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We have reconsidered the theory of the scattering and absorption of light incident on a medium of
dielectric constant & that is bounded by a rough surface, when the roughness can be treated as a

perturbation of the perfectly flat surface. We obtain explicit formulas for perpendicularly incident light

by several different methods, both classical and quantum mechanical and compare our results with

those obtained by previous authors. In particular, we consider the case of a metal of dielectric constant

1 —co'/ao' and discuss the excitation of surface plasmons. We show why the results obtained by Elson

and Ritchie by a quantum-mechanical method based on a coordinate transformation do not agree in

some cases with the results of the classical theory and with the results of a straightforward quantum

treatment that is applicable only to normal incidence. We introduce a new coordinate transformation

that does not suffer from the limitations of that used by Elson and Ritchie and thereby allows their

general method to be applied, with correct results, for general polarization and incidence angle.

I. INTRODUCTION

The theory of the reflection of waves from rough
surfaces has been the object of many investiga-
tions, beginning with the classical papers of Ray-
leigh. ' A comprehensive discussion of the classi-
cal theory has been given by Fano, ' who examines
the interaction of incident photons with surface-
plasma resonances on gratings.

In recent years a variety of phenomena involv-
ing the interaction of photons and electrons on
rough surfaces have come under experimental in-
vestigation. ' The discussion of such phenomena
is most natural in the language of quantum field
theory: Thus an incident photon, for instance,
may be converted into a surface plasmon by res-
onant scattering in the presence of surface rough-
ness. The surface roughness acts as the coupling
between different elementary excitations of the
electromagnetic field in a medium bounded by a
plane surface. Such an approach is profitable in
the case of "weak" surface roughness, i.e., when
the height a of the surface asperities is much less
than the wavelength X and the penetration depth.

A quantum field theory of photon interactions at
a rough metal surface has been developed by El-
son and Ritchie4 for the case of normal incidence.
The expressions obtained by these authors for the
diffuse scattering and for the photon-surface-
plasmon coupling do not agree with those obtained
by previous workers. "' For some time the re-
sults ot' Elson and Ritchie' (to be referred to as
ER-I) were regarded as thefinal work in all cases,
because these authors use the correct vector
theory for the electromagnetic field, rather than
a, scalar theory, and because the boundary condi-

tions a,re treated exactly by a transformation to
new coordinates. ' However, Elson and Ritchie
themselves, worried mostly by an internal incon-
sistency in their expressions, have recently re-
worked the theory' using the same coordinate
transformation' but a different, semiclassical ap-
proach that makes use of the Hertz superpoten-
tials. The new results, ' to be referred to as
ER-II, are internally consistent and agree with

the previous results of Growell and Ritchie' for
the coupling of photons to surface plasmons.

In Sec. II we shall show that the results of a Hay-
leigh-Pano (RF) treatment agree with the ER-II
expressions in the classical limit. Although the
RF treatment has been criticized, ' we believe that
it is in fa.ct correct. Furthermore, we show in
Sec. III that the straightforward quantum treatment
used by Crowell and Ritchie' leads in all cases to
the same results as the RF theory and ER-II for
normal incidence. After completion of this work,
we became aware of a paper by Maradudin and
Mills' who obtain the same results by the classi-
cal equivalent of the Crowell and Ritchie' theory.
Motivated by these findings, we have reexamined
the ER-I theory and have found that their coordi-
nate transformation does not preserve simultan-
eously the condition divE = 0 and the boundary con-
ditions for the fields on the actual surface.

It is shown in Sec. IV that for weak roughness
one can introduce a new coordinate transformation
that avoids the difficulties associated with the
transformation used by Elson and Ritchie. %'e

proceed then to recompute the diffuse scattering
probability and the coupling to surface plasmons
of normally incident photons by using the new
transformation and the quantum-field-theory for-
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mulation of EB-I. The results are in agreement
with all. the other methods (RF, ER-II and Crowell
and Ritchie'). In Sec. V we point out the advantages
of the present approach and the possibilities of ap-
plications to more general cases.

