Intermolecular forces and equation of state for solid molecular H₂, D₂, ³He, ⁴He, and ^{20}Ne

L. V. Meisel and J. F. Cox

Physical Science Division, Watervliet Arsenal, Watervliet, New York 12189 (Received 3 April 1974)

Intermolecular potentials appropriate for solid H_2 , D_2 , ³He, ⁴He, and ²⁰Ne are deduced from analysis of the equation-of-state measurements of Stewart. Buckingham 6-exp potentials seem to be most appropriate. Lennard-Jones potentials fail to satisfactorily represent the data and full Buckingham potentials degenerate to 6-exp forms. The deduced intermolecular potentials are used to compute solid-phase thermodynamic functions over an extended pressure range.

I. INTRODUCTION

Pollock *et al.*¹ have shown that the harmonic approximation (HA) is valid for a class of Lennard-Jones and Buckingham 6-exp quantum solids by direct comparison of results with those from exact Monte Carlo calculations.² They also demonstrated that for the same class of solids the Domb-Salter³ approximation introduces negligible error for pressures between a few kilobars and several megabars.

Using published values^{4,5} of parameters appropriate to H₂, D₂, ³He, ⁴He, and ²⁰Ne Pollock *et al.*¹ computed equation-of-state curves at zero temperature and high densities in the HA. Good agreement with the experimental results of Stewart^{6,7} was obtained for ³He, ⁴He, and ²⁰Ne. Poor agreement with the experimental results^{6,7} for H₂ and D₂ led Pollock *et al.*¹ to suggest that something was amiss in the experiment or with the intermolecular potential used in their calculation. The latter possibility seemed the most likely to us.

We thought it useful to accept the HA, and within that limited context to adjust parameters in Lennard-Jones and Buckingham intermolecular potentials in such a way as to optimize agreement between Stewart's^{6,7} PV values and those computed for the model solid. It should be noted that potentials thus obtained may implicitly account, in some matter specific to the solid, for physical effects (i. e., deviations from pairwise additivity, hindered rotation, etc.), which would not appear in the gas or liquid phases.

The optimal potentials we obtain are compared with others given in the literature and are used to compute solid-phase thermodynamic functions over an extended pressure range.

II. MODEL POTENTIALS AND THERMODYNAMIC FUNCTIONS

The model potentials chosen are the Lennard-Jones 6-12 potential

$$V(r) = 4 \in [(\sigma/r)^{12} - (\sigma/r)^6],$$

with ϵ and σ adjustable parameters and the (full) Buckingham potential

$$V(r) = \begin{cases} Be^{-Ar} - c/r^{\delta} - c'/r^{\delta}, & r > r_{\max}, \\ \infty, & r < r_{\max}, \end{cases}$$
$$V(r) = \begin{cases} \frac{\epsilon}{1 - 6/\alpha} \left[\frac{6}{\alpha} \exp\left(\alpha - \frac{\alpha r}{r_{\max}}\right) - \left(\frac{r_{\max}}{r}\right)^{\delta} - Z\left(\frac{r_{\max}}{r}\right)^{\delta} \right], & r > r_{\max}, \end{cases}$$

the remainder of this paper: Sums over spacings l on a lattice L having unit lattice constant and excluding the origin will be denoted $\sum(l; L)$ and we define $S(I, X) = C(I)X^{-I}$, with $C(I) = \sum(l; L)l^{-I}$ and $R(I, X) = \sum(l; L)(lX)^{I-2}e^{-lx}$. When S(I) appears in an expression without an explicit X argument, take $X \equiv a/\sigma$ or a/r_m , where a is the lattice constant. When R(I) appears without an explicit X argument

with ϵ , α , $r_{\rm m}$, and Z adjustable parameters and $r_{\rm max}$ assumed small. The parameters A, B, C, and C' are defined in terms of ϵ , α , $r_{\rm m}$, and Z by the second equality. We will also use $\epsilon_0 \equiv \epsilon/(1-6/\alpha)$. The second form has been included so as to easily relate our results to the Buckingham 6-exp potential.

