result of the broken symmetry, the density
matrix of the superfluid state is not invariant under
all operations of the group U@n). It is assumed
that the system remains invariant, however, un-
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der the subgroup of U@n) consisting of all those
transformations which leave the unit vector # un-
changed. For example, when we consider the
orientation# ,=0,,, a choice which we shall take
as standard below, the density matrix is invariant
under the subgroup generated by the operators
Ny, Ny, and M g with @, 8>1. We shall exploit
this symmetry property frequently below.

The generators of SU () need not have zero ex-
pectation value in the superfluid state. By sym-
metry, one expects

(Pagy=20,ReuFug, (2.9a)
(“aB>:2001mu>&u31 2.9b)
(Po= (1/m)p)=20,(u%uo—1/m), @.9¢)

where 0, is a real number whose value depends on
temperature and pressure. For the case m =2,
the quantity o, is the magnitude of the spin density
in the ordered phase.

For a noninteracting boson system, or for a
weakly interacting system not too close to the cri-
tical temperature, one has

2.10)

0o~z P
When the temperature approaches the critical
temperature from below,3° we expect that the
“symmetry-breaking” constants ¢, and o, will tend
toward zero according to power laws, which we
write as

Yo~ (T, =T)®, @2.11a)

0,~ (T, =T)P=. (2.11b)

The exponents in (2.11) will depend on the space
dimensionality d and_the component number .
We remark that, in general, B, is not precisely
equal to 28, as might have been suggested by the
relation (2.10) for the noninteracting gas. (How-
ever, it will turn out that B, does become equal to
28 in the limit m —.)

The overall phase of () will not, in general, be
independent of time. Just as in the ordinary super-
fluid, one has in a thermal equilibrium state

(D)) =e My 5(0),

where (1 is the chemical potential.'?»28:3! In order
to eliminate the resultant complications from our
subsequent discussions, we shall assume that

1 =0 for the given thermal equilibrium state. This
condition can be fulfilled, for any given set of
physical parameters such as temperature and den-
sity, by a correct choice of the arbitrary constant
potential V, in the Hamiltonian (2.1). Note, also,
that the expectation values in (2.9) are independent
of the overall phase of #. The SU (n) densities are
independent of time, in any homogeneous state, re-
gardless of the choice of V.

(2.12)
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It should be emphasized that because there are
many constants of the motion other than the energy
and the density, the thermal equilibrium states
discussed above are nof the only possible equilib-
rium states of the model. For example, there
must exist an equilibrium state (i.e., a state of
infinite lifetime) corresponding to any specified
values of the quantities Ny, Nqg, and M 4, even
at temperatures well above T, where the ltZermal
equilibrium state (i.e., the state of minimum free
energy) exhibits the full symmetry of the Hamil-
tonian.’? The situation is similar to a Heisenberg
magnetic system, for example, where there are
equilibrium states corresponding to arbitrary val-
ues of the magnetization and temperature, although
the true “thermal equilibrium” state (in zero mag-
netic field) has a magnetization determined by the
temperature.'”

The various infinite-lived equilibrium states may
be understood as states which minimize the free
energy, at a given temperature (or maximize the
entropy, at a given energy) subject to the con-
straint that various of the concerned quanﬁties
have specified values. (Equivalently, these are
states which would minimize the unconstrained
free energy if appropriate “applied fields,” cou-
pling to the conserved quantities, were added to
the Hamiltonian.) In addition, there will be a wide
variety of states having finite, but slow, time-de-
pendent state, where the densities of the conserved
quantities vary from point to point on a long wave-
length scale, and where nonconserved quantities
have generally relaxed to the values required by a
condition of local equilibrium.

The time dependence of slowly varying states is
the subject matter of hydrodynamics and will be
discussed in Sec. III. First, however, we must
consider the static response of the thermal equilib-
rium system, when various inhomogeneous applied
fields are added to the Hamiltonian.

C. Susceptibilities and static critical behavior

Let us define (4, B; k) as the linear response of
the variable A ), to a static perturbation in the
Hamiltonian of the form

GH:fddx'[he‘k'x'lfz(i’)+H.c,], (2.13)

where B is an operator density and & is an infini-
tesimal constant. We shall abbreviate (4, A; k)
by x (4; k) and we shall drop the argument k where
convenient.

