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A study of the formal relations existing among three recent theories of excitation transfer is made and
exact results concerning the two-molecule system are presented. An equivalence is established between
the Haken-Reineker-Strobl (HRS) and the Grover-Silbey (GS) formalisms (before the partial Markoffian
approximation) on one hand and the Kenkre-Knox (KK) formabsm on the other. This equivalence
takes the form of a simple relation between the KK memory %7(t) and a function [g(t) —1]
appearing in the GS theory. It is shown that the two-term nature of the GSHRS diffusion constant can
be understood clearly in terms of this relation, and the ranges of validity of the various theories,
including that of the "GSHRS equation, " are discussed.

I. INTRODUCTION

Excitation transfer in molecular aggregates and
in particular its coupled wavelike (coherent) and
diffusive (incoherent) nature have recently been the
subject of considerable theoretical analysis. In
the context of extended systems the problem of the
coupled behavior is popularly known as the issue
of the Forster-Dexter motion' versus the Frenkel
motion~ of excitons. Formalisms capable of pro-
viding a unified descripti. on of such hybrid motion
have been constructed~ ' by (i) Haken and Strobl,
and Haken and Reineker (HRS), (ii) Grover and
Silbey (GS), and (iii) Kenkre and Knox (KK), a.mong
others. The various assumptions and approxima-
tions used in these formalisms as well as the con-
cllls'LQILS 1'eaclled appea1' to diffel (so111e'tLInes sig-
nificantly) and it is therefore important to examine
the relation that these approaches bear to one
another. The beginnings of such an examination
are the content of this paper.

The three formalisms ' mentioned above pro-
vide evolution. equations for a, coarse-grained den-
sity matrix in the space of the molecular sites, the
starting point for these analyses being the Liou-
ville equation for the microscopic density matrix.
The HRS theory splits the intersite interaction into
a coherent and an incoherent part, treats the for-
mer through the Qlouville equation and the latter
through stochastic analysis, and arrives at an
equation describing the coupled wavelike and dif-
fusive motion of excitons. An important transfor-
mation resulting in a "clothing" of excitons is used
in the GS theory but in view of the fact that we are
here concerned only with the formalisms for the
evolution of the density matrix, no comments will
be made here on the transformation. Similarly,
differences like the presence of the local scattering
term in the analysis of Ref. 3 but not in that of
Ref. 4 are of no relevance to the present discus-
sion of the formal structure of the theories. The
QS theory may then be described as proceeding

through phonon-averaging projections (or equiva-
lent methods) to an evolution equation for the den-
sity matrix which has a coherent part as in the HRS
equation and an "incoherent" part which is non-
Markoffia, n in nature. If the Markoffian assumption
is made on this part, the QS theory provides an
equation which is formally identical to its HRS
counterpart. This agreement should not be sur-
prising. Although the two theories do differ wide-
ly in their initial approach, the Markoffian assump-
tion, when made for the "incoherent" term in the
GS theory takes the place of the stochastic assump-
tion in the HRS theory. There is thus a formal
identity which causes both theories to result in the
same equation. We shall term this the GSHRS
equation.

The KK theory differs both in the technique of
its derivation and the formal nature of the resulting
equation. The Zwanzig derivation of the general-
ized master equation and its further developments
form the basis of this theory. Using projections
which diagonalize and coarse grain simultaneously
a closed equation is del ived for the dgggo'plgl part
of the coarse-grained density matrix. This is a
non-Markoffian equation which leads to the Forster
theory in the Markoffian limit. Unlike the GSHRS
treatment, the KK analysis does not i.nvolve a sep-
aration of the coherent and the incoherent parts in
the evolution equation. Rather the two are com-
bined into the memory and the "coherent part of
the evolution" is reflected in the non-5 nature of
this memory.

As a first step in the understanding of the rela-
tion between the GSHRS and the KK theories, the
mean-square displacement (x1(t) ) was analyzed
in the context of the two theories. It was shown
that the (x ) predicted by the GSHRS equation cor-
responds to the one arrived at through the KK the-
ory when the memory in the KK equation is taken
as the sum of an exponential a,nd a 5 function and
it was remarked that this is an approximati. on to
the much more complex memory obtained in the KK
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theory from optical spectra. The above form of
the memory corresponding to the GSHRS equation
is however valid only for the calculation of (x~&
and the computation of the actual memory occurring
in the probability equation is still necessary. Such
a computation is given below.