We use the following notation and definitions in

R	1763

Substance	с (К)	r _m (Å)	α	Z	А (Å ⁻¹)	10 ⁻⁶ B (K)	$10^{60} C$ (erg cm ⁶)	Pressure range for data included in fit
Н,	37.26	3.479	10.67	0	3,066	2,056	20.82	$P \ge 0$ kbar
H_{2}	35.96	3.474	10.77	0	3.100	2.152	19.67	$P \ge 0.4$ kbar
H_{2}	36.28	3.468	10.79	0	3.111	2.205	19.60	$P \ge 3$ kbar
H_2	37.3	3.337	14.0	•••	(4.19)	(33, 6)	(10.0)	Ref. 11
\mathbf{D}_{2}	18.99	3.790	11.84	0.4068	3.124	2.707	15.78	$P \ge 0$ kbar
$\tilde{\mathbf{D}_{2}}$	14.25	3.904	12,41	0.6200	3.178	3.274	13.49	$P \ge 0.4$ kbar
\mathbf{D}_{2}	35.62	3.482	10.40	$\mathbf{Set} = 0$	2.986	1.595	20.70	$P \ge 0.4$ kbar
³ He	7.038	3.485	12.65	0.692	3.630	1.982	3.313	$P \ge 1$ kbar
³ He	22.25	3.112	10.07	0	3.235	0.7743	6.914	$P \ge 3$ kbar
4 He	15.39	3.095	10.76	0	3.476	0.9133	4.219	$P \ge 1$ kbar
4 He	15.33	3.100	10.73	0	3.461	0.8909	4.258	$P \ge 3$ kbar
He	9.16	3.135	12.4	• • •	(3.95)	(2.08)	(2, 32)	Ref. 11
20 Ne	45.98	3.168	13.82	0	4.362	35.51	11.33	$P \ge 0$ kbar
Ne	38.0	3.147	14.5	• • •	(4.60)	(53, 1)	(8,68)	Ref. 11

TABLE I. Summary of optimal parameters for the Buckingham potential.

take
$$X = \alpha a/r$$
. Also define the deBoer parameter

$$\Lambda \equiv \hbar / (M \varepsilon \sigma^2)^{1/2} \text{ or } \hbar / (M \varepsilon_0 r_m^2)^{1/2}.$$

Thus, in Domb-Salter³ approximation we have (i) zero-point energy:

 $E_{ZP}^{LJ} = 2K\epsilon \Lambda [22S(14) - 5S(8)]^{1/2} \equiv 2K\epsilon \Lambda D^{LJ},$

$$E_{ZP}^{B} = K \epsilon_0 \Lambda \{ \alpha e^{\alpha} [R(2) - 2R(1)] \}$$

 $-5S(8) - \frac{28}{3}ZS(10)\}^{1/2} \equiv K\epsilon_0 \Lambda D^B,$

where $K = (\frac{9}{8})(\frac{10}{3})^{1/2}$;

(ii) static energy

 $E_{S}^{LJ} = 2\epsilon [S(12) - S(6)],$

 $E_{S}^{B}=0.5\epsilon_{0}[(6/\alpha)e^{\alpha}R(2)-S(6)-ZS(8)];$

TABLE II. Summary of results for optimal potential for H₂ (ϵ = 37.26 K, r_m = 3.479 Å, α = 10.67). Experimental data from Ref. 6.