For the order parameter i, at and above T,, we
have, by symmetry,

X(Red o, Reyg) =x (Imy o, Imps) =x,, (£)5 g,

X (Rey o, Imgy)=0. (2.14)

At T,, x, () diverges in the limit 2 -0 as
Xy R)~ 1/k* 7,

which may be taken as the definition of the expon-
ent 7. At any fixed temperature above T, the
susceptibility x,, is finite at # =0. According to
the static scaling theory,®® we may write

X¢(0)~1/K2_n;

where k is the reciprocal of the correlation length.
In turn, « varies near T, as

(2.15)

(2.16a)

Ko< (T =T,), (2.16b)

which may be taken as the definition of the expon-
ent v. [Note: In (2.16b) and elsewhere in this pa-
per, T —T, is understood to be measured along a
path of constant pressure.]

Next consider the generators of the group U6n).
At or above T, we have by symmetry,3*

X (0 pg):le(ﬁ)@ae -1/m)+ (pz/mz)X2<R),

(2.17a)
X(Pags Porpr) =X %) qerbgpr +8 05 ar),s

(2.17b)
X (Mogs Horgr) =X, ()0 oordgpr = Baprdgor) -

(2.17c)

Cross susceptibilities such as y(pg, pBy) or
X (P ags Korge) vanish. Note that

x (0; &) =p*x, (&),

so that y, is the isothermal compressibility of the
system. According to the scaling theory we have

2.19)
2.20)

(2.18)

X»(0)~ const +constxXx~*" | T>T,,
Xs (k) ~ const +constxk~ %Y | T =T,

where « is the exponent of the singular tempera-
ture dependence of the specific heat C,.

The function x, is expected to diverge more
strongly at T, than x,. According to the static
scaling theory, one may write

X, k)~2"*, T=T,, (2.21a)
X Q)~«x=*, T>T,, (2.21b)
x=Q¢/v)-d, (2.22)

where ¢ is the “cross-over exponent” for a per-
turbation proportional to [p,— (1/m)p].** Accord-
ing to the current ideas of universality,'* ¢ is the
same as the cross-over exponent for a perturba-
tion [92, - (1/2m)|y?|] in a classical model with 2m
real components to the order parameter, which
has been studied by many authors.3:22-2%33

The exponents 77, v, and ¢ are related to the ex-
ponents B and B, of Eq. (2.22) by the scaling laws®
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28=(d -2+, (2.23)
B.=dv —¢. 2.24)

In order to understand the linear-response func-
tions below T, it is necessary to consider the cost
in free energy of a long-wavelength variation in
the direction of orientation of the order parameter.
We shall assume that

(0 oGV =t o &) =0, +6u &), (2.25)

where % (X) and #° are unit vectors, and ou, is
small. For simplicity, we shall choose

2.26)

0 _
Uy =0,4.-

By symmetry, the free energy is unchanged if
du ., is any constant vector, independent of X. [Of
course, Ou, must be purely imaginary, since i (X)
is defined to have unit magnitude.] Thus, to low-
est order, we expect that the excess free energy
8F will be proportional to |vii|2. More precisely,
we may write

72 - -
OF = Jd"x(%pSIVullH%p; E IVquz),
b o> 1

2.27)

where pg and p] are constants. In the casem =1,
the quantity p, is the usual superfluid density, and
one may make a similar identification for the case
m>1.

Symmetry of the Hamiltonian under the group
U(m) does not require pg to be equal to p,. In the
vicinity of the critical point, however, we expect
that all singular static and thermodynamic proper-
ties are invariant under the larger group O(2m),
so that p,/p.~1, as T—T,.'* In the limit of a
weakly interacting system, or for the spherical-
model limit ¢n—), one finds p,=p. =7 %p%/2m ,
for arbitrary temperature below T,.

We remark that (2.27) applies to the state of low-
est possible free energy, consistent with the given
variation of #(X). That state will clearly be a state
of local equilibrium, in which for example, the
local values of p,&), Pug&K), and p 4 &) are all
related to 7 X) by Eqs. (2.9). Under these condi-
tions, the second term in (2.27) may be written in
the alternate form

A | 2
= vu
2m, ; o
h~2pl Y -
= oy (VP + (Vi, )% . (2.28)
gcgmb a>1[ la 1o ]

Let us now consider a situation in which a weak
field is applied at wave vector & coupling to the
variable Img,.® If the field is sufficiently weak,
and the wavelength sufficiently long so that the sys-
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tem remains in local equilibrium, then the energy
of interaction with the field will be given by

- J. (hei;'; +c.c.)Im(y, ®)yd? x

- f etk rc.c.) o Imu, X)d%x .

