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Green's-function techniques have been used to derive screened-exchange plus Coulomb-hole correlation
corrections to Hartree-Pock energy bands. These correlation corrections or energy shifts consist of a
statically screened exchange term which is state dependent, and a Coulomb-hole term which is constant
in our diagonal approximation for the screening {dielectric) function. These energy shifts raise the
occupied bands and lower the conduction bands with a resulting decrease in energy differences. The
calculation was done for LiF at general points in the first zone using linear-combination-of-atomic-
orbitals Hartree-Pock energy bands and the Penn-model dielectric function. A change in. the band gap
at I of 5.0 eV was obtained compared with the experimental value of 9.3 eV. The calculation was also
done using the random-phase-approximation {RPA) dielectric function and it was found that the
diagonal part of the RPA gives less than half of the correlation obtained with the Penn model.

I. INTRODUCTION

In the past few years, several methods have been
developed for calculating true Hartree-Fock energy
bands rather than Xn bands in which the exchange
term is approximated by p' . Crystalline Hartree-
Fock calculations have been done by Euwema and co-
workers' using the linear-combination-of-atomic-
orbitals (LCAO) method, by Mickish et al. 4 using a
localized-orbital method, and by Kumar et a3. us-
ing Fourier-transform techniques. As is well
known, Hartree-Fock band calculations give energy
differences that are too large, so that correlation
corrections must be added to the bands in order to
obtain more favorable agreement with experiment.
Various methods have been developed for adding
correlation to Hartree-Fock energies, including
the electronic polaron method of Kunz and the ran-
dom-phase-approximation (RPA) approach of Monk-
horst and Oddershede. In this paper we use the
screened-exchange-plus-Coulomb-hole (SECH)
method for adding correlation to Hartree-Fock en-
ergy bands.

The SECH method was first proposed by Hedin'
in 1965 and later treated in more detail in a review
article by Hedin and Lundqvist. The method has
been used previously in crystalline calculations by
Brinkman and Goodman, ' who did the calculation
for Si using p' 3 rather than Hartree-Fock energy
bands and the Penn-model" dielectric function, and
by Lipari and Fowler, '2 who did the calculation for
Ar using non- self-consistent approximate Hartree-
Fock bands and the Penn model. In these two cal-
culations the energies were computed only at sym-
metry points. In this paper, self-consistent exact
Hartree-Fock energy bands are used and the energy
shifts are calculated at general points in the Bril-
louin zone. Also, the calculation is done with the
RPA dielectric function, the one actually called for
in the SECH formalism, as well as with the Penn

model. The method is applied to LiF using
Euwema's Hartree- Fock bands. 2

II. SCREENED-EXCHANGE PLUS COULOMB-HOLE
APPROXIMATION

In this section we derive the SECH approxima-
tion. The results presented in the first part of the
section, up to and including Eq. (8), are derived
in detail in the Appendix by making use of the one-
electron Green's function. For a crystal contain-
ing N electrons, the one-electron Green's function
is defined by

G(xt, x 'f') = —i(T[((xt)g'(x 't') ])
= —i[(g(xt) g'(x 't')) 6(t —t')

=o (t&t'),

where ( ) denotes the expectation value with re-
spect to the Heisenberg ground state of the N-par-
ticle system, 7' is the Dyson time-ordering opera-
tor, g(xt) is the Heisenberg field operator, and x
includes space and spin coordinates, (x) = (r, g).

The Green's function satisfies the equation

x G(x,t„x,t,) dx, dt, = S (x„x,)8(t„t,),
v(x, i ) = —if'(r„r, )G(x, i„x,i() dx, ,

e2(„,)= =
ri —r2

where h is the kinetic energy plus the interaction
of the electron with the nuclei, e is the charge of
an electron, t'=- t+ g where lim„o is understood,
and Z is the self-energy which contains all the ex-
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change and correlation effects.
If the self-energy is expanded in powers of the

bare Coulomb interaction g and the first term of
this expansion is used, then Eq. (2) becomes the
Hartree-Fock equation which produces energy dif-
ferences that are too large in comparison with ex-
periment. More accurate results can be obtained
by expressing the self-energy in powers of a
screened interaction S'which includes the effects
of the polarization of the system. The first term
of this expansion is given by

Z(x, t„x,t, ) = tW(x, t'„x,t,)G(x,t„x,t,),

of the Green's function. Then (5) becomes

q( „„)= [(y(,)q'(, ))8( ) &y'(,)q(,))e( )]

x[v(r„r,)S(~+g)+ W, (x„x„~')
x dr'S(~)]. (is)

Since 8(7')b(v) =8(- 7)5(r) = 25(v'), the Fourier trans-
form of (13) can be taken, yielding

&(x„x„(d)= —(0'(x2) 4(xl)&v(rl, r2) + 2 [(4(xl)0'(x2))

—(g~(x,) (t)(x,)) ]W (x„x„(d= 0), (14)

where

W(x, t„x,t,) = v(r„r2)k '(x,t„x,t,) dx, , Wk (x„x2, r') dv' = W() (x„x2, (o = 0) .

e(x,t„x2t2) =s (x„x2)5(t„ t,)

P(x, t„xkt2)v(r2, r2) dx2,

P(x,t„x,t, ) = —2G(x, t„x,t', )G(x,t„x,t,),
(7)

(s)

Inside the brackets in Eq. (14) we add and subtract
the second term to obtain

~BECH( 1) X2) (P(Xl) 2)) W(X1& X2& +

+ -', S(x„x,)[W(x„x„~= O) —v(r„r, )],
where & is the dielectric response function of the
system and P is the irreducible polarization prop-
agator.