H. RELATION

A formal equivalence has been stated above to
exist between the HRS and the GS theories. An ex-
plicit demonstration is straightforward. Equation
(3. 31) of Ref. 3a is

d,
""' =-f[ff, &p&1, -2«p.. &

+25 .P r„„&p &+2(1 - 5„„.)r„„&p„„&,
(»)
(lb)

In keeping with the nearest-neighbor approxima-
tion made in Ref. 4 and the absence therein of the
local scattering, we write H„„~ = J'(5„„,+5„„,,),
y, =0, and y„„.= y, (5„,„,+5„„,,), which reduces
the above equations (1) to

ent in the Liouville-equation-like term and the in-
coherent parameters A and B are factors i.n the
Master-equation-like terms. The absence of the
J' terms would give incoherent hopping and that of
the &, B terms would result in purely coherent os-
cillations. The GSHRS theory thus describes the
coupled motion by the "addition" of coherent and
incoherent terms.

In almost all applications of the GSHRS theory
it is assumed that at t = 0 the excitation resides
totally on one molecule, although this (important)
initial condition is not always stated explicitly.
This assumption will also be made in the subse-
quent analysis in this paper. Equation (2b) and a
similar equation for p», when Laplace trans-
formed, give

~(P21 Plp) = —»~ (Pu P2&) ——»(P21 P]?) (3, )

where the tilde denotes the transform (except in
which is in keeping with the notation of Ref. 4)

and e is the Lapla, ce variable. With (3) in the
transform of (2a) and a Laplace inversion, one
immediately recasts (2a) as a closed proba, bility
equation in the KK form

d(p„„,) = —f&((p.„,.&+(p. , „&
dp„(t)

dt
ds N(f —s)[P2g(s) —pyy(s)],

I'=2y~ .

—(p....&&-&p... &&)

—1"[2(p„„&-5.. (&p.,g.. .g&+&p. g. , &)

—(5...~. +5... ) (p. .&], (la')
(lb')

dpg2

dt fI(pea p»)+ -&(p» - p-»), (2b)

etc. , where p», p» are the probabilities that the
excitation resides on the two molecules and p»,
p» are the off-diagonal elements of the coarse-
grained density matrix. Equations (2) may be ob-
tained either from the GS formalism in Ref. 4 or
from Eq. (3.35) of Ref. 8. The quantities. 4(0) and

y(0) in the latter correspond, respectively, to 2A
and 2B above. The coherent parameter J is pres-

With the identification of the GS symbols m, g„(f)
and 2g~y~(f), with the respective HRS symbols n,
(p„„,&, and 1, Eqs. (1) are exactly equivalent to
Eq. (34) of Ref. 4. [This involves the approxima-
tion y, (f) = y, (~) mentioned above. ]

It therefore suffices to investigate the relation-
ship existing between the KK theory and the com-
bined GSHRS theory. This is particularly simple
in the context of a two-molecule system. Labelling
the two equal-energy molecules 1 and 2, the GSHRS
equation takes the form

dpgg

dt (Pai %2) +A(pma —P~&) ~

where the memory W(t) is given by

'W(t)=2Zae ~ +Ah(t) . (5)

The functional form of the memory in the actual
probability equation for the two-molecule system
is therefore identical to the form obtained earlier~
for the particular purpose of the calculation of the
mean-square displacement. This should be corn-
pared with a curve like the one shown in Fig. 2 of
Ref. 5b, which has been obtained from the KK the-
ory for the system of two anthracene molecules in
cyclohexane solution. The exponential part can be
understood as corresponding to a Lorentzian ap-
proximation to the E(z) curve of Fig. 1 in Ref. 5b,
which would be exact if the modified absorption
and emission spectra were Lorentzians without a
Stokes shift. Attempts at understanding the origin
of the A5(t) term in (5) in terms of the KK theory
lead one to the requirement that Il (g) must have a
nonzero part at z= ~, which could result only
from the catastrophical requirement that the modi-
fied absorption and emission spectra possess non-
zero values at infinite frequency. It should be
trivially obvious, however, that this unphysical
conclusion is the result of stretching the GSHRS
equation beyond its range of validity. As has sure-
ly been recognized by the authors of Refs. 3 and 4,
the equation is not valid at times which are too
small and the singular term in Eq. (5) must not
therefore be used at very small t's or its corre-
sponding E(z) at very large z's. This restriction
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+ ds &(t- s)[p2, (s) —p„(s)], (6)