Then, minimization of the sum of (2.29) and (2.27)
with respect to u, ®) leads to the result®®

@2.29)

2
X(amy,; ) =58 Lo 2.30)
§
Similarly, we see that for a>1
m 2
X Rep o3 k) =y Imy o ; k) =# pdj;;z, (2.31a)
S
m, 402
X (Prask)=x (Mo k) =73 o705 (2.31b)
s

The behavior of p, and pJ, in the vicinity of T,
is determined by the static scaling laws to be®®

Ps™ pLock® 2o (T, —T)4-27 (2.32)

Note that with this temperature dependence, the
susceptibilities (2.30) and (2.31), when evaluated
for wave vector & equal to k, have the same tem-
perature dependence as the corresponding suscep-
tibilities above T,.

The form of the longitudinal order-parameter
susceptibility x (Rey,; k) is somewhat uncertain. It
is believed, however, that there will be a diver-
gence in the longitudinal susceptibility at long
wavelengths, for d < 4, due to the occurrence of
fluctuations in the value of Rey, proportional to the
square of the amplitudes of the long-wavelength
fluctuations in ¢, for a>1, and in Imy,. On this
basis one predicts that for -0, below T,, and
2 <d < 4’36, 5

X (Reyy; k)~ %T[z(m ‘1)<ﬁ_§>2+ <%§>2}
2.33)

[Note that this divergence is weaker than that in
the transverse susceptibilities (2.30) and (2.31a).]
Similarly, one expects a divergence in the “longi-
tudinal susceptibility” for generators of SU@n), of
the form

const o,\?
X(Pmpﬂ;k)~ pi-d T<;;Q>

X[m5m551 =0 =0g +5as] +X" (P s Pg), 2.34)

where ' is finite as 2+ 0.

III. HYDRODYNAMIC PROPERTIES

In this section we shall discuss the dynamic
properties of the normal and superfluid phases,
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from a hydrodynamic point of view,%!727=2° yalid

in the limit of long wavelengths and low frequen-
cies. In particular, hydrodynamics requires that
the wavelength of the excitation under considera-
tion be long compared to all important character-
istic lengths of the system, including the correla-
tion length k~!, which becomes large near T,

and the mean free path of thermal excitations,
which becomes large near 7' =0. Some results of
hydrodynamics, however, such as the spin-wave
and phonon spectra, are expected to remain valid
even at T =0.

The principal ingredients of the hydrodynamic
theory are the symmetry and conservation laws of
the system, and assumptions about the form of
various static susceptibilities. Furthermore, one
assumes that for sufficiently long wavelength vari
ations in the parameters of the system one can
write the equations of motion as a gradient ex-
pansion in a properly chosen set of variables. To
lowest order in the wave vector, the state of the
system may be understood in terms of local equi-
librium.

A. Hydrodynamics in the normal phase

A state of local equilibrium in the normal phase
of the Bose fluid is described by the densities of
the conserved quantities; namely p &), 045&),
and p.g(&X), together with the energy density € X)
and the d components of the momentum density
(), all of which are assumed to be slowly varying
functions of position. (Note that there are m?+d +1
independent variables in all.) Since the values of
all other quantities are supposed to relax to their
local equilibrium values in a “microscopic” time,
the values of all quantities of interest are deter-
mined by the conserved fields. In particular, the
time derivatives of the conserved quantities must
be expressible as functionals of the densities
themselves.!”

We shall be concerned here only with the equa-
tions of motion linear in the deviations from equi-
librium, valid for small fluctuations. By symme-
try, it is clear that in the normal state there can
be no coupling in the linear equations of motion be-
tween the different generators of SU@n), nor be-
tween any of these variables and the variables p,
€, or §. Thus long-wavelength variations in the
SU(n) densities obey equations of motion of the
form,

PY; <pa—mp =DV’ \Po=> P/ (3.1a)
9
B_tpaszszpaB’ (3.1b)
9
57 Hes =DV lag, 3.1c)

where D is a diffusion constant. Note that terms
linear in v must be absent from the right-hand
sides of (3.1), by virtue of spatial isotropy, and
terms of zeroth power in V are absent because of
the conservation of the SU(#n) densities. These
equations lead to the existence of m2 -~ 1 indepen-
dent diffusive modes, each with a relaxation rate

¥, =DR*. (3.2)

The diffusion constant D may be written in the
form

D:/\/XU 3.3)

where A is the “transport coefficient” for the
SU@n) densities.

