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Polarized-neutron experiments have been used to measure the temperature dependence of the
susceptibility of the Gd'+ ion at the two different crystallographic sites in cubic Gd20, in the
paramagnetic state. Below 10'K these susceptibilities are quite different because of the different net
exchange interactions with the rest of the crystal. The temperature dependences of the first- and
second-neighbor spin correlations have also been observed through measurement of the diffuse scattering
of unpolarized neutrons. An approximate theory of the magnetic behavior of Gd, O, in the
paramagnetic region is presented which provides predictions of the susceptibilities, spin correlations, and
specific heat which are in reasonable accord with experimental results. The previously reported
paramagnetic form factor for Gd,O, has been revised slightly, leading to the conclusion that there is no
convincing evidence supporting a difference in the 4f spin density between the metallic and oxide cases.

I. INTRODUCTION

In previous investigations~'2 we measured the
diffuse magnetic scattering of neutrons by cubic
Qd~03, thus obtaining a paramagnetic form factor.
This form factor was slightly different than the 4f
form factor for metallic Gd obtained from Bragg
scattering of polarized neutrons. Our original
motivation in the present work was to check the
Qd~O3 form factor using a different experimental
technique. We would induce a net moment by ap-
plication of a magnetic field at low temperatures,
and then use the polarized-neutron technique to
measure the magnetic structure factors of a num-
ber of Bragg peaks. Our first series of measure-
ments of this type, carried out at 4. 3 K, indicated
that the induced moments on Gd ions occupying dif-
ferent crystallographic sites were not equal, im-
plying different ionic susceptibilities. In addition,
we observed strong oscillations in the diffuse scat-
tering, indicating short-range antiferromagnetic
order. Our research goals were expanded to in-
clude studies of these two effects as functions of
temperature. In this paper we present our experi-
mental observations and an approximate theory of
the behavior of Gd~Os in the paramagnetic state.
This theory not only gives good agreement with our
results, but also is in reasonable agreement with
conventional susceptibility and specific-heat ob-
servations.

One would expect Qd~03 to have particularly sim-
ple magnetic properties, except perhaps at very
low temperatures. In the Russell-Saunders cou-
pling scheme, the Gd ' ion has a S~ &~ ground state
which should not be split by a crystalline electric
field. Allowing for weak coupling between ions we

expect Curie-Weiss paramagnetic behavior over a
wide temperature range with the free-ion effective
moment of 7.95 p, &. All this is certainly approxi-
mately true, as shown by the susceptibility mea-

surements of Hacker, I.in, and Westrum, s but
there are some interesting deviations from this
ideal behavior. EPR spectra on the Gd~ ion in a
wide variety of crystalline environments show that
the octet ground state is split by the crystal field.
Typical splittings are of the order 0.3 'K. Buck-
master and Shing have assembled a wealth of ex-
perimental data and have reviewed the unsatisfac-
tory theoretical situation. The recent observation
by Schinkel and Van Amstel' that the saturation
moment in GdaO3 is 6. 9p, ~ rather than the expected
value of 7.0p.~ may be associated with the crystal-
field effect.

There is confusion in the literature regarding
magnetic order in Qd~O3. Specific-heat measure-
ments on Gd metal showed anomalies at 1.6 and
3.5 K which were shown to be caused by oxide im-
purities of unknown stoichiometry and phase (there
being both cubic and monoclinic forms of Gd~03).
Justice and Westrum measured the specific heat of
cubic Gd~03 above 10 'K and observed the high-
temperature tail of an anomaly occurring at some
lower temperature. They were able to fit their
data on the assumption that it was a Schottky anom-
aly caused by an over-all splitting of the octet
ground state of 13.7'K. This seems highly im-
probable in view of the much lower splittings ob-
served by EPR in other systems. We will show
that the Justice and Westrum data are rather the
result of magnetic interactions between Gd3' ions.
In an effort to understand the two peaks seen in the
specific heat of Gd metal, Miller et al. have mea-
sured the low-temperature susceptibility of both
the cubic and monoclinic phases of GROS for both
stoichiometric and substoichiometric compositions.
They found a typical antiferromagnetic transition
in the substoichiometric monoclinic phase at
3.4 'K, in good agreement with the high-tempera-
ture specific-heat peak. For the cubic phase, they
found no evidence of magnetic ordering down to

1609



R. M. MOON AND W. C. KOEHI ER

1.2 K, observing only a change in slope of 1/y vs
T at 2. 8 K. This result is in good agreement with
earlier work by Brown and Hubbard on the cubic
phase. Both sets of authors attribute this change
of slope to a crystal-field Schottky anomaly.

However, there is definite evidence that long-
range magnetic order does occur in the cubic
phase. ChiM et a/. ' have observed neutron diffrac-
tion peaks below 1.6 'K, indicating a complex anti-
ferromagnetic order, and Katila et al. '~ have ob-
served a magnetic transition at 1.35 K by Moss-
bauer measurements. Why do the susceptibility
results, which are normally a good indicator of
magnetic ordering, fail to give this indication for
Gd2Oq '?

Gd~O, has the bixbyite structure'3 (space group
Ia3-T~) with a lattice constant of 10.813 A. There
are 24 Gd

' ions on sites with twofold rotational
symmetry (C2) and 8 Gd~' ions on sites with three-
fold rotary inversion symmetry (Cs;). The C2 sites
have a single positional parameter u = —0. 0304
+0. OOV, and the 48 oxygen sites are at a general
position x =0.3913+0.0013, y =0. 1512 +0. 0012,
~ = 0. 3811+0.0015. These numbers were origi-
nally determined at 300 'K, and, in the course of
the present investigation, have been confirmed at
4. 2 K. The Gd sites are on four interpenetrating
cubic lattices which, if the u parameter were zero,
would form a face-centered cubic structure. Fur-
ther details, helpful in visualizing the structure,
are given by Pauling and Shappell and by Moon
et al. '4

II. EXPERIMENTAL DETAILS

The sample was the same as that used in an ear-
lier study, consisting of 4. 3 g of ' 'Gd20~ powder
obtained from the Stable Isotopes Division of this
Laboratory. The isotopic purity was 99. 993%
'"Gd. The sample was heated in air to drive off
CO~ and H~O and sealed in an aluminum cylinder in
a helium atmosphere. No evidence for a phase
other than bixbyite was found in the diffraction pat-
terns.