dp„(t)
CP

+ ds d&(t —s)l p2, (s) —p&2(s)l (7)

from which Eqs. (1) and (2) were derived via the
approximation C(t) =AD(t); $(t) = B5(t). These
equations correspond to Eq. (3.23) of Ref 8a.nd

may be said to appear implicitly in Refs. 3 and 4,
e.g. , before the approximation imposed by Eq.
(3.17) of Ref. 3b. In Ref. 8 the time dependence
of 8(t) is identical to that of $(t). Writing these
terms as A&j(t) and Bq(t}, respectively, where
q(t) is identical, except for constant factors, to
the [g(t) —1] of Ref. 4, one can prove the following
relation between the Laplace transforms of these
quantities and of the memory 'ut(t) appearing in

Eq. (4):

~(g) = 272/[&+ 2B&j(~)]+A&j(e) .

This exact relation between the GSHRS formalism
in its general form (without the Markoffian approxi-
mation) and the KK formalism, established for the
two-molecule system, is the primary result of this
paper. Equation (5) is recovered under the approxi-
mation &j(t) = 6(t), consistent with the GSHRS equa-
tion. The memory in the KK equation is seen to be
a sum of two exponentials with different time con-
stants if in Eqs. (6) and (7) the Markoffian approxi-
mation is made on the sj(t) term and if 8(t) is as-
sumed to be an exponential. It is instructive to
calculate the form of 'j&j&(t) when Vj(t) is the normal-
ized exponential y e "'. Equation (8) predicts

VP(t) =2J'e "' 2 cos + —sin +Aye "'yat & . yat
a

if ya =—8P —yoQ and

~(t)=(g /l&)[(I+6) e "'t 2&'~2 —(1 —f&) e &' +&'&~~2]

+Aye "' (10)

if yf&2 = y- 8B ~ 0. Equation (9) shows decay with
oscillations, a behavior often observed in 'P(t)'s
computed from the spectra of real substances and

on the GSHRS equation concerning the time scale
of description is not shared by the KK theory. The
latter should therefore be compared with the for-
malism of Refs. 3 and 4 zvithout the Markoffian ap-
proximation.

Consider then

dp„(t)
dt

= —i& (P2&
—

P&2)

Eq. (10) corresponds to an E(z) built from three
Lorentzians.

III. DISCUSSION

2D=

Viewed thus, it is clear that the two-term nature
of GSHR diffusion constant is merely a consequence
of expressing the actual memory w(t), or more
generally the evolution, as the sum of two terms.
This is the result of the particular formal struc-
ture of "stochastic-Liouville" equations. One sees
that the characterization of one of the terms in D
as purely coherent and the other as totally inco-
herent is not necessarily appropriate under arbi-
trary conditions.

For purposes of comparison we identify three
entities: (i) the KK formalism, (ii) the GSHRS fox
malism, and (iii) the GSHRS equation. Their es-
sential formal contents are, respectively, (i) the
generalized master equation, e. g. , Eq. (4), (ii)
the generalized "stochastic- Liouville" equation
which is also partly non-Markoffian, e. g. , Eqs.
(6) and (7), and (iii) the "stochastic-Liouville"
equation which has no memory, e.g. , Eqs. (2}.

Formal relations existing among three recent
theories of excitation transfer have been investi-
gated above. An equivalence has been established
under quite general conditions between two of them
(HRS and GS} and the relation between these and
the third theory (KK) has been exhibited in the par-
ticular context of a two-molecule system. This
relation takes the form of an explicit expression
[Eq. (8)] connecting the memory ~(t) and the func-
tion &j(t) [or, in the terminology of Ref. 4, [g(t)
—1]jappearing, respectively, in the KK and
GSHRS theories. Within the present restricted con-
text, Eq. (8) may be said to establish a bridge not
only between these theories of excitation transfer
but between two general approaches to transport
analysis: the formalism of non-Markoffian equa-
tions"o and that of generalized "stochastic-Llou-
ville" equations. " The latter describe coupled co-
herent and incoherent motion essentially by an ad-
dition of terms as in Eqs. (2), (6), a,nd (7), where-
as the former do not resort to such a separation
but utilize the non-5 nature of the memory.