The remaining variables g, p, and € obey the
usual hydrodynamic equations for a normal fluid.
The transverse components of § relax at a rate
D k* while €, p, and the longitudinal part of g,
couple to a sound wave of frequency ck and a ther-
mal diffusion mode with relaxation rate D ;%2 The
diffusion coefficients and the sound velocity are
given by the usual formulas®’2°

D, =1/pm,, (3.4a)
D,=x;/pC,, (3.4b)
c=tm,pox,)"2, (3.4c)

where 7 is the viscosity, A, the thermal conductiv-
ity, C, the specific heat at constant pressure, and
X the isentropic compressibility.

B. Hydrodynamics in the superfluid phase

Below T, the equilibrium state of the system
requires specification of the orientation of the unit
vector %, as well as the values of the conserved
quantites. Note, however, that the orientation of #
is not independent of the SU(n) densities. From
(2.9) it is clear that the values of p,, P45, and
U o determine the equilibrium orientation of # ex-
cept for an overall phase factor.’” Since the order
parameter § is not a conserved quantity, we ex-
pect that the orientation of # &) should relax in a
microscopic time to its equilibrium orientation.
Thus, in the case of small long-wavelength devia-
tions from the thermal equilibrium state, we may
uniquely describe the system by specifying the
following variables as functions of space: €, g,
Pow Paps Maps and the phase (P&)z Imul&)- (We
have now chosen, as usual, u% =8,,.) We shall
write the time derivatives of these quantities as
linear functionals of the variables themselves, and
once again we shall make a gradient expansion for
long-wavelength variations.

1. Spin-wave modes

It is clear from the symmetry of the system that
the linearized equations of motion for p,, and
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K;5 can be coupled together only if @ =8, and are
uncoupled from all other variables. As a result,
we may write

0

_18)%=Av2p1a+372“1a +0 (V4ploz§v4/~‘1a), (3.5a)
Ofhrg _ 42 2 4 4
T‘AV Byo =BVP o +O0 (VP10 Vil o) -

(3.5b)

The operators p,, and i, , obey the commutation
relations

[P1a®), 1y o&)]=5i[p, &) —p &) ]6 (X-F).
(3.6)

If one neglects dissipative processes, then one ex-
pects, formally,®

80, ,&) _0, _OE
CTE A YT I

O, o&)_ 0y OE
ot 7 6p; &)’

where E is the energy of the system, and the de-
rivative is taken at constant entropy. Comparing
(3.7) and (2.28) with (3.5), one is led to the result

(3.8a)
(3.8b)

(3.7a)

(3.7b)

A=0,
= —7pl/4m 0, .

Equation (3.5) then has as its solution, in the limit
of long wavelengths, a propagating mode with real
frequency

w, = &/ 2m*)E?, (3.9a)
where
m* =2m ,0,/p. (3.9b)

is the “effective mass” of the frequency spectrum.
These modes are closely analogous to the spin-
wave mode of a Heisenberg ferromagnet. In fact,
for the case m =2, the variables p,, and u,, are
simply the x and y components of the spin density
G(x), and (3.9) is identical to the standard Landau-
Lifshitz formula for the frequency spectrum of a
ferromagnet. [See, for example, Eq. (7.9) of Ref.
17.38] :
Our heuristic derivation of (3. 8) can be justified by
an argument exactly analogous to the one used in
Ref. 17 for the Heisenberg ferromagnet, in which
the absence of dissipation is not assumed a prior:.
If one carries out the indicated expansion in (3.5),
then the terms of order v* will presumably intro-
duce a spin-wave damping of order 2*. On the
other hand, microscopic spin-wave calculations
for the Heisenberg ferromagnet (in three dimen-
sions) suggest that there is a singular contribution
to the spin-wave damping which leads to a decay
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rate proportional to k*1n?2.%° It seems possible
that a similar term may be present in the present
case of the multicomponent Bose gas. In either
case, however, the damping rate of the “spin-wave
mode” will be infinitesimal compared to the real
part of the frequency, in the limit £ - 0.

In the vicinity of T, the effective mass m* given
by (3.9b) approaches zero according to

m* o (T, =T) 9% ccg?=9/V (3.10)

In the limit of a weakly interacting Bose system
for any fixed value of T<T, or in the spherical-
model limit gn-«), the effective mass m* be-
comes independent of temperature, and is just
equal tom,, the Bose mass of the bosons. Note
also that the exponent 2 — ¢/v in (3.10) approaches
zero in the limit where the component number m
becomes large [see Eq. (B2)].