The experiments were performed on the HB-1
spectrometer at the High Flux Isotope Reactor.
This spectrometer can be operated either in a po-
larized mode (Co-Fe monochromator) or an un-
polarized mode (Be monochromator). The sample
was mounted in the gap of a split-coil supercon-
ducting magnet providing a vertical field of up to
60 kOe and a ~-in. gap in the scattering plane.
Access to the center of the magnet is through a
1-in. -diam cylinder with a separate vacuum jacket
running through the liquid helium reservior of the
magnet. Controlled temperatures at the sample
position can be obtained from l. 8 to 400 'K. No
depolarization of the neutron beam is produced by
the magnetic field configuration except when the

magnet is operated at a very low central field.
In the polarized beam experiments we followed

the standard technique ' of measuring the ratio of
Bragg intensities when the neutrons are polarized
parallel, and then antiparallel, to the sample mag-
netization. Working with a fine-grained powder has
the advantage that extinction and simultaneous re-
flection effects are negligible, in contrast to the
single-crystal case. However, there is a counter-
part of these effects in powder samples. Because
the total Bragg scattering is dependent on the in-
cident polarization, the sample transmission is de-
pendent on the polarization. The magnitude of this
effect is easily measured, and calculated correc-
tions for cylindrical samples can be made with con-
fidence. In our case, these corrections to the ob-
served intensity ratios were about 1 percent. A
more troublesome effect, and one unique to para-
magnetic powders, was the unusual dependence of
depolarization of the beam upon the applied field.
Shown in Table I is the field dependence of the
transmitted polarization ratio, measured on a
Co-Fe analyzer placed after the sample. We be-
lieve the effect is caused by depolarization within
the interparticle region of the sample. Field com-
ponents perpendicular to the applied fieM will ex-
ist in these regions and their magnitudes will be
proportional to the induced magnetization or applied
field. Clearly, low fields are desirable to mini-
mize depolarization, but the signal increases lin-
early with the field, so a compromise must be
reached. Most of our data were obtained with a
field of 18 kOe.

&, =[(1+r,)/(1 -r,)I', (3. 1)

where y, is the ratio of the magnetic to the nuclear
structure factor,

(3. 2)

TABLE I. Polarization ratio transmitted through
Gd203 at 4.3 K.

Field (kOe)

12.5
25. 0
50. 0

Ratio

77
35
12

III. RESULTS

A. Polarized-beam experiments

In the polarized-beam experiments, we measured
the ratio of intensities in Bragg peaks for neutrons
polarized parallel and antiparallel to the applied
field. For a centrosymmetric structure, this flip-
ping ratio for a Bragg peak at the reciprocal lattice
position 7 can be written as
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TABLE II. Some geometric and nuclear structure fac-
tors for Gd20&.

(211)
(220)
(222)
(231)
(321)
(341)
(431)
(440)
(352)
(532)
(611)
(622)

GI

0. 0
8. 0

—8. 0
0.0
0. 0
0.0
0.0
8.0
0. 0
0. 0
0.0

-8.0

G2

2.982
8.0

—22. 270
2. 983

—2.983
—5.535

5.535
19.553
2.983

—2.983
7.289

-18.143

G3

3.136
1.199
0. 242

—10.162
13.446

—4.018
0.606

38.618
3 599

—6.264
0.583
0.676

4.549
—0.696

—27, 837
—3.169

5.075
—7.396

5.416
47.625
4.818

—6.365
7.008

—23.529

20. 70
0.48

774. 91
10.04
25. 75
54. 70
29.34

2268. 12
23.21
40. 51
49. 11

553.59

For Gd203 we can write the nuclear structure fac-
tor as

F,"=g b„G„(7)exp[- B„(sin8/X)~], (3.3)

where v=1 refers to the 8 Gd sites with C3& sym-
metry, v = 2 refers to the 24 Gd sites with C2 sym-
metry, v = 3 refers to the 48 oxygen sites, b„are
the nuclear scattering amplitudes, and we have as-
sumed an isotropic Debye-Wailer factor B„for each
set of sites. The geometric structure factor G„(v)
is given by

G (~}—Qe '
vg

i
(3.4)

where the summation goes over all the positions
r„& of the set designated by v. In an applied field a
time-averaged magnetic moment is associated with
each site, directed parallel to the applied field.
The magnetic structure factor is

F,"=0.2696x10 "g p, „f„(~)G„(7)
v=1

x exp[- B„(sin8/A) 2], (3.5)

where p.„ is the moment in Bohr magnetons associ-
ated with each site and f„(7) is the magnetic form
factor for that site.

To use ~. (3.2} for conversion of measured val-
ues of y, into magnetic structure factors requires
the calculation of nuclear structure factors using
Eqs. (3. 3) and (3.4). There are four positional
parameters, two nuclear scattering amplitudes, and
three temperature factors required to make this
calculation, so it is clear that the interpretation of
our results is not quite as clean as in the case of a
simple structure with one kind of atom. At low
temperatures we assume B„«1, and for relatively
low scattering angles we have (sin8/A)'« I, so that
is a very good approximation to set the exponential
factors in Eqs. (3.3) and (3.5) equal to unity. We
neglect the small crystal-field effects on the Gd

ions and assume that the ground state is that of a
free ion in a magnetic field. The form factors on

+ p. ,G, (v) fo(7'), (3. 6)

where I"", is in units of 10 '~ cm. The geometric
structure factors and the total nuclear structure
factor for a number of peaks are tabulated in Ta-
ble II. We have used the position parameters giv-
en in Sec. I and nuclear amplitudes of 0.5803
x10-1a cm for oxygen and 0. 915&&10 cm for Gd

in calculating these numbers. Inspection of Table
II shows that some peaks, like the (222), have a
total magnetic contribution very closely proportion-
al to the average Gd moment, while others, ljke
the (211), do not depend on the moment on C~,
sites. Of particular interest is the (220) case
which should have no magnetic contribution if the
two Gd moments are equal and if there is n oxygen
moment. Unfortunately, the (220) intensit (pro-
portional to ~F "I in zero field) is so wea th t)t
may be nonobservable. )

Our first experiments were a series f aI(gular
scans at 4. 3 'K at various. applied field (0, 12. 5,
25, and 50 kOe). We discovered the depolariza-
tion effect mentioned earlier during these experi-
ments, established that we could adequately cor-
rect the data for this effect, and verified thai the
magnetic structure factors were varying linearly
with the applied field. The 25-kOe scan is shown
in Fig. 1. Note that the (220) peak, though very
small, is definitely visible above the background.
At zero applied field the (220) peak could not be
detected. This immediately indicated that there
was a magnetic contribution to the (220) and, there-
fore, that the Gd moments induced on the two sites
mere different and/or there was an induced moment
on the oxygen sites.