Molar volume (ml)	Zero-point energy (K)	Static potential energy (K)	Total energy (K)	Computed pressure (bar)	Measured pressure (bar)
(m1) 22.65 21.00 20.00 19.20 18.00 16.10 15.10 14.30 13.20 12.40 11.80 11.30 10.60 10.10 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00	energy (K) 8.694×10 1.120×10 ² 1.291×10 ² 1.442×10 ² 1.694×10 ² 2.177×10 ² 2.484×10 ² 2.763×10 ² 3.206×10 ² 3.580×10 ² 3.894×10 ² 4.181×10 ² 4.629×10 ² 4.985×10 ² 5.900×10 ² 6.387×10 ² 6.927×10 ² 8.197×10 ² 8.197×10 ² 8.197×10 ² 9.781×10 ² 1.071×10 ³ 1.175×10 ³ 1.289×10 ³ 1.409×10 ³	energy (K) -2.638×10^2 -2.861×10^2 -2.997×10^2 -3.103×10^2 -3.250×10^2 -3.429×10^2 -3.429×10^2 -3.429×10^2 -3.185×10^2 -2.897×10^2 -2.564×10^2 -2.186×10^2 -1.452×10^2 -7.380×10^1 1.650×10^2 3.264×10^2 5.351×10^2 8.057×10^2 1.159×10^3 1.622×10^3 2.237×10^3 3.059×10^3 4.173×10^3 5.707×10^3 7.854×10^3	energy (K) -1.768×10^2 -1.741×10^2 -1.768×10^2 -1.662×10^2 -1.556×10^2 -1.235×10^2 -9.443×10 -6.190×10 2.073 6.829×10 1.330×10^2 1.995×10^2 3.176×10^2 4.247×10^2 7.551×10^2 9.652×10^2 1.228×10^3 1.558×10^3 1.978×10^3 3.215×10^3 5.348×10^3 6.995×10^3 9.262×10^3	$\begin{array}{c} \text{(bar)}\\ \hline 7.462\times10\\ 2.239\times10^2\\ 3.845\times10^2\\ 5.646\times10^2\\ 9.527\times10^2\\ 2.020\times10^3\\ 2.943\times10^3\\ 3.963\times10^3\\ 5.963\times10^3\\ 5.963\times10^3\\ 1.011\times10^4\\ 1.226\times10^4\\ 1.615\times10^4\\ 1.975\times10^4\\ 3.128\times10^4\\ 3.890\times10^4\\ 4.872\times10^4\\ 3.890\times10^4\\ 4.872\times10^4\\ 6.150\times10^4\\ 1.008\times10^5\\ 1.311\times10^5\\ 1.311\times10^5\\ 1.729\times10^5\\ 2.315\times10^5\\ 3.152\times10^5\\ 3.152\times10^5\\ 4.376\times10^5\end{array}$	$\begin{array}{c} \text{(bar)}\\ \hline 1.000\\ 2.000 \times 10^2\\ 4.000 \times 10^2\\ 6.000 \times 10^2\\ 1.000 \times 10^3\\ 2.043 \times 10^3\\ 3.000 \times 10^3\\ 4.000 \times 10^3\\ 6.000 \times 10^3\\ 6.000 \times 10^3\\ 1.000 \times 10^4\\ 1.200 \times 10^4\\ 1.600 \times 10^4\\ 2.000 \times 10^4\end{array}$
3.50 3.00 2.50	1.525×10^{3} 1.605×10^{3} 1.542×10^{3}	1.092×10^4 1.541×10^4 2.213×10^4	$1.245 imes 10^4$ $1.701 imes 10^4$ $2.368 imes 10^4$	$6.207 \times 10^{5} \\ 8.998 \times 10^{5} \\ 1.320 \times 10^{6}$	

Static

potential

TABLE III. Summary of results for optimal potential for D₂ (ϵ = 35.62 K, r_m =3.482 Å, α =10.40). Experimental data from Ref. 6. Measured Computed Total pressure pressure