Throughout this paper we are mostly interested
in the case of light scattering from metal surfaces
in the visible and ultraviolet regions. Accordingly,
in the final formulas the dielectric constant e(e)
will be approximated by 1 —&u~/&u', where ~~ is
the bulk-plasmon frequency of the medium. The
surface roughness can couple the incident light to
surface plasmons, which are electromagnetic ex-
citations localized near the surface„having fre-
qoency u and wave number G connected by

G' = ((u'/c')e/(e +1) .

with the boundary conditions at z = &:

A, =g; (rotA), = (rotA') „A„=eA'„, (2.4)

ko = (d/c,

and the diffracted waves

(2.5)

-ikga'+ iG ' RA@8
G

where

(2 6)

where t and n indicate the components parallel and
perpendicular to the actual surface.

The field outside the medium (z & r) is described
by the sum of the incident wave Ai e"0', where

The excitation and deexcitation of surface plas-
mons shows up in a large number of experiments
on diffraction gratings and rough surfaces. ' lt is
with the aim of providing the foundations for the
interpretation of such experiments that we have
undertaken the present reexamination of the exist-
ing theories.

the field in the medium (z& g) is described by

where

(2.7)

II. CLASSICAL THEORY

z =g(x, y) = Q&ce'j
where R is the vector of components (x, y) and the
z = 0 plane is chosen such that go = 0, all the other
Fourier components g~ being small in comparison
to the wavelength X and the penetration depth y '.

Since different frequency components of the ra-
diation field scatter independently, we can con-
sider monochromatic light of frequency ~. We
choose to work in the radiation gauge, where the
scalar potential vanishes, E = (iu&/c)A, 8 =rotA,
and A obeys the equations

rot rotA —(e'/c') A = 0, z & r„,

rot rotA' —c(~'/c') A' = 0, z & r,
divA =divA'=0, z+ g,

(2.2a)

(2.2b)

In this section, we shall solve by the method of
Rayleigh' and Fano, ' the problem of the scattering
of normally incident light from a medium of di-
electric constant c bounded by a sharp surface that
deviates little from the plane z = 0. We shall in
fact be interested in the case when e & 0 and waves
cannot propagate in the medium. We take the z
axis pointing toward the medium and assume that
the surface is described by the equation

A, „=A, sing, A„A, cosQ, (2 8)

where Q is also the angle between the plane of po-
larization of the incoming field and the scattering
plane (which is defined by 6 and the z axis).

We can now treat separately the scattering of
A„, which results in s-polarized waves (A per-
pendicular to the scattering plane), and the scat-
tering of Ai„which results in P-polarized waves
(A in the scattering plane).

Conditions (2.6) and (2.7) ensure that Eqs. (2.2) are
satisfied. Conditions (2.3) and (2.4) give us seven
equations for the six unknown components of A~
and A~. It is easy to see that only six of these
equations are independent; in fact A„=@A„' follows
from Eqs. (2.2) and the continuity of (rotA), .

In these equations there appear exponentials of
the type e"~"', that can be expanded to first
order in qf. Taking Fourier components, we find
equations relating Ac and Ac' linearly to &G and
A, . That means that every Fourier component g~
of the "surface wavity" g(x, y) can be treated inde-
pendently of the others, a well-known result in any
bnear theory. It is convenient then to treat each
6 separately from the start and to choose the y
axis along G. In physical terms, the problem of
scattering from an arbitrary surface is thus re-
duced to the superposition of scatterings from
single diffraction gratings of a simple sinusoidal
shape, each characterized by a &G . Further, we
can then decompose the incoming field into com-
ponents parallel and perpendicular to 6,
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~A„~A„'
, -"= -" at z=g(y), (2.9)

where n is the normal to the surface, z = f(y), so
that

(2.10)

We see that conditions (2.9) are exactly the same
as those for a scalar field. Because A„=A„' at the
boundary, we can actually replace the continuity
of the normal derivative by the condition BA„/Bz
= SA,'/Sz at z = g(y). In terms of the amplitudes of
the wave fields, Eqs. (2.9) then become, dropping
the index x for brevity,

A. s-wave scattering

This is physically the case of normally incident
light polarized parallel to the grooves of a grating,
i.e., perpendicular to G. In this case nothing will
depend on the coordinate x, parallel to the grooves,
so that the diffracted and refracted fields are, re-
spectively, A.c„e-lac"Icy and Ac„e-y c"Icy. The
transversality equations (2.3) are automatically
satisfied and the boundary conditions (2.4) reduce
to

the notation.
The intensity ratio for the 8-polarized scattered

wave, from (2.13) and (2.8), is simply

&.= IAc. I'/IA, I' = 4(~/c)' Icgl '»n'y, (2.14)

~Z BZ
Z = eZ', —"= -— at z = &(y) .