Despite a very poor signal to background ratio,
we were able to measure the (220) flipping ratio as
0.44+0. 06 in a field of 50 kOe. From the magni-
tude of the intensity me knew that ly»0 l & 1, and
could then conclude that the magnetic structure
factor had a value of + 3.4+ 10 1~ cm. To account
for this observation solely on the basis of a mo-
ment on the oxygen sites requires the ridiculous
conclusion that there is at least 10',~ on each oxy-
gen site directed opposite to the applied field t

Thus, the conclusion is inescapable that the mo-
ments on the tmo Gd sites are different.

To establish the magnitude of a possible oxygen
moment is difficult because there is no Bragg peak

both Qd sites should then be the same and should
be independent of field and temperature. The mo-
ments on the two sites may be different because of
different magnetic interactions with the rest of the
crystal. The oxygen moment is undoubtedly small
and may be zero. With the approximations dis-
cussed above, Eq. (3.2) can be written as

y,F",/0. 2696 = [pgG, (7)+ pgG~(~)] fed(7)



R. M. MOON AND W. C. KOEHI ER

5000
O
cl

4000

3000 ~

Y)

K)00

Gd~O~
4.3 K 25 koe

FLIPPER OFF
FLIPPF R ON

. . C3
C)

N

a
CU
0

a
N

N li

I IG. 1. Polarized-
beam diffraction pattern
for Gd2O3 powder at
4.3'K and 25 kOe. Neu-
tron. wavelength is 1.07 A.
Aluminum lines are from
sample holder and cryo-
stat.

1000 I

10 20
SCATTERING ANGLE (deg j

which is sensitive to only an oxygen contribution.
We measured flipping ratios on a number of peaks
at 4. 3 K and 18 kQe and ha. ve performed a least-
squares fit to these data, using the two Gd moments
and an oxygen moment Rs variables. We used the
Freeman-Desclaux form factor for the Gds ion
and an estimated free-ion 0 form factor. We do
not expect a possible spin distribution on the oxy-
gen sites to have the same shape as a fxee-ion
charge density, but all we are really concerned
with is any indication that the oxygen moment is
not zero. The results of this fitting procedure are
shown jn Table III. The agreement between ob-
served and calculated flipping ratios is satisfactory
and the oxygen moment is zero within the indicated
error. This experiment indicates that the oxygen
contribution to the susceptibility is less than 2/p of
the total. In Rll that follows, we assume that the
oxygen contribution ls zel"o.

If the oxygen moment 18 negllglbly SIHall, the two
Gd moments can be determined by observation of
flipping ratios on only two peaks. We have studied
the temperature dependence of the (211) and (222)
peaks in a field of 18 koe. Recall that the (211) de-
pends only on the moment on the C2 sites and the
(222) depends on the moments on both sites. The
raw flipping ratio data are shown in Fig. 2. Be-
low 10 'K the two peaks have dramaticaQy different
temperature dependences. Prom these data we
have deduced the ionic susceptibilities on the two
Gd sites. After small corrections to the observed
fllpplQg x Rtlos to RccouQt fol instrumental effects,
depolR1"lzRtlon ln the SRmple Rnd the polRx'lzRtlon
dependence of the transmission, values of y for
each peak were obtained using Eq. (3. 1). From

Eq. (3.6) and Table II, we have

p,, = (6.077* 0. 182)y,«, (3. 7)

TABLE III. Comparison of observed and calculated
flipping ratios after least-squares adjustment of mo-
ments,

~oh..
1.855 g 0.088
3.320 + 0. 031
0.536 + 0. 030
1.692 y 0. 064
1.653+ 0.014
1.584 + 0. 065
2.296 +0.027

ILf,) =1.867 +0. 132 Gd (C3;)
p, =-0. 895 +0. 047 Gd (C,)
ps = —0.003 0. 017 Oxygen

(211)
(222)
(231) + (321)
(341) + (431)
(440}
(3») + (5»-) + (6»)
(622)

1.803
3.301
0. 568
l. 809
l.642
l.574
2. 339

where the indicated error was obtained by consider-
ing the uncertainties in the structural parameters
and scattering a,mpbtudes. We have used O. 931
+0. 006 for the (211) Gd form factor. Since there
was some ambiguity about the best form factor in
the oxide case we have here used the mean of the
Hartree-Fock calculation by Blume, Freeman, and
Watson and the Dirac-Pock result by Freeman
and Desclaux. " The error indicates the small
spread between these two calculations. Again us-
ing Eq. (3.6) and Table II for the (222) peak, and
substituting Eq. (3.7) for p. ~, we have

p, , = (14.887 ~ 0. 149)y„, —( 16.I7+ 0. 641) y „,,
(3.8)

where we have used 0.867+ 0. 007 for the (222)
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FIG. 2. Temperature
dependencies of the {222)
and (211) flipping ratios.
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form factor. The average moment is given by
1 3

P, =&P., +& P2

The inverse susceptibilities are shown in Fig. 3
as a function of temperature. Above 10 K there
were no significant diffelences between Xg and X2

= (3. v23+ o. osv) y„,+ (o. 329 *o.ops) y„, .
(3 9)

To calculate the susceptibilities corresponding
to these moments, we need the internal field with-
in a single particle of the powder sample, which is
given in general by

H; =Ho —HD, (s. to)

where Ho is the applied field and H~ is the demag-
netizing field. %e calculate an approximate value
for H& by considering a single spherical particle
with magnetization M, within a continuum with
magnetization Mf, where f is the packing fraction
of the powder sample. If B is the demagnetizing
factor for the entire sample, we have

I

IA
e

D
"D

ox
ex, (c~;)
~xz {Cz)

MILL. E R 6'/' of.

K UNESH———FREE ION

i-
H =4mM —+ DfD 3

(3. l 1) o 4
E

As shown by Bleaney and Hull" there is some ex-
pel imental )ustification for this equation but we
are uncertain of its exact applicability to our sam-
ple, so we have allowed a 3(Po error in the calcu-
lated values ot' HD. For our experiments Hn/Ho
varied from 0. 03 to O. 06. The final susceptibili-
ties are

Np. ~ p.;Xt= eo- B (3. l2)

where p, , is given by Ftl. (3.7), (3. 3), or (3. 9),
p~ is the Bohr magneton, and N is Avogardro's
number. At 4. 3 K, the susceptibilities were in-
dependent of applied field up to 18 kQe, while at
1.8 "K the susceptibilities at 18 kQe were slightly
smaller than at 6 a.nd 12 kQe. The lower field
strength data were used at this temperature.