(ml)	energy (K)	energy (K)	energy (K)	(bar)	(bar)
19.56	9.378×10	-2.957×10^{2}	-2.019×10^{2}	-1.106×10	1.000
18.50	$1.077 imes10^2$	-3.087×10^{2}	-2.009×10^{2}	1.992×10^{2}	$2.000 imes 10^{2}$
17.80	$1.179 imes 10^{2}$	-3.166×10^{2}	-1.986×10^{2}	3.936×10^{2}	4.000×10^{2}
17.20	$1.273\! imes\!10^{2}$	-3.225×10^{2}	-1.952×10^{2}	6.063×10^{2}	6.000×10^{2}
16.40	1.410×10^{2}	-3.290×10^{2}	-1.879×10^{2}	9.749 $ imes$ 10 2	1.000×10^{3}
14.90	$1.709 imes 10^2$	-3.330×10^{2}	-1.622×10^{2}	$2.044{ imes}10^3$	$2.043{ imes}10^3$
14.00	1.919×10^{2}	-3.274×10^{2}	-1.354×10^{2}	$3.042 imes 10^{3}$	$3.000 imes 10^{3}$
13.30	$2.103 imes 10^{2}$	-3.163×10^{2}	-1.060×10^{2}	$4.094 imes 10^{3}$	4.000×10^{3}
12.40	$2.371 imes 10^{2}$	-2.899×10^{2}	-5.282×10	5.950 $\times 10^{3}$	6.000×10^{3}
11.70	$2.607 imes10^2$	-2.559×10^{2}	4.774	$7.939 imes 10^{3}$	$8.000 imes 10^{3}$
11.20	$2.792 imes 10^2$	-2.218×10^{2}	5.746 $\times 10$	9.758 $ imes$ 10 3	1.000×10^{4}
10.70	2.994×10^{2}	-1.771×10^{2}	$1.224\! imes\!10^2$	$1.201 imes 10^4$	$1.200 imes 10^4$
10.00	3.308×10^{2}	-9.131×10	$2.395 imes 10^{2}$	$1.611 imes10^4$	$1.600 imes 10^4$
9.50	3.558×10^{2}	-8.362	3.474×10^{2}	1.995×10^{4}	2.000×10^{4}
9.00	$3.832 imes 10^2$	9.837 $\times 10$	$4.815 imes 10^{2}$	$2.480 imes 10^4$	
8.50	$4.132 imes 10^2$	$2.357 imes 10^{2}$	6.489×10^{2}	$3.098 imes 10^4$	
8.00	$4.463 imes 10^2$	$4.126 imes 10^2$	$8.589\! imes\!10^2$	3.891×10^4	
7.50	4.827×10^{2}	6. 412×10^2	$1.124 imes10^3$	$4.920 imes 10^4$	
7.00	$5.228\! imes\!10^2$	9.380×10 ²	$1.461 imes10^3$	$6.268 imes 10^4$	
6.50	$5.670 imes 10^2$	$1.326 imes 10^{3}$	1.893×10^{3}	8.055×10^{4}	
6.00	6.154×10^{2}	1.836×10^{3}	2.451×10^{3}	$1.045 imes10^5$	
5.50	6.681×10^{2}	2.513×10^{3}	3.181×10^{3}	$1.372\! imes\!10^5$	
5.00	7.244×10^{2}	3.423×10^{3}	4.147×10^{3}	1.824×10^{5}	
4.50	7.821×10^{2}	$4.659 imes 10^{3}$	5.441 $ imes 10^{3}$	$2.460 imes 10^{5}$	
4.00	$8.358 imes 10^{2}$	$6.366 imes 10^{3}$	$7.201\! imes\!10^3$	$3.366 imes 10^5$	
3.50	8.711 $\times 10^{2}$	8.758 $\times 10^{3}$	9.629 $\times 10^{3}$	$4.673 imes 10^{5}$	
3.00	8.468 $\times 10^{2}$	$1.217 imes10^4$	1.301×10^4	6.529×10^{5}	
2.50	5.917 $\times 10^{2}$	1.706×10^4	1.765×10^{4}	8.667×10^{5}	

TABLE IV. Summary of results for optimal potential for ³He ($\epsilon = 22.25$ K, $r_m = 3.112$ Å, $\alpha = 10.07$). Experimental data from Ref. 7.