Bs
(2.15)

The functional form of Z is analogous to that of A„
in the s-wave case:

"ihere P is the angle between the polarization of
&he incident wave and the scattering plane, as
pointed out after (2.8).

B. p-wave scatte.:ing

In this case the light is polarized perpendicularly
to the grooves of the (effective) grating. The field
components„, parallel to the grooves, vanishes
identically. It is then convenient to introduce a
superpotential Z= Z(y, z)i, where i is the unit vec-
tor along the x axis, such that A = rot Z and Eq.
(2.3) is automatically satisfied. It is possible to
choose Z so that it obeys Eqs. (2.2a) and (2.2b)
with Z in place of A. One can easily see that the
boundary conditions (2.4) are equivalent to

e&&pC(N) +~ e &&pC(M) +~ e IACC(3i) + Ical
p c

~ e-y,'((3) +~ie-ycr(&)+. c&
p ce (2.11a)

Z=Z e~np +Z -&~pz+Z e-~acz+~c~ for z(0 c )

Z'=Z'e-»'+Zc'e-~c'+'" for ~& q.p

iu A. e'~p~" -iu A. e '~o~"
o o C

-ik 4 e c' z(') "c'
G c

Writing down explicitly the conditions (2.15), using
Eq. (2.10) for the normal derivatives and proceed-
ing exactly in the same way as before, we find

y
p g 1 e-foe(v) y ~i e-gcc(p)+fey
0 0 C G 0

(2.11b)

Expanding the exponentials containing r(y) and in-
tegrating over y we obtain to lowest order the
equations for a flat surface:

Z,' = [2 ik, /(ik, e —y,')]Z, ,

Z, =[('k, +y,)/(k, —y,')]Z, ,

1

inc ikce —yc iko& —yo

(2.16a)

(2.16b)

A. ]+A =A',
ik, (A) —A, ) = —yoAO.

(2.12a)

(2.12b)

Operating as before, after multiplication by e 'c',
we get a set of equations that determine Ac, A.c:

ik, fc(A, —A, ) +Ac = —y,'gcA,'+Ac', (2.12c)
2—k', fc(A, +A, ) ikcAc =y,' -f A,'-cy A c. c

(2.12d)

Equations (2.12) are easily solved to give

A c„=Ac i„=—(yc +ikc)[2iko/(ik, —yo)]&cA )„,
(2.13)

where the index x has been restored. These re-
sults are well known, ' but have been repeated here
for completeness and to illustrate the method and

Z, = (c'/e')B, „=(c'/&u')B, cosQ,

Zc= (c'/u&')Bc„, Zc = (c'/(u')Bc„.

(2.17a,)

(2.1Vb)

Therefore the intensity ratio for the P-polarized
scattered wave is, from (2.16c), (2.1 t), and (2.8),

4k'„(G' —&k ~),k, I gc I
cos'p,

0
(2.18)

where Q has the same meaning as in (2.8) and
(2.14).

It is not necessary to write A explicitly, since Z
is directly related to the x component of the mag-
netic field, B„. In fact, we have
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C. Reflection coefficient of a rough surface

In order to find the differential reflection coef-
ficient one must sum over all possible 6 vectors
the intensity ratio multiplied by k~/k, . The sums

ko
G

are converted into integrals by

x cos8d(cos8) dP,

are the only ones to exhibit a resonant pole at the
surface-plasmon frequency, as can be seen from
(2.16c) when ko is imaginary, k~ =iyc [this corre-
sponds to G& k„according to (2.6)]. Then ZG be-
comes

y,'y~(e —1) 2ik,
G'

y &+ I iA, & ys~Cl (2.25)

lz'l'd

which has a pole at ya&+y~ =0, i.e., at the surface
plasmon frequency [compare with (1.1), using
(2.6) and (2.7)]. From E'=icuA'/c and A' = rot Z,
one finds

where Q has been defined before and 8 is the angle
between the z axis and the direction of propagation
of the scattered wave, so that G = k, (sin8 cosQ,
sin8sing). With these definitions, the differential
reflection coefficient for s-polarized scattered
waves becomes, from (2.14),