2. Diffusive modes

Next consider the variable p,g, withg>a>1. It
follows from the symmetry of the system that the
linear equation of motion for p,4 is uncoupled from
all other variables, and therefore the lowest term
in a gradient expansion must have the form

(3.11a)
(3.11b)

apaﬁ/at ZDVZPQB,
D EA/X(paB)~

We have already remarked that we expect x (pq4)
to be finite in the limit -~ 0, at any fixed temper-
ature below T,. Thus, if the transport coefficient
A is also finite, as seems most likely, the diffu-
sion constant D is itself finite, at fixed tempera-
ture, and the variable p,, will relax at a rate pro-
portional to %%, for £ ~0. Using the symmetry of
the system we also find, for 8> a>1

(3.12a)
(3.12p)

a“aﬂ/at :szuaﬂ )
3(py—pg)/3t =DV?(py—pg).

The diffusion constant here is the same as in
(3.11).

Altogether, these diffusive modes represent
m? —2m independent degrees of freedom. These
modes are absent in the case m =2.

3. Remaining variables

The remaining variables in the superfluid state
are ¢, g, €, p, and p,. These variables are ana-
logous to those which describe the state of a super-
fluid mixture of He® and He* (Ref. 15): the variable
p, corresponds to the density of He* atoms while
the remaining variables are just those which
characterize an ordinary one-component super-
fluid.

We may define*a superfluid velocity Trs and super -
current density j; by
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(3.13)
(3.14)

If one considers a state in which the normal-fluid
velocity is zero, which by definition is the state of
minimum free energy for a given, constant ?s,
then one finds a momentum density

vs = (h_/m b)V(P ’
>

->

S:pSVS'

E=m,J,. (3.15)

Furthermore, one finds that the supercurrent
entirely comes from a flow of particles in the com-
ponent state @ =1, so that the supercurrent con-
tribution to dp,/dt is simply -7 +7 .

If one takes a naive viewpoint, and ignores the
possibility of divergences in longitudinal suscep-
tibilities such as (2.34) or in the associated trans-
port coefficients, then the normal modes of the
variables under consideration will indeed be the
same as in superfluid He®-He* mixtures. (The
naive viewpoint is probably correct ford>4.) The
variables p, p,, €, ¢, and the longitudinal part of
€ will appear in two propagating modes, first and
second sound, with real frequencies c,2 and c,k,
as well as in one diffusive mode, with a relaxation
rate D'k®. [Formulas for ¢, and c,, in terms of
various thermodynamic parameters, may be found
in Sec. 24 of Ref. 15.] The transverse components
of § relax at a rate fk%/m,(p —p,), where 7 is the
“normal-fluid viscosity.”

If a divergent susceptibility of the form (2.34) is
inserted in the formulas for He®-He* mixtures,
the first- and second-sound velocities remain
finite.?® The diffusion constant D/, however, may
be expressed as the ratio of a transport coefficient
to a susceptibility that diverges at k =0.*° If one
assumes finite transport coefficients, D’ is found
to vanish as 2*"¢, so that the corresponding relax-
ation rate of a fluctuation in p,, would be predicted
to go as k%9, This result seems extremely un-
likely however, since the divergence in (2.34)
comes essentially from the contributions of pairs
of long-wavelength “spin waves” with total wave
vector k for the pair, and the interaction between
the spin waves is presumed to be small at long
wavelengths. It seems most likely therefore, that
the divergent portion of the correlation function
(p,k, t)p,(~k, 0)) will decay in a nonexponential
fashion with a rate characteristic of the contribut-
ing spin-wave frequencies, i.e., a rate of order
(r/m*)k2.% 1t follows that the transport coefficient
must vanish as k-0, or more precisely, that the
local equilibrium expansion is inapplicable in this
situation.

The second~sound velocity c,, in the vicinity of
T,, may be written in the form

¢~ (pK)/2, (3.16)

where K, a complicated combination of thermody-
namic functions, is expected to remain finite at
T,.** Thus we have

¢, k@22 3.17)

IV. CRITICAL DYNAMICS

Consider the behavior of the order-parameter
correlation function, 33(¥h(, 1) o, 0)), in the
limit -0, for fixed temperature slightly below
T,. As a consequence of (2.30) and (2.31a) and of
the results of Sec. III, the correlation function will
have two predominant parts—one, with weight
«26n~1)/p/k? will occur at the spin-wave frequen-
cy 7k?/2m*, while the second, with weight oc1/pk?,
will occur at the second-sound frequency c,%.'"2®
If we apply the dynamic scaling hypothesis®!® to
the spin-wave frequency (3.9) and (3.10), we are
led to predict a dynamic scaling exponent

z=@/v. “4.1)

Note that the second-sound frequency, scales with
a characteristic exponent z,=3d, which differs
from (4.1). Since the order-parameter correlation
function below T, has a finite fraction of its weight
in both the second-sound and spin-wave modes,
this implies a violation of “restricted dynamic
scaling”,'® in the limit of long wavelengths below
T,. At least in the case of large m, however,
there is more weight in the spin-wave mode than
in the second-sound mode, so that it seems likely
that (4.1) should be the correct scaling exponent
for fluctuations in the order parameter at and
above T,—assuming that the correlation functions
at and above T, can indeed be characterized by a
single dynamic scaling exponent.