Molar volume (ml)	Zero-point energy (K)	Static potential energy (K)	Total energy (K)	Computed pressure (bar)	Measured pressure (bar)
$12.86 \\ 11.07 \\ 10.16 \\ 9.60 \\ 9.15 \\ 8.79 \\ 8.21 \\ 7.76 \\ 7.41 \\ 7.12 \\ 6.86 \\ 6.66 \\ 6.48 \\ 6.00 \\ 5.50 \\ 5.00 \\ 4.50 \\ \end{bmatrix}$	$\begin{array}{c} 1.134 \times 10^2 \\ 1.543 \times 10^2 \\ 1.806 \times 10^2 \\ 1.992 \times 10^2 \\ 2.157 \times 10^2 \\ 2.300 \times 10^2 \\ 2.555 \times 10^2 \\ 2.776 \times 10^2 \\ 2.964 \times 10^2 \\ 3.131 \times 10^2 \\ 3.290 \times 10^2 \\ 3.541 \times 10^2 \\ 3.541 \times 10^2 \\ 3.891 \times 10^2 \\ 4.298 \times 10^2 \\ 4.751 \times 10^2 \\ 5.248 \times 10^2 \end{array}$	$\begin{array}{c} -1.\ 991\times10^2\\ -2.\ 123\times10^2\\ -2.\ 123\times10^2\\ -2.\ 120\times10^2\\ -1.\ 999\times10^2\\ -1.\ 999\times10^2\\ -1.\ 908\times10^2\\ -1.\ 685\times10^2\\ -1.\ 424\times10^2\\ -1.\ 151\times10^2\\ -8.\ 650\times10\\ -5.\ 535\times10\\ -2.\ 718\times10\\ 1.\ 778\\ 9.\ 941\times10\\ 2.\ 428\times10^2\\ 4.\ 474\times10^2\\ 7.\ 416\times10^2\\ \end{array}$	$\begin{array}{c} -8.566 \times 10 \\ -5.796 \times 10 \\ -3.136 \times 10 \\ -8.082 \\ 1.585 \times 10 \\ 3.923 \times 10 \\ 8.702 \times 10 \\ 1.352 \times 10^2 \\ 1.813 \times 10^2 \\ 2.266 \times 10^2 \\ 2.737 \times 10^2 \\ 3.148 \times 10^2 \\ 3.559 \times 10^2 \\ 4.885 \times 10^2 \\ 6.726 \times 10^2 \\ 9.225 \times 10^2 \\ 1.266 \times 10^3 \end{array}$	$\begin{array}{c} 8.197 \times 10^2 \\ 1.967 \times 10^3 \\ 3.046 \times 10^3 \\ 3.992 \times 10^3 \\ 4.971 \times 10^3 \\ 5.936 \times 10^3 \\ 7.938 \times 10^3 \\ 9.994 \times 10^3 \\ 1.200 \times 10^4 \\ 1.400 \times 10^4 \\ 1.611 \times 10^4 \\ 1.798 \times 10^4 \\ 1.987 \times 10^4 \\ 2.612 \times 10^4 \\ 3.512 \times 10^4 \\ 4.786 \times 10^4 \\ 6.619 \times 10^4 \end{array}$	$\begin{array}{c} 1.\ 000\times 10^{3}\\ 2.\ 000\times 10^{3}\\ 2.\ 000\times 10^{3}\\ 3.\ 000\times 10^{3}\\ 5.\ 000\times 10^{3}\\ 5.\ 000\times 10^{3}\\ 6.\ 000\times 10^{3}\\ 1.\ 000\times 10^{4}\\ 1.\ 200\times 10^{4}\\ 1.\ 600\times 10^{4}\\ 1.\ 800\times 10^{4}\\ 2.\ 000\times 10^{4}\\ \end{array}$
4.00 3.50 3.00	$5.772 \times 10^{2} \\ 6.273 \times 10^{2} \\ 6.590 \times 10^{2}$	$1.170 \times 10^{3} \\ 1.802 \times 10^{3} \\ 2.754 \times 10^{3}$	$\begin{array}{c} 1.\ 747 \times 10^{3} \\ 2.\ 430 \times 10^{3} \\ 3.\ 412 \times 10^{3} \end{array}$	9.304×10^4 1.329×10^5 1.918×10^5	