OO 2

Q —,, (r,"+G')
Ized l'e "&' «. (2.26)

We now transform the sum over 6 into an integral
by means of the first equation (2.19) and use the
fact that

sin Q cos 8~ 4. 2

cfQ m' ' c

and, for P-polarized waves, from (2.18),

(2.20) llm 5 2 (dQ2 B
5-0

l y~e +y~. l

' c' e„+1

dP~ L', ou
' » sin'8 —ecos' cos'8

dQ m' G c sin'8 —icos'8'

(2.21)

The total reflection coefficient is of course the sum
of (2.20) and (2.21). While (2.20) a'~rees with the
formula given by E leon and Ritchie, " (2.21) does
not. The reason for this discrepancy will be
pointed out in Sec. IV.

x --—
(2r,r,' I ',)(e—~r,'+ra) '

(2.27)

Expressing Z, as a function of J3, through (2.17a)
and dividing by the incident flux' =clB,l'/Bm, we
obtain the final answer for the decrease in

reflect-

ancee:

D. Photon-surface-p1asmon interaction

The absorption of light by excitation of surface
plasmons can be computed classically by evaluat-
ing the power dissipated by Joule heating:

de drE* jdt
(2.22)

where, in the medium,

j = —[i(u(~ —1)/4w]E'. (2.23)

Thus one need only compute the integral of lE l'
over the medium. The dissipation arises from the

imaginary part of E, which in our case can be
taken to be a vanishingly small positive 6; we can
write c = e„+i 6 and f ind:

(+Zo —&Zo+ Q.g(y~Z~+ey~Z~)=0, (2.29a, )

&~[i@,(Z, —Z, ) +ry,'Z,']+Zg —eZG' =(), (2.29b)

(2.26)

This formula is identical with that given by Crowell
and Ritchie' if one takes & = 1 —&u~/e', where co~ is
the bulk plasma frequency.

An alternative classical method is to compute
directly the specular ref lectivity by solving the
equations for Z„ZO, and Z~ to second order in
f(y). These equations are entirely analogous to
(2.11), but we must pay proper attention to taking
the normal derivative according to (2.20):

lE I
l

a d~r (2.24) ik (Z& —Z ) +y'Z'+ g Qp'(eZ' —Z ) = 0

In the ~- 0 limit, only the P-polarized scattered
waves will contribute to the dissipation, since they

(2.29c)
—&s[&o(Z( +Z.) +r,"Z,']+rgZc+roZG = o (2.29d)
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We can solve Eqs. (2.29b) and (2.29d) for Zc and
Zci, insert into (2.29a) and (2.29c) and solve for
Z, and Z,'. We then find ( Z, )'/ j Z~ ~

', convert the
sums over G into integrals according to (2.19)
and compute ( B„~'/( B, ~

' using (2.17). To leading
order in ~rc~', the result is 1 —bR, where AR is
given by (2.28).

To resolve the discrepancies found in the case of
P-wave scattering [Eq. (2.21)] and of photon-plas-
mon conversion [Eq. (2.28)] we shall now reexamine
the quantum theories of Crowell and Ritchie' and
of Elson and Ritchie. 4

zG
+ iGcos(qz+r))+ sin(qz+@) 8(-z) e'G "

(3.5)
2

for p-polarized waves, where ~'=G'+q', y'
= G' —e((u/c)', sin q = —cq/(1 —e)'t '(G' —&q') ' '.
The last term in (3.3) represents the amplitude
associated with surface plasmons, that can be
considered as bound states of the field. The plas-
mon amplitude AG~ is given by

III, QUANTUM THEORY FOR NORMAL INCIDENCE

where

I $G ~ R+ i G+ ey*8(- z) e'
y

(3.6)

In this section, using the form of perturbation
theory employed by Crowell and Ritchie' to obtain
(2.28), we shall derive expressions to be com-
pared with the classical formulas (2.20) and (2.21)
for the scattering of s-polarized and P-polarized
waves. We consider a medium of dielectric con-
stant e = 1 —&u~/v', bounded by the surface z = &(R).
The Hamiltonian for the electromagnetic fields
can be divided into a part H, pertaining to a medium
bounded by a flat surface

1
H,=, dr [A'+&@~28(z)A'+c'(rotA)'], (3.1)

and a term due to the surface roughness:

p =(e'-1)/[~'(- ~ -1)"1,y'=G'-~'/c',

and e (which appears in e, y', y' ) is the surface
plasmon frequency for wave vector 6, according
to (1.1). The roughness Hamiltonian H, will couple
these different normal modes. The transition prob-
abilities are obtained very simply once II, is ex-
pressed in terms of the operators b, b~. To first
order in g(R), we have

8(z —l(R)) —8(z) = —g(R) 5(z) .