/0 20
TEMPERATURE (o K I

50

I IG. 3. Inverse susceptibilities of GdO» as a func-
tion of temperature. Data points are from polarized-
beam measurements. Solid line is from Ref. 10. Dashed
line is from measurements Inade at the University of
Pittsburgh by C. J. Kunesh on a portion of our sample.
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r g@g, f) = ~ Q & S (0)S'.) (f)), (3. 13)

where S and S denote orthogonal components of
the spin associated with sites at R at time. zero
and at R +R) at time t. The brackets denote a
thermal average, and in our case the summation

so only the average susceptibility is shown. Below
10 K the two susceptibilities diverge quite rapidly
and at 1.8'K the susceptibility for the C3; sites is
larger than that for the C2 sites by a factor of about
9. However, this divergence takes place in such a
manner that nothing very striking happens to the
average susceptibility, which is seen to be in good
agreement with the ordinary susceptibility results.
For complicated paramagnets, this kind of neutron
experiment can clearly give more complete infor-
mation than the ordinary susceptibility measure-
ment. Similar experiments on Pr and Nd have been
reported by Lebech and Rainford. '

Also shown in Fig. 3 is the calculated free-ion
susceptibility for Gd '. The observed I/)t data are
always higher than the free-ion result, indicating
antiferromagnetic interactions between the Gd ions.
A qualitative understanding of the bizarre behavior
shown in Fig. 3 may be obtained by considering the
possible effects of short-range magnetic order on
the susceptibility. Suppose there is a strong ten-
dency to form antiferromagnetic clusters of ions
on C2 sites, thus reducing the susceptibility of
these ions. In considering the net interaction be-
tween one of these C2 site clusters and an ion on a
C3; site, there will be a partial cancellation of in-
dividual pair interactions because of the antiferro-
magnetic nature of the cluster. As the C2 sites get
locked into an antiferromagnetic arrangement, the

C~; sites may become freer. At least this is the
behavior suggested by Fig. 3. To understand bet-
ter the nature of the spin correlations in Gd20~ we
next undertook a study of the diffuse scattering of
neutrons as a function of temperature.

8. Diffuse scattering and spin correlations

The structure in the diffuse scattering at 4. 3 'K
is obvious in Fig. 1. This is evidence for short-
range magnetic order, or nonzero correlation of
spins on different sites. We wanted to study the
temperature dependence of the spin correlations,
not only to help in understanding the susceptibility
results, but also because in our previous paramag-
netic form-factor measurement we had assumed no
correlation at 300 K. In the present experiments,
we measured the differential cross section, with no
energy analysis, for unpolarized neutrons in zero
magnetic field at temperatures ranging from l. 8 to
399 K.

The basic correlation functions relevant to the
magnetic scattering of neutrons are

goes over all the Gd sites. These correlation func-
tions are related to the double differential cross
section (with respect to angle and final energy) as
given by Marshall and Lovesey. 20 To relate the
scattering theory to our experiment we must inte-
grate the double differential cross section over the
final energy. To do this integration we assume that
the maximum possible energy transfer from mag-
netic interactions is very small compared to the
incident neutron energy. This should be a good as-
sumption in our case where the ordering tempera-
ture of Gdg~ is 1.6'K and we have used neutrons
with kinetic energy of 829'K (1.OV A). In this case
the momentum transfer at fixed scattering angle
becomes nearly independent of the energy transfer,
and the integration over energy is readily per-
formed to obtain

ya(K)e-2w(r) Q (6 K K )
PViC e8

x g esK'B] ~ (R 0)
l

(3. 14)

We are here assuming the same isotropic form
factor f(K) and Debye-Wailer factor W(K) for all
Gd ions. The summation goes over all vectors R,
connecting two Gd sites. Note that the correlation
functions are evaluated at time zero, hence the
name quasistatic approximation. This is essen-
tially the x-ray limit, where an instantaneous pic-
ture of the sample configuration is obtained. We
now assume that y, 8 = 0 for o. & p, which is good for
a Heisenberg interaction, and that y„„=y» =y„,
which should be good for a cubic paramagnet. W'e
define

y.&s.(0) 5.„(o)&
NS(S+ 1)

(s. 16)

so that

y.,(R„O) =-', 5„gS(S+1)e, . (s. 16)

where the paramagnetic cross section for no cor-
relation is given by

$$~]2 (s. 18)

Note that the first term (R, =0) in the summation in
Eq. (3.17) has the value of unity. The remaining
terms are grouped according to common values of
R) in performing the sum, so that

Substituting Eq. (3.16) into Ec(. (3. 14) and perform-
ing a spherical integration for a powder sample,
we obtain

do der 2~(~) ~ sinKR )
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where N, is the number of Gd sites at a distance R,
from a fixed Gd site. So far we have not distin-
guished between the C~; sites (type 1) and the Cz
sites (type 2). In fact, we believe that a 1-1 cor-
relation may be quite different than a 2-2 correla-
tion or a 1-2 correlation. If 'N;& is the number of
type-j sites at a distance R& from a type-i site and

e;; is the spin correlation averaged over all i-j
pairs at a distance R„ then

(3. 20)

where ~, =~ and co2= 4. Our goal is to attempt to
fit the observed differential cross section with Eq.
(3. 19), using our knowledge of the structure to de-
termine N, and R, with ~& as adjustable parameters.
Only if the group of pairs defined by R& involves a
single combination of symmetry types will we be
able to determine separate value for e;,. Other-
wise we must be content with the average correla-
tion given in Eq. (3. 20).

The essential details of the structure are given
in Table IV. With data restricted to rather low
values of K, it is clear from Eq. (3. 19) that the
fitting procedure cannot produce reliable numbers
for values of R, which are only slightly different.
For example, it is hopeless to attempt to discrim-
inate between the l =1 and l =2 shells of Table IV.
We performed some fits with the l= 1 and l = 2
shells combined at their average distance and the
l =3 and 1 =4 shells combined at their average dis-
tance. However, no significant difference in the
correlations for these two distances were obtained.
The final fitting procedure was based on the scheme
shown on the right side of Table IV in which the
first four shells are grouped together at a distance
determined by the weighted mean of the individual
values of R„with similar groupings made for the
higher-order shells. The resulting coordination is
the same as would be obtained if the u parameter
were zero, but with slightly different values for the
interatomic distances. Table IV was extended to
n = 6 in performing the least-squares fitting pro-
cedure. Applying Ecl. (3.20) to the first two groups
of shells, we see that

I
~12+ 2 &u

proximately independent of temperature. To avoid
making a calculated correction for the multiple
Bragg scattering we have based our analysis on the
observed difference in cross section at tempera-
ture T and at 300'K. From Eq. (3. 19) we have
that

T — 300

=g N„[e„(T)—e„(300)]
n+ n

Here we have neglected the Debye-Wailer factor
appearing in Ecl. (3. 19), and we have also neglected
a small temperature-dependent contribution to the
diffuse scattering due to phonons. Estimated cor-
rections for these thermal effects, based on the
very small temperature dependence observed for
the Bragg peaks, were always considerably
smaller than the statistical errors in the cross
sections. The effect of thermal expansion, which
produces a very slight temperature dependence in
R„, is negligible. For the denominator on the left-
hand side of Ec(. (3.23) we have used the previously
determined' cross section at 300 K. We could
also have used a calculated cross section based on
Eq. (3.18) without a significant effect on the re-
sults.