Molar volume

Zero-point

Molar volume (ml)	Zero-point energy (K)	Static potential energy (K)	Total energy (K)	Computed pressure (bar)	Measured pressure (bar)
12.25	9.494×10	-1.364×10^{2}	-4.141×10	1.037×10^{3}	1.000×10^{3}
10.72	$1.265 imes 10^{2}$	-1.406×10^{2}	-1.409×10	$2.099 imes10^3$	2.000×10^{3}
9.93	$1.470\! imes\!10^2$	-1.372×10^{2}	9.787	3.049×10^{3}	$3.000 imes 10^3$
9.38	$1.634 imes 10^{2}$	-1.307×10^{2}	3.263×10	$3.977 imes 10^{3}$	4.000×10^{3}
8.96	$1.773\! imes\!10^2$	-1.226×10^{2}	5.473×10	4.891×10^{3}	5.000×10^{3}
8.59	1.908×10^{2}	-1.124×10^{2}	7.843×10	$5.889 imes 10^{3}$	6.000×10^{3}
8.01	2.145×10^{2}	-8.859×10	$1.259 imes 10^2$	$7.938 imes 10^{3}$	8.000×10^{3}
7.58	$2.344 imes 10^{2}$	-6.269×10	$1.717 imes 10^{2}$	9.973×10^{3}	$1.000 imes 10^4$
7.21	$2.534{ imes}10^2$	-3.276×10	$2.207 imes 10^2$	$1.220 imes 10^4$	$1.200 imes 10^4$
6.94	2.685×10^{2}	- 5.259	$2.633 imes 10^{2}$	1.419×10^{4}	1.400×10^{4}
6.72	$2.817 imes 10^{2}$	2.146×10	3.031×10^{2}	$1.608 imes 10^4$	$1.600 imes 10^4$
6.53	2.937×10^{2}	4.819×10	3.419×10^{2}	$1.795 imes 10^4$	$1.800 imes 10^4$
6.37	3.043×10^{2}	7.371×10	$3.780 imes 10^2$	1.972×10^{4}	2.000×10^4
6.00	3.309×10^{2}	$1.453{ imes}10^2$	$4.762 imes 10^{2}$	$2.464 imes 10^4$	
5.50	$3.718 imes 10^2$	$2.785 imes 10^{2}$	6.504×10^{2}	$3.374 imes 10^4$	
5.00	4.196×10^{2}	4.719×10^{2}	$8.915 imes10^2$	$4.703 imes 10^4$	
4.50	$4.756 imes 10^2$	$7.563 imes 10^2$	$1.232\! imes\!10^3$	$6.692 imes 10^4$	
4.00	5.414×10^{2}	$1.182 imes 10^{3}$	$1.724{ imes}10^3$	$9.765 imes 10^4$	
3.50	$6.185 imes 10^2$	$1.835\! imes\!10^3$	$2.454{ imes}10^3$	$1.468\! imes\!10^5$	
3.00	7.069×10^{2}	2.867×10^{3}	$3.574{ imes}10^3$	2.288×10^{5}	

TABLE V. Summary of results for optimal potential for ⁴He ($\epsilon = 15.33$ K, $r_m = 3.100$ Å, $\alpha = 10.73$). Experimental data from Ref. 7.

TABLE VI. Summary of results for optimal potential for $^{20}\mathrm{Ne}$ (c = 45.98 K, r_m =3.168 Å, α =13.82). Experimental data from Ref. 6.

Molar volume (ml)	Zero-point energy (K)	Static potential energy (K)	Total energy (K)	Computed pressure (bar)	Measured pressure (bar)
14 00	F 001 v 10	9.656.4102	2 054.102	1.051102	1 000
14.00	7.221×10	-3.676×10^{2}	-2.954×10^{2}	-1.251×10^{2}	1.000
13.70	7.731×10	-3.727×10^{2}	-2.954×10^{2}	1.332×10^{2}	2.000×10^{2}
13.50	8.088×10	-3.757×10^{2}	-2.948×10^{2}	3.349×10^{2}	4.000×10^{2}
13,30	8.460×10	-3.783×10^{2}	-2.937×10^{2}	5.633 $\times 10^{2}$	6.000×10^2
13.00	9.048×10	-3.814×10^{2}	-2.909×10^{2}	9.634 $\times 10^{2}$	1.000×10^{3}
12.30	1.057×10^{2}	-3.835×10^{2}	-2.777×10^{2}	$2.236 imes 10^{3}$	$2.043 imes 10^{3}$
12.00	1.130×10^{2}	-3.814×10^{2}	-2.683×10^{2}	$2.968\! imes\!10^3$	3.000×10^{3}
11.60	1.236×10^{2}	-3.748×10^{2}	-2.512×10^{2}	$4.174{ imes}10^3$	4.000×10^{3}
11.10	$1.383\! imes\!10^2$	-3.586×10^{2}	-2.203×10^{2}	$6.153 imes 10^{3}$	6.000×10^3
10.80	$1.480 imes 10^{2}$	-3.434×10^{2}	-1.954×10^{2}	7.662×10^{3}	8.000×10^{3}
10.40	$1.621\! imes\!10^2$	-3.148×10^{2}	-1.527×10^{2}	$1.016 imes 10^4$	1.000×10^4
10.20	$1.697 imes 10^{2}$	-2.962×10^{2}	-1.264×10^{2}	$1.165 imes 10^{4}$	1.200×10^{4}
9.70	$1.907 imes 10^{2}$	-2.336×10^{2}	-4.290×10	1.633×10^{4}	1.600×10^{4}
9.40	2.047×10^{2}	-1.824×10^{2}	2.237×10	1.993×10^{4}	2.000×10^4
9.00	2.254×10^{2}	-9.314×10	1.322×10^{2}	2.596 $\times 10^4$	
8.50	2.548×10^{2}	6.250×10	3.173×10^{2}	3.613×10^4	
8.00	2.890×10^{2}	2.860×10^{2}	5.750 $\times 10^{2}$	5.042 $\times 10^{4}$	
7.50	3.291×10^{2}	6.062×10^{2}	9.354 $\times 10^{2}$	7.076×10^4	
7.00	3.766×10^{2}	1.066×10^{3}	1.443×10^{3}	1.001×10^{5}	
6.50	4.331×10^{2}	1.731×10^{3}	2.164×10^{3}	1.431×10^5	
6.00	5. 011×10^2	2.701×10^{3}	3.203×10^{3}	2.075×10^{5}	
5 50	5.839 $\times 10^{2}$	4.136×10^{3}	4.720×10^{3}	3.061×10^{5}	
5 00	6.860×10^{2}	6.296×10^3	6.982×10^3	4 611×10^5	
4 50	8.140×10^{2}	9.622 $\times 10^3$	1.044×10^4	7.130×10^{5}	
4 00	9.775 $\times 10^2$	1.489×10^4	1.587×10^4	1 120 ~ 106	
3 50	1.191×10^{3}	2.356×10^4	2.007×10^{4}	1 206 106	
0.00	1.101/10	2.000 10	4.4(0×10*	T.030×10.	