Thus the operator H, has well-defined matrix ele-
ments only between states that make A'(r) contin-
uous at z =0. Since A'(r) has the expression

II,=8, dr es —ga. —ez +'Ar', 32

which will be regarded as a perturbation.
The field operators A(r) can be expanded in the

normal modes of H;.

A (r) = g Ag, ),(r) Ay, ty, (r)( be +by, q)
gqX,

x (bpo tys +b gs&zyz) &
(3.7)

A(r)= g dqAo, ~(r){bg,~+ bt g ~)

+ QAe~(r)(bG~+b p„), (3.3)

I

&& 8(z)e '+8(-z) cosqz ——sinqz

(3.4)

for s-polarized waves, and

4g ~4q2 1/2 '

g C
Ag, p=, , iG —,cosine ~*8(z)

where b, b~ satisfy ihe usual boson commutation

relations and Xp, q is the amplitude of the mode of

parallel momentum 6, perpendicular label q and

polarization X, which, for totally reflected waves,
has the form

4@c4 '
A~ gggg 0 ~fG+%

QPCOp L

~, ((0) bG,~H, b& ) 0))'5(~ —ck,) . (3.8)

The matrix element equals (war) 'gobe'qg, u&~cosy

cosg, from (3.4) and (3.5). To get the total tran-
sition rate we must sum over the final states and

we see that only the terms with 6 or 6' equal to
zero give well-defined matrix elements. Hence H,
can be used with total confidence to compute pro-
cesses in which a normally incident (or scattered)
photon is involved, since in this case one needs
only x and y components of A (which are continuous

on the z =0 plane). Recently, Maradudin and Mills"
have used an analogous classical method to discuss
oblique incidence as well, by using a reasonable,
but in our opinion unproven prescription to handle

the discontinuities in the fields.
As an illustrative example, we shall now compute

explicitly the P-wave differential scattering cross
section. The transition rate from a state b, ~, ~0)0 &pS

to a state b G ~) 0) is
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divide by the incident flux c/2v. We use

(dp
dq —

2
—

~ leg dQ,(2v)' c'
G

(3.9)

and find

=
+ [ go)' ~2 q'k', cos'q cos'Q . (3.10)

IV. QUANTUM THEORY: COORMNATE
TRANSFORMATION

Since q=(&u/c) cos8, k, =~/c, e =1 —~,'/&u' and.

cos'q = (sin'8 —e)/[(sin'8 —e cos'8)(1 —e)], we re-
cover (2.21). The procedure for s-wave scattering
is entirely similar and leads to (2.20); the proce-
dure for photon-plasmon coversion, leading to
(2.28), has already been demonstrated by Crowell
and Ritchie. '

We conclude that the quantum-meehan'ical per-
turbation theory employed in this section, which
is valid for normal incidence, leads to results in
complete agreement with the classical theory.

n but do not agree with those found by the methods
of Secs. II and. III.

The clue to the problem comes from a critical
comparison of the boundary conditions satisfied
by the ER-I solution on the surface in the case of
s-polarized. and P-polarized waves and from the
fact that the ER-II method, ' employing Hertzian
superpotentials, leads to the correct results in all
cases. We have shown in Sec. II that each Fourier
component (G of the surface wavity ( can be treated
independently in the lowest order of perturbation
theory and that for each component the problem is
equivalent to the case of a simple sinusoidal grat-
ing. This independence of the various Fourier
components is a general feature of any linear the-
ory. Thus we restrict ourselves to a wavity g(y)
and. need not consider the coordinates x, if we

choose y parallel to G.
The covariant components of the metric tensor

of the transformation (4.1) are

ag
gll g22 g33 s g23 832

Elson and Ritchie4 have used an elegant method'
to transform the boundary-value problem on a
rough surface into a standard perturbation prob-
lem, avoiding the difficulties of the treatment
given in Sec. III for oblique incidence. The method
consists in introducing new coordinates

u'=x, u' =y, u' =z —((x, y), (4.1)