The left-hand side of Eq. (3.23) is thus complete-
ly determined experimentally. We attempted to fit
the shape of these curves using values of N„and R„
from Table IV. The comparison of the data and the
calculated least-squares fit is shown in Fig. 4.
The quality to the fit could be better at the two low-
est temperatures, but the gross features of the
data are well represented by the calculated curves.
The curves shown are the result of a six-parameter
fit, but only the first two correlation functions were
significantly different from zero. The values for
these first two correlations did not change signifi-
cantly when the number of parameters was changed
from six to three. Values for the first three cor-
relations are given in Table V. Note that the first-

TABLE IV. Distribution of GdGd pair distances in
Gd203. 'N~~ is the number of type j sites at a distance 8&
from a type i site. a=&0.813 A.

and l Rf/a 'Ni, N12 N21 'N22 n R„/a N„

&2 32~11+4 ~22 (3. 22)

The observed neutron diffuse intensity was con-
verted to an absolute differential cross section by
comparison with the integrated Bragg intensities.
Unfortunately, the magnetic scattering which we
have been considering is not the only source of dif-
fuse scattering. The next most important source
is multiple Bragg scattering, which should be ap-

1
2
3

5
6
7
8
9

10
11
12

0. 3328
0. 3341
0. 3757
0. 3769
0 5000
0 5037
0 5755
0.6006
0.6014
0.6254
0.6261
0.6500

6
0
6
0
0
0
0

12
0

12
0
0

0.3549 12

0.5018 6

0.6131 24
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neighbor correlation is neg'ative (antiferromagnet-
ic) and the second-neighbor correlation is positive
(ferromagnetic). One should not conclude that
these results indicate that the range of the magnet-
ic interaction extends at least to second neighbors.
In this structure, second neighbors have four com-
mon first neighbors, so that a second-neighbor
correlation can be produced by a propagation of
first-neighbor correlations. In fact, you can pre-
dict quite accurately the second-neighbor correla-
tions in Table V using the crude assumption that

6p =4 E'g . (3. 24)

FIG. 4. Diffuse scattering data at various tempera-
tures and zero applied field. Unpolarized neutrons of
1.07-1 wavelength were used. The solid lines are least-
squares fits using the quasistatic approximation given in
the text.

In the analysis of our previous data on the dif-
fuse scattering at 300 'K, the assumption was made
that there were no spin correlations. A theoreti-
cal model which accurately predicts the data of
Table V indicates that the first-neighbor correla-
tion at 300'K is —0. 0047. This led to a general
reconsideration of the earlier analysis with the fol-
lowing results.

First of all, the correction for the calculated
spin correlation led to a maximum increase in the
form factor at very small values of sin6/& of about
2%. Beyond sine/&= 0. 1, the correlation correc-
tion was generally smaller than the experimental
error.

Secondly, a slightly different calibration con-
stant was used to convert the observed intensities
to absolute cross sections. In the earlier analysis
this calibration was based on Bragg peaks from a
silicon powder sample substituted for the GdaQ~
sample. In the present analysis an internal cali-
bration using the (222) peak from Gd+a was em-
ployed. The two calibrations differ by only 1.6%
in their effect on the form factor and have overlap-
ping errors. The internal calibration is a cleaner
technique because one does not have to determine
the packing densities of the two samples, nor wor-
ry about placing the two samples exactly in the
same position in the neutron beam. Furthermore,
the (222) peak has a very small oxygen contribution
and is rather insensitive to the Gd structural pa-
rameter, so its structure factor is primarily de-
pendent on the Gd nuclear scattering amplitude.
This is desirable for comparing the oxide form
factor with the metallic form factor since the me-
tallic data were measured relative to the same nu-
clear amplitude.

Finally, the original analysis did not include a
correction for the thermal motion of the Gd ions,
which we have tried to rectify in the present anal-
ysis. However, our knowledge of the proper mag-

TABLE V. Values of f e„(T)-c„(300)]obtained from
least-squares fits of diffuse scattering data.

This indicates that the dominant magnetic interac-
tion probably extends only to first neighbors. The
data of Table V show that at 300'K the rate of
change of the first-neighbor correlation with re-
spect to temperature is negligibly small, which is
not the same thing as showing that the correlation
itself is negligibly small. In a later section we
will describe a model which successfully predicts
the data shown in Table V. We can then use this

1.8
4.3

10.6
20. 9
57.8

117.0
204. 0
399.0

n=1
—0. 147(6)
—0.130(4)
—0.073 (6)
—0. 046 {2)
—O. 019(4)
—0.010(2)
—0. 003 (2)
—0. 001(1)

n-2
+ 0. 119(25)
+ O. 071(17)
+ 0.016 (35)
+ 0.011{8)
+ 0.011(21)
—0.002(6)

+ 0, 012(10)
+0.016(7)
+ 0.006 (16)
+ 0.001(3)
—0. 003 (10)
+ 0.001(2)
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nitude of this correction is rather imprecise.
Based on the small temperature dependence of the
(440) peak, we obtain an upper limit for the tem-
perature dependence of the gadolinium thermal pa-
rameter, B(300)- B(4 2.) =0.11+0.09. In correct-
ing the form factor we have used the value B(300)
=0. 15+0.15, which should be an adequate expres-
sion of our uncertainty. The effect of this correc-
tion is to increase the outer data points slightly
relative to the inner ones and to increase the er-
rors in the outer points.