(iii) pressure:

$$P^{LJ} = (\epsilon/V) \{8S(12) - 4S(8)\}$$

$$+ \left(\frac{4}{3}K\Lambda\right) [77S(14) - 10S(8)]/D^{LJ} \},$$

$$P^{B} = (\epsilon_{0}/V) \{ (e^{\alpha}/\alpha)R(3) - S(6) - ZS(8) + (\frac{1}{8}K\Lambda) [\alpha e^{\alpha}R - 40S(8) - \frac{280}{3}ZS(10)]/D^{B} \},$$

where R = R(3) - 2R(1) - 2R(2) and D^{LJ} and D^{B} are defined above.

The S(I, X) and R(I, X) are related to the two types of S^{I} functions of Pollack *et al.*, ¹ viz., $S(I, X) = S^{I}$ and $R(I, X) = X^{I-2}S^{I}$.

III. NUMERICAL DETAILS

The C(I) lattice sums were computed on a $40 \times 40 \times 40$ -cell fcc lattice and agreed with those given in Ref. 1, where such values where given. The required R(I, X), I=1, 2, 3 were computed for integer X from 1 to 100 on lattices including $12 \times 12 \times 12$ cells at the larger X values and ranging up to $40 \times 40 \times 40$ cells for $X \le 3$. The logarithm of the functions were fit with cubic splines to allow interpolation to noninteger X values.

The data were usually fit by minimizing the squared deviations of the computed from the measured product of pressure and volume. The Rosenbrock⁸ algorithm was employed to determine the optimal set of parameters. Even in the four parameter fits with a "bad-guess" start, less than 500 iterations of the algorithm sufficed for convergence.

IV. RESULTS AND DISCUSSION

A satisfactory representation of Stewart's^{6,7} experimental data in the quantum solids H_2 , D_2 , ³He, and ⁴He with a Lennard-Jones potential is not possible even after adjustment of the parameter values to fit the experimental data. The optimal set of parameters is found to depend strongly on the subset of data fit; e.g., the ϵ parameter for H₂ is found to be about twice as large for a fit to all of Stewart's data as for a fit to the data above 2 kbar.