(4.2)

which still converts the surface into the plane u
=0, but, unlike (4.1), gives asymptotically flat
wave fronts for ( z~ -~ and leads to finite matrix
elements. The results" are in fact independent of

and expressing the differential operators in the
Hamiltonian in terms of these new coordinates.
The total Hamiltonian is split in two parts: a
zeroth-order HamiltonianII, ' that has exactly the
same form in the coordinates u asH, [Eq. (3.1)]
has in the coordinates r and a perturbation that
contains terms linear and quadratic in the deriva-
tives of g .

The eigenstates of the zeroth-order Hamiltonian

Ho are given by (3.4), (3.5), and (3.6), with u in
place of r. These eigenstates are not plane waves
in the real space r, not even asymptotically for
z -~. Furthermore, the matrix elements of the
perturbation are in fact unbounded for the scatter-
ing states and depend. on the boundary conditions at
infinity. The prescription used by Elson and Rit-
chie, i.e., to discard the contribution at infinity,
ls at fll" st sight, suspect. However, we have ex-
amined the more general transformation for any
a&0,

u' =x, u' = y, u' = z —&(x, y)e

+12 WP, 1 +13 431 (4 3)

Medsum

Vacuum

FIG. 1. Covariant (a&, a3) and contravariant (a, a~)

basis vectors for the nonorthogonal coordinate system
used by Elson and Ritchie (Ref. 4).

hence g=det(g;„) =1 to linear order in g. The basis
vectors, covariant a,a., and contravariant Pa3, are
as shown in Fig. 4, while a, coincides with a' and

has the d.irection of the x axis.
For s waves, the eigenvectors of Il,' in u space

have only one component A' =A, =A„, which is con-
tinuous, has continuous derivatives and is the
tangential component A, . The normal component
A„vanishes. The continuity of the derivatives of
A ensures the continuity of B. Therefore, all the

boundary conditions on the true surface are satis-
fied.

On the other hand, for p waves, the eigenvectors
of H,' in u space have two components A„A3 or
A.', A'. Elson and Ritchie4 impose the continuity
of A' and. of eA'. It can be seen from Fig. 1 that
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A.' =A 3,' is indeed. A„, the component of A normal
to the actual surface; however, A =A a is not
equal to A„ the component of A tangent to the sur-
face. The third condition, the continuity of B„,
which is not independent of the first two, is also
violated. Therefore the boundary conditions im-
posed. in u-space are not equivalent to the correct
conditions in real space.

The above discussion accounts for the fact that
the ER-I results are correct for s waves, but not
for p waves and plasmon excitations, that have the
same character as p waves, while the ER-II meth-
od leads to correct results in all cases, because
only the tangential component of the Hertz super-
potential enters the continuity conditions, both for
s and for P waves. However, the ER-I method is
very appealing because it can be applied to general
quantum processes and does not suffer from the
uncertainties of the Crowell-Ritchie method for
oblique incidence. It is worth then looking for a
new coordinate transformation that avoids the dif-
ficulties connected with (4.1).

First of all, the theory is greatly simplified if
one chooses a unitary transformation (g = 1) and
works with contravariant components, because
then the condition divA = 0 [ i.e. , B;(vgA') = 0], re-
tains the Cartesian form ;A. ' =0 and is automati-
cally satisfied by the zeroth-order fields (3.4),
(3.5), (3.6), with r-u.

Let us further examine in detail the boundary
conditions (2.4) in terms of the components in the
u system. We shall of course choose the transfor-
mation so that u' =0 is equivalent to z = g. To sat-
isfy the conditions for s waves it is sufficient to
take u =x so thatg„=1, g„=g„=g„=g„=0.The
other constraints on the metric tensor are deter-

mined by the boundary conditions for p waves.
These are that, atu'=0: (a) A, =A,' implies that
A., ~A2 (b) A„=@A„' implies that A' =eA'2, and (c)
(rotA), = (rotA' ), implies that B,A, —B,A, = B,A,'

On the other hand, the zeroth-order fields satis-
fy the conditions: A.'=A. ", A'=eA", B+' —Bg'

These are compatible with (a), (b),
(c), and g= 1 if g;, =5;, and B,g;, =0 atu' =0. A
transformation that satisfies all these conditions
is

u =x,
u' =y+G 'gc(u') sinGu',

u' = z —gc (u') cosGu' .