The revised paramagnetic form factor is shown
as the open data points in Fig. 5. The solid curves
are calculations by Freeman and Desclaux 6 (Dirac-
Fock) and by Blume, Freeman, and Watson'~ (Har-
tree-Fock), augmented by a small contribution for
core polarization. In comparing the metallic and
oxide data, the first two metallic points should be
disregarded because they are influenced by conduc-
tion electron polarization. The case for a differ-
ence between the metal and oxide data is not as
convincing as in our previous work. In fact, we no
longer believe that there is a real difference. Ei-
ther of the calculated form factors fit the oxide
data equally well, however, the Dirac-Fock results
clearly gives a superior fit to the metallic data (the
Dirac-Fock result for the neutral atom is even bet-
ter).

Also shown in Fig. 5 are four points obtained
from polarized beam measurements on Bragg peaks
from Gd~O3 at 4. 3 'K. In a simple material which
has only one kind of magnetic atom, a measure-
ment on a single Bragg peak combined with a mag-
netization or susceptibility measurement yields a
normalized magnetic form factor for that peak.
In GdzO3 the susceptibility measures the average
moment while each Bragg peak responds to a dif-
ferent linear combination of the two Gd moments,
so there is a problem. We have largely avoided
this problem by selecting peaks for the form-fac-
tor measurement which are mainly dependent on
the average moment, with only a small sensitivity
for the difference in the two moments. If we define

ments, provided an accurate value for p, is avail-
able from susceptibility results. This requires
duplication of field, temperature, sample composi-
tion, and packing density in two experimental ar-
rangements. To avoid a highly speculative esti-
mate of errors in all these factors we have selected
p so that the (222) form factor is in agreement with
the diffuse scattering data. The remaining Bragg
form factors are seen to be in good agreement with
the diffuse data, showing that the two experimental
techniques give results related by a scale factor.
The susceptibility at 4. 2 'K required by the nor-
malization of the Bragg data is 0. 350 emu per
mole of GdO&., This is in terms of applied field
rather than internal field. On this same basis, and
on a portion of our sample, Kunesh ' has mea-
sured a value of 0. 328. Published values of the
susceptibility are 0. 353 by Miller et al,. and
0.364 by Brown and Hubbard.

Our conclusion is that there is no convincing ex-
perimental evidence for a difference in the 4f spin
density in Gd metal and Gd~O„and that relativistic
Dirac-Pock calculations for the neutral atom give
an accurate description of the 4f spin density in the
metal.

IV. THEORY

A. General remarks

In this section we present an approximate theory
of the spin correlations, susceptibility, and spe-
cific heat of Gd~03 and compare the theory with ex-
perimental results. As a first step we consider
the probable form of the dominant magnetic inter-
action.

The ordering temperature of 1.6 K is low enough
to force the consideration of the dipole-dipole in-
teraction. The minimum dipolar energy for a pair
of Gd ' ions at the first-neighbor separation is

1.0
800

I

&=(v&- v&)/u, (3. aS)

where p, is the average Gd moment, then Eq. (3.6)
may be written as

0.8

a —DIRAC- FOCK

(Gd") + Co
t 06

REE-FOCK

) + CORE

( )
YT

(0.2696)p [G, +G, +-5(3G, —G,)] '

(3. aa)

where we have again assumed there is no oxygen
moment. For the form-factor measurements, it is
possible to select certain peaks for which 3G, = G~,
and 6 can be determined approximately from mea-
surements on other peaks. Each measured value

y, then yields a normalized form factor with little
sensitivity to the difference between the two mo-

o GdpOp DIFFUSE
+ GdpOp BRAGG

~ Gd METAL

0.2
0 0.1 0.2 0.5

sin 8/X
0.4 0.5

FIG. 5. Summary of Gd form factor measurements
and calculations. The metallic data are from Ref. 2,
the Dirac-Fock calculation is from Ref. 16, and the Har-
tree-Fock calculation is from Ref. 17.



1618 R. M. MOON AND W. C. KOEHI EH,

—1.1 'K. This seems about the right order of
magnitude, but there are two compelling reasons
for rejecting the dipole-dipole interaction. It is
basically a ferromagnetic interaction with a long
range, whereas our experimental results indicate
an antiferromagnetie interaction which extends only
to first neighbors.

We will neglect the dipole-dipole interaction and
assume superexchange interactions between first-
neighbor gadolinium ions via their common oxygen
neighbors. We represent this interaction for a
specified pair by the usual Heisenberg Hamiltonia. n

H,„=—2 J;) Sq ~ S) . (4. 1)

We can get an estimate of the average value of J,&

from the observed paramagnetic Curie tempera-
ture3 of —17 K. We obtain 2/k = —0. 135 K, lead-
ing to a value for the minimum energy for a single
pair of —3.3 'K. Negative values of J have the
desired property of producing antiferromagnetic
coupling.

We will simplify the structure by treating the
case where u =0, as we did in analyzing the exper-
imental spin correlations. In this approximation
the Gd ions fall on the sites of a cubic A3B struc-
ture with a lattice constant half as large as the
real lattice constant. The C3; sites (type 1) are
at the corners of the cube and the Cz sites (type 2)
are at the face-center positions. Some important
features of this structure are set forth below.

(1) For a type-1 site, all twelve first neighbors
are of type 2.

(2) For a type-2 site, four first neighbors are of
type 1 and eight are of type 2.

(3) Each member of a 1-2 first-neighbor pair
has four first neighbors of type 2 in common with
the other member of the pair.

(4) Each member of a 2-2 pair has two first
neighbors of type 2 and two first neighbors of type 1
in common with the other member of the pair.

The theory is based on the thermodynamics of
an isolated pair of spins, with corrections to ac-
count approximately for the interactions with the
rest of the crystal. The behavior of an isolated
pair of spins coupled by a Heisenberg interaction
is easy to calculate exactly. The thermodynamics
can be given in terms of the spin correlation

(4.2)

which is readily calculated using the formulae or
tables given by Smart. ~s Other thermodynamic
quantities are easily obtained in terms of 0&. For
example, the susceptibility of a collection of N/2
isolated pairs is

(4. 3)

where C is the usual Curie constant.
Unfortunately, the Gd 03 structure does not lend

itself to direct application of the isolated pair the-
ory. The existence of common first neighbors for
each member of a pair is the principal difficulty.
For antiferromagnetie interactions, this feature of
the structure leads to competition between near-
neighbor interactions and is the basic reason why
the Noel point is so low compared to the paramag-
netic Curie temperature.