On the other hand the ²⁰Ne data could be well described with a Lennard-Jones potential. The optimal set of parameters being practically independent of the choice of data subset, e.g., the ϵ parameter is found to be 37.6 K for a fit to all the data and 36.4 K for a fit to the data above 2 kbar. (σ is 2.83 Å in both cases.) These optimal parameters with respect to Stewart's ²⁰Ne data compare reasonably with the values of Brown as reported in Ref. 1, viz., $\epsilon = 36.8$ K and $\sigma = 2.79$ Å,

The experimental data in the quantum solids (with the exception of D_2) and ²⁰Ne are satisfactor-

The 3 He molar volumes for 1 and 2 kbar which appear in Table II of Ref. 7 were deduced by combining the Grilly-Mills⁹ molar volume measurements along the melting curves of ³He and ⁴He with the Dugdale-Simon¹⁰ ⁴He isochores. When these values are included the optimal parameters in a Buckingham potential for ³He change markedly from those deduced when they are excluded; in particular, a nonzero Z is obtained.

The D_2 data are not well represented by the Buckingham potential in the sense that different optimal parameter sets, including nonzero Z, are obtained for different data subsets. However, when Z is fixed at zero, the Buckingham 6-exp parameters obtained are consistent with those determined for H_2 and a satisfactory fit to the experimental data is obtained.

The Buckingham potential results are summarized in Table I. Thermodynamic results are summarized for the optimal 6-exp potentials in Tables II-VI.

The deduced parameters do not agree well with those derived from virial coefficient and viscosity measurements¹¹ (except for the ²⁰Ne Lennard-Jones parameters). However, the repulsive potential deduced for H_2 and D_2 is consistent with the estimates of Hoover et al.¹² based upon the calculations of Tapia $et \ al.$, ¹³ and also with the calculations of Magnasco and Musso.¹⁴ (See also the review article of McMahon et al.¹⁵)

We have performed our high-pressure extrapolations using the intermolecular potentials deduced separately from the H_2 and D_2 data and from the ³He and ⁴He data. We do not mean to imply that we believe the intermolecular potential for the hydrogen or helium isotopes to be different but rather to indicate the uncertainty in the determination of these potentials and thus in the extrapolated thermodynamic functions.

ACKNOWLEDGMENT

We wish to thank Alma M. Gray, D. M. Gray, and R. D. Scanlon for valuable discussions.

- ²T. A. Bruce, Phys. Rev. B 5, 4170 (1972).
- ³C. Domb and L. Salter, Philos. Mag. 43, 1083 (1952). ⁴J. deBoer and A. Michels, Physica (Utr.) 5, 945 (1938).

1766

ily represented with a Buckingham potential. However, the optimal parameters in H_2 , ³He (excluding the 1- and 2-kbar points from the fit), ⁴He, and ²⁰Ne exhibit a remarkable effect: The Z (or C') parameter, which gives the strength of the induceddipole induced-quadrupole interaction, is essentially zero. This result implies that the intermolecular potential in H_2 , ³He, ⁴He, and ²⁰Ne can be satisfactorily represented by a Buckingham 6-exp potential.

¹E. L. Pollock, T. A. Bruce, G. V. Chester, and J. A. Krumhansl, Phys. Rev. B 5, 4180 (1972).

⁵I. B. Srivastava and A. K. Barua, Indian J. Phys. 35,

320 (1961).

- ⁶J. W. Stewart, J. Phys. Chem. Solids <u>1</u>, 146 (1956). ⁷J. W. Stewart, Phys. Rev. <u>129</u>, 1950 (1963).
- ⁸H. H. Rosenbrock, Computer J. <u>3</u>, 175 (1960).
- ⁹E. R. Grilly and R. L. Mills, Ann. Phys. (N.Y.) 8 (1959).
- ¹⁰J. S. Dugdale and F. E. Simon, Proc. R. Soc. A 218, 291 (1953).
- ¹¹J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New

York, 1954).

- ¹²W. G. Hoover, M. Ross, C. F. Bender, F. J. Rogers, and R. J. Olness, Phys. Earth Planet. Inter. 6, 60 (1972).
- ¹³O. Tapia, G. Bessis, and S. Bratoz, Intern. J. Quantum Chem. Symp. <u>4</u>, 289 (1971). ¹⁴V. Magnasco and G. F. Musso, J. Chem. Phys. <u>46</u>,
- 4015 (1967).
- ¹⁵A. K. McMahon, H. Beck, and J. A. Krumhansl, Phys. Rev. A 9, 1852 (1974).