The dynamic scaling exponent may also be pre-
dicted directly above T,, by means of the mode-
mode coupling theories, using a different kind of
dynamic scaling assumption. According to a mode-
mode coupling analysis similar to the discussion of
helium in Ref. 20, there will be contribution 6 to
the transport coefficient A for the SU(n) densities,
defined in Eqs. (3.1) and (3.3), of the form

61 =constxx4-%/T", 4.2)

where I' is the characteristic relaxation rate of
the order parameter,

T ock?, 4.3)

This contribution arises from the process in which
the SU@n) fluctuation at k=0, interacts with a pair
of order-parameter fluctuations having wave vec-
tors near k. Similarly, there will be a contribu-
tion to I" of the form

8T =constxk?/ (" +Dk2)x,, (4.4)
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where D =)x/x1 is the diffusion constant for the

SU (n) densities. The contribution (4.4) comes from
a process in which the order-parameter fluctuation
at 2 =0 couples to the product of an SU ¢x) fluctua-
tion and an order-parameter fluctuation at wave
vector k.

If one makes the scaling assumption that I" and
Dk? have the same order of magnitude, and that
T'~ 08I and A= 6, then one finds from either (4.3)
or (4.4), that z =¢/v, in agreement with (4.1), and
that

Ak, (4.5a)

Yy=2—d+z. (4.5b)

In a recent paper,* Hohenberg, Siggia, and the
present author employed a recursion relation ap-
proach to calculate the critical exponents for di-
vergent transport coefficients in a number of sim-
ple models, correct to first order ine =4 -d.
These models included a simplified model of the
superfluid transition of a one-component Bose
fluid, where the scaling results were confirmed.
One can generalize that model to a multicomponent
system in which the order-parameter fluctuations
are coupled to diffusive modes for both the SU x)
densities and the overall density p. (The density
diffusion represents the contribution of the ther-
mal diffusive mode in the present Bose system. )
A recursion-relation study of this model indicates
that in the limit d— 4 the dynamic scaling exponent
(at and above T,) is determined by coupling to the
SU(m) diffusion modes, and is indeed given by
(4.1), provided that m is greatev than 2.213. A
thorough renormalization group analysis of the
model has not been completed, however.

V. COMPARISON WITH MICROSCOPIC
CALCULATIONS

Szépfalusy and Kondor® have examined the mode
structure below T, of a “dynamic spherical model,”
which describes the Bose system in the limit
m -, Their analysis only considers the modes
that appear in the correlation function for the total
density and for the fluctuations of the magnitude
and overall phase of the order parameter. At
T =0, they find a phonon spectrum at long wave-
lengths, in agreement with the results of Appendix
A of the present paper. At finite temperatures,
however, the damping of their sound waves is not
negligible in the long-wavelength limit. Neither
do they find the second-sound modes found in Sec.
III of the present paper. In the limitm —«, how-
ever, the scattering between the bosons vanishes,
and mean free paths become infinite. Thus it
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should not be surprising if hydrodynamics does not
apply, and in particular, if second sound does not
exist in that case.

Szépfalusy and Kondor did not find spin-wave-
like modes in their analysis, because they did not
investigate excitations of the required symmetry.
It is easy to establish that such modes exist, how-
ever, and that they behave like noninteracting
bosons at all temperatures below T, in the spher-
ical-model limit.

Ma and Senebetu'? have also studied the spectrum
of total-density fluctuations in the limit of large
m, from a microscopic point of view. They have
carried out their calculations to the leading order
in 1/m for which collisions occur, summing all
diagrams necessary to obtain the correct hydrody-
namic form, in the limit of long wavelengths. In
contrast to Ref. 6, Ma and Senebetu find well-de-
fined first- and second-sound modes, with damping
proportional to k2, in the limit of long wavelengths,
at finite temperatures below T,. In the normal
phase, above T,, they obtain the usual sound wave
and thermal diffusion modes.