1 0 0 1
~12 ~13 + 4 ~18 ~32 (4.4)

1 0 0 1 0 1&u= ~m+2 &u &u+2 &1a ~13~

where q, , is the isolated pair correlation and can
be calculated for a given J;, . The coefficients and
subscripts are dictated by the structure according
to features (3) and (4) listed previously The.
superscripts were chosen to give coupled linear
equations in the unknown first-neighbor correla-
tions '&;, The neglect of higher-order correction
terms limits the theory to the case of small cor-
relations, with application to the paramagnetic
state well above the ordering temperature. Note
that for antiferromagnetic correlations (e;, &0),
the quadratic terms provide a reduction in the
magnitude of the isolated pair prediction, while
the opposite is true for ferromagnetic correla-
tions.

Solving for the &... we obtain

~12 ( ~12 +2 ~12 ~3R)/D (4. 6)

'~33 = ('~»+2'e'»)/D,

where

D=1 —2 ca~ —8 e»-0 0 2

(4. V)

(4. 3)

To compare with the experimental results we need
the average first-neighbor correlation given by
Eg. (3.21),

~, = ('~»+'~»)(I+2'~„)/2D. (4. 9)

To calculate the second-neighbor correlations
we need some additional structural information.
All second neighbors of a type-1 site are also type
1 and there are four first neighbors of type 2 com-

B. Spin correlations

If two isolated ions have a spin correlation &,&,

what is the change in this correlation when we
bring a third ion in at position k to form an equi-
lateral triangle '? In first approximation, we as-
sume that this change is given by the product &,,e„,
Bringing in additional ions would produce a change
in e;& given by g~ e,.„e„, In this spirit, we write
the first-neighbor correlations in Qd393 as
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The total magnetic energy of the system in zero
applied field is

E=-2Zz„(s, s,)

= —Gas(s+ i}(z„'~„+z„'&„). (4. ia)

The electronic contribution to the specific heat is
then given by

expected that the theory would be satisfactory only
for small correlations, so it is difficult to judge
exactly which features of the calculation should be
believed at low temperatures„ Inspection of Eq.
(4.6) shows that when 8c»=-0. 5, the theory pre-
dicts that 'z, 3 =0. This is clearly nonphysical and
occurs at about 2. 5 K for the calculation shown in
Fig. 6. The calculated average correlations seem
to be reasonable down to 3.0'K, which suggests
that the minimum in '&» at about 4 'K might be
real. If so, it would have a profound effect on the
specific heat, as shown in the next section.

C. Specific heat

I'IG. 6. Observed and calculated spin correlations in
Gd203 as functions of temperature. The observed points
should be compared with the curves labeled cq and Z'2.

The dashed lines show the prediction of the isolated pair
theory for the indicated exchange interactions.

3 1 3
~11 4 ~13 ' (4. . iO}

All second neighbors of type 2 are also type 2;
one thix"d of these paix's have four common first
neighbors of, type 2, and two thirds of them have
two common first neighbors of type 1 and two of
type 2. We can write

3 413
&33 =V &13+3 &aa ~ (4.11)

Using Fq. (3.22), we obtain for the average sec-
ond- neighbor correlation,

mon to both members of the pair. The 1-1 second-
neighbor correlation thus is produced by four par-
allel 1-2-1 paths. Ne conclude that

iR ey

We have performed a numerical differentiation of
the calculated functions '&,

~ to obtain the calculated
specific heat shown in Fig. V. The agreement with
the observations of Justice and %estrum would
have been better if slightly larger values of J,3
and J~3 had been selected. On the other hand, the
experimental points are subject to an unknown un-
certainty involving the jattice contribution, so the
agreement is probably satisfactory. Regardless
of the validity of our model, the observed temper-
ature dependence of the spin correlation requires
a contribution to the specific heat like that ob-
served by Justice and Westrum. It is not neces-
sary to assume a low-temperature Schottky anoma-
ly, as they did, to explain their data.

The calculated maximum in the specific heat,
shown by the dashed line in Fig. 7, may not be

~8 = 2('8l8+ '~88} . (4. i2)

Ne are now able to calculate the temperature
dependence of the average first- and second-neigh-
bor correlations, given values for J12 and J~3.
We have used J,8/k = —O. 1328 ' K and J&8/k =

= —0. 1414 K. These selections were made by fit-
ting a further development of the theory to our
susceptibility data at 5 'K. The comparison be-
tw'een theory and experiment is shown in Fig. 6
and is seen to be quite good. The calculated first-
neighbor correlation at 300 K is —0.0047, which
ha, s been added to the values given in Table V to
obtain the experimental points in Fig. 6. It was

cg 0.6

o.4

I
I

0.2

JUc~ TICE AND %ESTRUM—CALCULATED
I

1

0 '

0 20 40 60 80
TEMPERATURE ( K}

FIG. 7. Observed and calculated electronic specific
heat for GdO~ 5. The dashed line shows an interesting
but questionable prediction of our approximate theory.
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real. Associated with the minimum of '&», as
shown in Fig. 6, it probably signals the breakdown
of the theory at low temperature. We show it be-
cause of the remarkable agreement with one of the
oxide-impurity peaks observed in the specific heat
of Gd metal. If our calculated peak is real, then
one can explain both of the impurity peaks assum-
ing a single oxide phase. The l. 6 "K peak would be
associated with long-range magnetic order in cubic
GdaO3 and the 3.5 K peak would be associated with
anomalous short-range order. If the calculated
peak does not really exist, then one must assume
that both the cubic and monoclinic oxides exist in
the metallic samples, each ordering at, a different
temperature. I.ounasmaa' has shown that his ex-
cess specific heat, observed on a metal of known

oxygen content, joins smoothly with the Westrum
and Justice data. This suggests a single phase for
the oxide impurity in the metal, but is not conclu-
sive. There seems to be no case in which the
1.6 'K peak was observed and the 3.5 "K peak was
absent. Such a case would show that our calculated
peak was fictitious. Dreyfus et al. ~3 have made
observations on a metallic sample in which only
the 3.5 'K peak was observed„ indicating that only
the monoclinic impurity was present in their sam-
ple. The resolution of this question must await
specific heat measurements on cubic QdaO, in the
(1-10)"K range.