One of the primary results of the GS and the
HRS theories has been the diffusion constant D per-
taining to the eventual incoherent motion of the
excitons. Both these theories predict D to have a
two-term nature. Equation (8) above yields an
immediate formal understanding of this two-term
nature. The author has shown elsewhere7 that
d(x2)/dt is proportional to the integral of the
memory %(t). Using Munn's result'2 concerning
the identity of D and —,'(d (x2)/dt), =„, one obtains

CO J' 2

dt 'N(t) = t&v(0) = —- +A&j(0) . (11)
0 Bq 0



V. M. KENKRE

Entity (ii) appears expli. citly in the GS treatment '
but only implicitly in the HRS analysis. Entity
(iii) has not been displayed or used by GS except
for calculating (x2) for long times. It has, how-
ever, been used by other authors as the starting
point of thei. r analyses and it also appears explicit-
ly in the HRS theory. '

As we have shown above, entitles (I) and (il) ale
formally equivalent to each other and entity (iii) is
an approximate form of entity (ii) under the partial
Markoffian assumption. In the context of the two-
molecule system, the relation between (i) and (iii)
i.s given by Eq. (5) and that between (i) and (ii) by
Eq. (8). The latter equation makes particularly
clear the various ranges of validity on the time
axis. Using the complete memory W(f) gives the
maximum domain of validity (next to that of the
Liouville equation itself) and this corresponds to
entity (i) or equivalently to (ii). Entity (iii) has a
smaller range of validity (is valid only at larger
times) due to its Markoffian approximation on a,

part [viz. , A7}(t)] of the memory 'VV(f). Finally,
the traditional theory' based on the Pauli master
equation has the smallest range of validity due to
its Markoffian assumption on the entire W(f). Ob-
viously, a completely correct description of the
reversible nature of the excitation transfer can be
provided only by the Liouville equation itself. The
thermodynamic limit or the assumption of line
broadening (the elimination of Poincare cycles),
whether taken explicitly or implicitly, already in-
troduces a change in the description. Further ap-
proximations, whether like the Markoffian assump-
tion on the "incoherent" part resulting in the GSHRS
equation or like the Markoffian assumption on the
entire part resulting in the Pauli Master equation
can provide only approximate descriptions of the
actual (reversible) nature of excitation transfer.

Although an equivalence exists between the for-
malisms underlying the KK and GSHHS theories,
the latter is used primarily under the partial Mar-
koffian approximation and the validity of the GSHRS

+(t}

FIG. 1.. Memory with a single time constant.

FIG. 2. Memory with two time constants.

equation must therefore be examined more care-
fully. It is obvious that in all nonpathological cases
evolution at sufficiently long times will be correct-
ly described by the GSHRS equation. However a
description of the motion for short times and analy-
ses like coherence criteria, which are based on the
short-time behavior, could well be in error. To
appreciate this fact examine Eq. (8) and observe
that the approximation leading to the GSHRS equa-
tion has two effects on the memory &(f): (a) a
part of %'(f) is approximated by a 5 function, and
(b) the other part is approximated by an exponen-
tial, leading thus to a form for W(f ) which has two
parts possessing widely differing time constants.
While effect (a) above involves an approximation,
it is relatively unimportant particularly if interest
is focused on evolution for times large compared to
the decay of the part approximated. '4 Effect (b) is
serious and it forces W(f) into a particular form
independent of its actual form. Given a Hamilto-
nian, a representation, a level of coarse graining,
and a certain class of initial conditions, there al-
ways exists a definite memory VP(f). It may or
may not have the two-time-constant form which
the GSHBS equation must impose. It should be
clear therefore that while for systems with mem-
ories like that in Fig. 2 the GSHRS equation can
provide a good description, serious errors in analy-
ses like coherence criteria (often predicting more
coherence than actually exists) would result if the
equation is used for systems with memories like
that in Fig. l.

We must hasten to add that the comparison in the
present paper is only between the formal frame-
works of the various theories and that their de-
tailed physical content (as well as the validity of
the perturbation approximations used in them) has
not been discussed here. These are important is-
sues, we have analyzed them recently and they will
be reported elsewhere. In view of the conclusion
that the approach of the stochastic-Liouvi. lie equa-
tions is particularly useful for the description of
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systems typified by Fig. 2 but not of systems typi-
fied by Fig. 1, one must ask what systems possess
such memories and what criteria can help one de-
cide the applicability of the approach for a given
system. Answers to these questions have been
provided in terms of spectral properties and have

been confirmed by model calculations. 'a
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