(4 4)

h, =1+Ggc(u') sinGu',

h, =1 -Ggc(u2) sinGu', (4 5)

so thatg =(h, h, )' =1 to lowest order. The Hamil-
tonian is II =II o+II,', where

H,'= —,I dug [(@20(u2) —(u')(A')'

+ c' ~;j,;A" ', 4.6
jk

We recall that in the linear approximation it is
sufficient to consider only one Fourier component
of the wavity at the time, so that gc (y) = gee' '
+gee ' " and gc'(y) = —G2gc(y).

The metric tensor of the transformation (4.4) has
only two nontrivial components g»= (h, )' and g»
=(h, )', with

H, (G) = —,du (g sinGu2[&u'g(u2) —&u2] [(A2)' —(A')'] —2c2(B+ —BQ')[t.' sinGu'(B2A'+B2A')+ K'A' sinGu'

+ G gA' co sGu'] + c' sinGu'[(B g')' —(B,A.')'+ (B,A')' —(B2A')'] } . (4 I)

In the case of normal incidence and s-wave scatter-
ing we can put A' =A' =BQ"=0, so that only the
term (Bg')2 remains in (4.7). It is easy then to
recover the result (2,20), on which everyone
agrees.

For normal incidence and p-wave scattering or
photon-plasmon conversion we can put A. ' = , A'
=B,A.' =0. The calculation proceeds as in Sec. III,
but the algebra is more laborious. Anyhow, one
can check that the matrix element
(O~bG, 2H, (G)b1„,( 0) turns out to be the same a,s the
matrix element that appears in (3.8). Therefore
the result for P-wave scattering agrees with (3.10)
and (2.21). For the photon-plasmon conversion,
the calculation proceeds in the same way, except

GdG dQ —
2~ M~'b(ch, —~c),2p L 277

c (27')' 52

where co& is the frequency of the surface plasmon
of wave vector G, given by (1.1). The result is
equivalent to (2.28), namely,

(4.8)

12 e ~ g 5(1 2)2
&A = — dp cos2$

~ &c(2 ~) — 2,&, (4.9)

with o. =- &u/e~, in agreement with Crowell and
Rite hie. '

that the matrix elementM=(0(bo, H, (G)bt„, ~ 0) has
to be computed. The dissipated power per unit in-
cident flux, i.e., the decrease in ref lectivity ~R
is given by
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V. CONCLUSIONS AND DISCUSSION

The main result of this paper is as follows: All
methods, classical and quantum, give the same re-
sults for photon-photon and photon-plasmon tran-
sitions on rough surfaces, for normal incidence,
to first order in the surface wavity P. The results
are given by (2.20), (2.21), and (2.28).

The s-wave scattering result (2.20) has been
given by many authors. It is very simple and not
very interesting from the point of view of surface
studies, since it does not depend in any way on the
properties of the medium. The surface plasmon
does not couple to s waves. Physically, the factor
sin'P comes simply from the fact that s waves are
polarized with E perpendicular to G (i.e., parallel
to the grooves of the effective grating); therefore
only the component of the incident field that is
perpendicular to 0 is scattered in the s mode.

The p-wave scattering formula (2.21) confirms
the more recent result of Elson and Ritchie. ' The
physical origin of the factor cos'P can be under- .

stood by an argument complementary to that given
above for the sin'P factor for s waves. The re-
flected intensity depends on the properties of the

medium through e. The decrease in ref lectivity
due to the excitation of surface plasmons (2.28),
is in agreement with the result of Crowell and
Rite hie. '

We have presented and solved three formulations
of the problem. The approach of Sec. III requires
the least amount of algebra, but is restricted to
normal incidence. The classical approach is of
course limited to classical processes, and is in-
adequate or at least cumbersome to describe gen-
eral processes where the exchange of elementary
excitations is involved. That leaves the modified
Elson-Ritchie method of Sec. IV as the method of
choice. Applications to non-normal incidence and
to more general processes are in progress.
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