The value of the thermal conductivity found by
Ma and Senebetu remains finite as T~ T}, in con-
trast to the results of a mode-mode coupling analy-
sis of the m -component system, which suggest
that the thermal conductivity A, should diverge at
T, in the same manner as the SU¢xn) transport co-
efficients A, described in Eq. (4.5). As Ma and
Senebetu point out, however, the divergent portion
of A, might be of higher‘order in 1/m than the non-
divergent portion, in which case it would not be
included in their calculations.

Suzuki'! has also studied the thermal conductivity
in the normal phase, using a microscopic approach
designed to be correct in the limit of large m. He
concludes that there is a divergence in A,, which
may be written in the form

Apck™?, (5.1a)
y=2-d+z, (5.1b)
with possible corrections of order (1/m)?. Although

Suzuki’s evaluation of z disagrees with ours for
3<d<4, relation (5.1) coincides with the form of
Eqg. (4.5), as predicted by mode-mode coupling.
Equation (5.1) is applicable to helium as well as
the multicomponent system. A relation equivalent
to (5.1b) has also been obtained by Yamashita and
Tsuneto® from a microscopic analysis of the one-
component system, up to second order in € =4 —-d.
As was mentioned in the Introduction, a number
of authors have calculated dynamic critical ex-
ponents for the quantum-mechanical m-component
fluid, from an analysis of a Feynman graph expan-
sion designed to be valid in the limit m — "0 or
the limit d - 4.%° Although these calculations agree
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with our result (1.1), at least to first order in

1/m, for 2<d <3, they apparently disagree with
(1.1) and with (1.3) to first order in 1/m for 3<d
<4, and to first order in 4 —d for arbitrary m.**

In Ref. 36, where (1.3) was obtained from a re-
normalization group analysis of a simplified model
of the one-component Bose system, some reasons
were already given why a dynamic critical expon-
ent calculated from a Feynman graph analysis in
the limit € - 0 might have been incorrect. Similar
reasons can be given for questioning the calcula-
tions that have been carried out in the limit m— .
In all of those calculations, the authors have ex-
tracted their exponents by a matching condition
from a term proportional to (1/m)k?Ink, in the
1/m expansion of some quantity, such as the char-
acteristic frequency w, for fluctuations in the or-
der parameter T,. The 1/m expansion in turn in-
volves a systematic resummation of the Feynman
diagrams for the interacting Bose system and is
valid in the limit 1/m - 0, for fixed, nonzero k.
For critical phenomena, however, we are interest-
ed in the behavior of w, as k-0, for fixed value of
m. The matching condition can be used to extract
the true critical behavior only if there are no
“slow transients” in the renormalization group for
the dynamics at large m. The absence of slow
transients in the dynamical renormalization group
for the Bose system, in the limitm -, has not
been demonstrated as far as the present author is
aware.

In contrast with this, the absence of slow transi-
ents in the stfatic renormalization group, for large
m, has been established.! As a consequence, one
can justify the calculation of static critical expon-
ents such as 7 and v, to arbitrary order in 1/m
by a straightforward matching condition. A more
complicated procedure is necessary to calculate
static critical exponents in the limit € -0, at fixed
m.% In the latter case, the presence of a slow
transient prevents the matching condition from
being applicable, except when the interaction
strength u, is chosen in a special way to eliminate
the slow transient.

The possibility of additional slow transients in
the dynamical renormalization group, not present
in the static case, is illustrated by several exam-
ples*?**®* among the models that have been studied
in the limit € - 0. In particular, the recursion re-
lations for the simplified model of helium in Ref.
42 were found to have five slow transients for
d -4, and these transients cannot all be eliminated
by any choice of the single parameter u,,.

The present situation may also be contrasted with
the case of the simple stochastic time-dependent
Ginzburg-Landau model (without energy conserva-
tion) discussed in a number of recent papers.*>-*7

As was mentioned in Ref. 46, a renormalization
group analysis in the limit of d — 4 shows that there
are no new slow transients present in the dynamic
renormalization group for tzat model, so that the
correct dynamic exponent could be obtained via a
matching condition on the € expansion after the
correct choice of the single parameter u,,.