D. Susceptibility

Xa
= [(1+11A.,a) 'y, ~+2'~~]/H, (4. 18)

B= 3 —22 Q3 —121 &~~ .
Note that if 'X,a

=
X2z

= y and &,2
= Qa = &, then

'X
Xy =Xa=~ (4.20)

This is the usual constant-coupling equation for a
system with 12 first neighbors if &= e. This sug-
gests that we set ~;,. = e;, , but perhaps a choice
more consistent with the theory of the zero-field
correlations might be ~„.='e,~. I et us make a
compromise choice,

&,~
= b &0,, + (1 —5) ' e;, , (4.21)

llm eo( J;~/kr) = 2S(5+1)J;;
QQ

(4.22)

it follows from Egs. (4. 17) and (4. 18) that

and investigate the behavior of the average suscep-
tibility in the high-temperature limit where it is
known experimentally that the Curie-Weiss law is
valid. In this region of very small correlations,
we see from Eqs. (4.4) and (4. 5) that 'i;, —
so that ~;&- e,, . Using the known high-tempera-
ture behavior of

The susceptibility calculation is based on the
constant-coupling approximation, 34 adapted to the
Gd~Q, structure. We treat a selected ion and one
of its first neighbors as an isolated pair, and use
an effective field approximation for the influence
of the remaining first neighbors on the central ion.
For a type-1 site, the moment induced by an in-
ternal field H& is

lim)( = llm(g gg + 4 )(p)
OO Pw 0Q

2 S(S+1)6 =-- (6Z,a+GZpp)

(4.23)

(4.24)

(4.15)

where X» is the isolated pair susceptibility, given
by Eq. (4.3), for a 1-2 pair and we have used the
fact that all first neighbors of a type-1 site are of
type 2. The parameter &» is closely related to
the first-neighbor correlation, but for the moment
we leave this relationship unspecified. Using the
structural features discussed previously, the cor-
responding equation for the moment induced on a
type-2 site is

Mg =~H; =
3 ( XgqH;+3 &~2M, +8 /aM')
+-,'('X„H,. +4~„M, +vq, M,). (4.16)

Dividing both Egs. (4. 15) and (4. 16) by H; and

solving for the susceptibilities, we obtain

x, = l(3 —22 Q2+ ll X,3) X,~ + 22 ~~~ Oga]/&

and C is the free-ion Curie constant given by Eq.
(4. 3). The theory gives the proper high-tempera-
ture behavior irrespective of the choice of 5 in Eq.
(4.21). We have used 5 =0.5 with experimental
agreement as our only justification.

By combining the equations in this section with
the previous calculation of the spin correlations,
we can calculate the temperature dependence of

X„X, and X with the two exchange parameters as
the only adjustable input. The comparison with the
neutron results is shown in Fig. 8 for the selected
values of J» and Jzz. The simple theory does an
adequate job of predicting rather complex behavior.
Some feeling for the causes of the behavior shown
in Fig. 8 can be obtained by inspecting Eqs. (4. 15)
and (4.16). The terms in 'y, &, representing iso-
lated pair susceptibilities, are positive and con-
tinuously increase as the temperatureis decreased.
The terms involving the X;, are negative and their
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measurements in the right temperature range have
not yet appeared. Probably such behavior has been
seen by Schinkel and Van Amstel because they re-
port agreement with Miller eg nl. at low tempera-
tures and Curie-Weiss behavior as shown in Fig. 9
above 20 'K. Miller et al. have shown that the low-
temperature results depend strongly on the stoichi-
ometry, so it is possible that some of the differ-
ences seen in Fig. 9 are sample dependent. The
linear portion of the calculation can be translated
vertically by adjusting the average exchange con-
stant, but there seems to be no good reason to at-
tempt this until the experimental results are more
consistent with each other.

10 20
TEMPERATURE ('K)

50

F/G. 8. Comparison of calculated susceptibilities
with the polarized-beam results. The solid lines are
calculated with J~&/k = —0.1328'K and J2&jk = —0. 1414 K.

magnitude increases as the temperature is lowered.
The increasing correlation, entering through the
parameters ~;,, opposes the normal thermal in-
crease in the susceptibility as the temperature is
lowered. For the type-2 sites, which have the
strongest antiferromagnetic coupling with their
neighbors, a temperature is reached where the
correlation effect overcomes the thermal effect
and the moment starts decreasing as the tempera-
ture is lowered. This tends to free the type-1
sites and they show a rapid increase in moment as
soon. as 3fa beg1ns to decl ease. T1DS d3.vergjLng be-
havior is nearly invisible if one looks at only the
average susceptibility.

It is also of interest to compare the calculation
of the average susceptibility with the results of
ordinary susceptibility measurements. As shown.

in Fig. 9, the calculation shows Curie-Weiss be-
havior above 10 K with a region of slight positive
curvature in 1/y vs T from 3.5'K to 10'K. At
3.5 K there is an abrupt change in slope similar
to that seen experimentally at a somewhat lower
temperature by Miller et al. o and by Brown and
Hubbard. ~~ Unfortunately this is in the tempera-
ture region in which the calculation is of uncertain
validity because the correlations are becoming
large. The region of positive curvature is not
evident in any of the published data, but careful

The value of the polarized-neutron technique for
investigating complicated paramagnets has been
demonstrated. Whenever more than one type of
magnetic atom is involved, a conventional suscep-
tibility measurement gives only a partial descrip-
tion of the magnetic behavior because it measures
the average response. As in the case of Gd~O3,
the response of individual types of atoms may be
quite different from the average and these differ-
ences can be resolved w'ith the polarized-neutron
technique.

The persistence of spin correlations at tempera-
tures up to 100 times the ordering temperature
has been demonstrated in GdzO„a material which
has been regarded as nearly an ideal paramagnet.
Such behave r suggests that diffuse scattering of
neutrons from paramagnets is practically always
affected by spin correlations to some degree and
is therefore a poor method of obtaining form factor
data, unless an independent study of the magnitude
of the spin correlations is made. A reanalysis of
our earlier measurement of the diffuse cross sec-
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I IG. 9. Comparison of calculated average suscepti-
bility with various experimental results using convention-
al techniques. See Hefs. 10, 11, 3, and 5.
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tion of Gd~03 at 300 'K leads to the conclusion that
there is no convincing experimental evidence sup-
porting a difference in the 4f form factor between
Gd metal and Gd~03.

A simple theory of the magnetic behavior of
GdaO3 in the paramagnetic state has been developed
which recognizes the differences in the net ex-
change interaction at the two different crystallo-
graphic sites. Two exchange constants are intro-
duced, one measuring the strength of the interac-
tion between a C~; site and a Cm site (J,z), and the
other between two C~ sites (Z~z). The spin corre-
lations, susceptibilities, and specific heat are cal-
culated as a function of temperature. Good agree-

ment with experimental results is found for J,a/k
= —0.1328 'K and Jzz/k = —0.1414 'K. The anoma-
lousbehavior of the susceptibility and specific heat,
attributed by others to a single-ion Schottky anom-
aly, is almost certainly due to magnetic interac-
tions between Gd ions.
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