Note added. The limitm -« is often referred
to as the “spherical-model limit,”%!2 pecause
the static correlation functions for the order pa-
rameter of the m =~ Bose system, like those of an
n = gpin system, are essentially the same as for
the Berlin-Kac spherical model.*®**° On the other
hand, certain other properties of the multicom-
ponent spin or boson systems, such as the corre-
lation functions

E < Ilpa&)izlwa' 6(')|2> ’

a, of

are different from those in the spherical model. A
more precise analog of the spherical model is the
ordinary (n=1) noninteracting Bose gas, with a
fixed number of particles per unit volume.*

A second point to bear in mind, is that there are
a number of ways to introduce dynamics into the
spherical model, which lead to quite different dy-
namic behaviors. In addition to the trivial dynam-
ics of the noninteracting Bose gas, the boson dy-
namics of Refs. 6, 11, and 12, and the stochastic
dynamics of Refs. 45-47, the literature includes
models with a phonon dynamics, appropriate to a
displacive transition,> 52 and a spin dynamics,
based on the commutation relations of the Heisen-
berg ferromagnet.®
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APPENDIX A: GROUND-STATE AND
ELEMENTARY EXCITATIONS

As is well known, the lowest eigenstate of the
Schrodinger equation, for a system of identical
particles, has a totally symmetric spatial wave
function.’® This can be achieved for our boson sys-
tem by requiring the state to be totally symmetric
in the spin variables, i.e., spins fully aligned. We
may choose this alignment so that all the bosons
are in the @ =1 subspace—i.e., p, =p, and p,=0
for a>1. For the case m =2, this implies (0,) =3p,
(0,y=(0,y=0. More generally, we have

p (A1)

-

Oy =
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at T =0, where 0, is defined by (2.9). Note that
the spatial wave function and energy of the ground
state are precisely the same as for a one-compon-
ent boson system with the given interaction and
mass.

Elementary excitations from the ground state are
of two kinds. If all particles remain in the o =1
space in the excited state, then the wave function
and the energy spectrum are the same as for a
one-component Bose system. In particular, the
excitations on this branch are phonons at long
wavelengths, with a sound velocity determined by
the bulk modulus and the density of the liquid, as
in Eq. (3.4c) above.

The remaining elementary excitations will have
N -1 bosons with a =1, and one boson with a#1.
For small values of the wave vector 2, these ex-
citations may be described as a single “impurity”
quasiparticle of momentum % and the given a#1,
added to the ground state of N —1 bosons with a=1.
For small values of & such an excitation will have
an infinite lifetime, and will have an energy quad-
ratic in g '°

€, =l %R%/2m* . (A2)

In an m -component Bose system, there will clear-
ly be m =1 degenerate excitation branches of this
form. These free-particle-like branches may also
be interpreted as ferromagnetic magnons in the
space of SU@n).

In the limit of a weakly interacting system, the
effective mass m * will become the same as the

Bose mass m,. In a strongly interacting fluid, how-

ever, we expect m*>m,, as is found'® for the ef-
fective mass of an He® impurity in liquid He®.

As in the case of a Heisenberg ferromagnet or
antiferromagnet, we expect that the “elementary
excitation” spin waves obtained at T =0 for finite
k, will go over smoothly to the hydrodynamic spin
waves derived for k-0, at finite 7. Then the re-
sult m*>m,, combined with (5.1) and (3.9b) indi-
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cates that p <p at T =0 for the strongly interacting
case. On the other hand, one can show that P =0
at T =0 in the multicomponent system as in ordi-
nary superfluid helium, as a result of Gallilean
invariance. It follows that p#p, at low tempera-
tures.

APPENDIX B: EXPANSIONS OF THE EXPONENTS
IN THE LIMIT 4 —d OR m~ o

The ratio ¢/v, which appears in (1.1), has the
known expansiong?:9:23:25

@ € €2m*-9m +14)

V_z—m 4T dm Ay +0 (%), (B1)
2y 1 24°'T(} (d - 1)) .
v _z—mdred)r(z -3 d)]_"(%)r@_d_l)*'@(l/m ),

(B2)

where € =4 —d."* Equation (B1) is valid for € - 0
at fixed m, whereas (B2) applies in limit m - for
fixed d in the range 2<d <4. The two formulas
agree up to order €%/m in the simultaneous limit

€ -0 and m - . The coefficient of 1/m in (B2) is
equal to 477% atd =3. Equation (A2) may also be
written®

o/v=2-[4/(4 -d)|n+0 1/m?), (B3)

where 7 is the correlation exponent, defined by
(2.14).

The ratio a/v, which enters (1.3a), has the ex-
pansion®

=te-£e®+9(?), form=1. (B4)

<R

Although « is positive for small €, it is believed
that a is slightly negative for d =3.5° The exponent
@ is believed to be negative for m =2, for all
2<d<4.
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