When the Hamiltonian for the system is indepen-
dent of time, it is easily seen that the Green's
function depends only on the difference of the time
arguments, in which case we can write G in terms
of its Fourier transform:

G(x„x„ t, —t,) = —' G(x„x„(u)e '""1 '2' d(o .
7T 4

Then the Fourier transform of Eq. (2) is given by

[(d —k(x, ) —U(x, ) ]G(x„x„(d)

Z(x„x, u&)G(x, x, &u)dx =5(x„x), (10)
4

where

)'(+i) = J&(+i +a)(P(&s)) ~+&

p( ) =C'( )C(.),
(»)
(12)

and g(x) is the field operator in the Schrodinger
representation.

In the expression for the self-energy given by
(5), let us write the screened interaction as a bare
pa, rt plus a part 5& due to polarization

W(x„x„7+n) = v(r„r2)t) (~+)I) + Wk(x„x2) ~+ 11),

v= tg —t~ .
It can be shown that Wk(x„x„r) is a sharply
peaked function of 7 with the peak being symmetri-
cal. Therefore we will approximate W& in the

above equation by its integrated value times a 5

function; however, instead of 5(7+ li) we will use
5(r) so as to pick up contributions from both pa, rts

where

p(x„x,) = g'(x2) g(x,),
w(x„x„&o)= v(r„r, )+ wk(x„x„~) .

(is)

[k(x,)+ V(x,)]uk(x, )+ Z (x„x,)u, (x,) dx, =ekuk(x, ) .
4

(IV)
If we subtract the term &uuk (x,) from both sides of
this equation, multiply both sides by uk (x2)/(ek —&o),

sum over k, and compare with Eq. (10), we obtain
for the Green's function

p uk(xl)uk (x2) (is)

By comparing (1S) with the general expression for
the Fourier transform of the Green's function,
which can be obtained from (1), we have

Eg + i(5
~ k occupied

&~ -&„- i6, k unoccupied
(19)

where lim, 0 is understood. The energies e~ are
unrelaxed ionization energies and unrelaxed elec-
tron affinities for k occupied and unoccupied, re-
spectively. Comparing (1S) with the general Fouri-
er transform of the Green's function, we see that
when Z is independent of frequency, the density

In the expression for Z~«„ the first term leads to
a statically screened exchange (SE), while the sec-
ond produces a Coulomb hole (CH).

In this approximation Z is independent of (d. When

this is the case, we can solve the following equa-
tion self-consistently to obtain a complete ortho-
normal set of one-electron states u~ with corre-
sponding energies E~:
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matrix is given by

(p(x„x,)) = Q u, (x,)u„*(x,) .
0 occ

(20)

Using (8), the Fourier transform of the polariza-
tion ca.n be written

For a, spin-independent problem, the integration
over the spin coordinates in (23) can be carried
out. Then, writing the bare and screened interac-
tions in terms of their Fourier transforms, we
have

P(x„x„(u)= ——G(x„x„~d')
277"

v(r„r, ) = s v(q)e" '& '2'dq,
7T J

(24)

III. ENERGY SHIFTS

If the self-energy were given by

~F(xl xR) (p(x1 x2)&v(r1 rR)

then (17) would become the Hartree-Fock (HF)
equation which has only an unscreened exchange
term. Let us denote the HF one-electron wave
functions and energies by ug, and &k„respectively,
where k is a reciprocal space vector restricted to
the first zone and l is a band index. Since we are
already in possession of a. set of HF wave functions
and energies, we can use first-order perturbation
theory to obtain corrections ~ek, to the HF energies
due to using Z~sc„ in Eq. (17). Considering the
HF Hamiltonian to be unperturbed and letting the
difference between Zs«„and Z„F be the perturba-
tion, the first-order correction to the energy is
then given by

u z, (x,)[Z„,„(x„x,)
—Z„p(x„x,)lug, (x,) dx, dx,

= — ' u„*-,(x,)(p(x„x,))[li'(x„x„~= 0)

—v(r„r, ) ]ui-„(x,) dx, dx,

+- ju„-*,(x,)~(x„x,)[W(x„x„~= 0)
2

—v(r„r,)]u;, (x,) dx, dx, . (23)

The first part of the above expression is the differ-
ence between a screened- and unscreened-exchange
term, while the second part is a Coulomb-hole
term. These energy shifts &Ek, , which are corre-
lation corrections, have been obtained by using
Green's-function theory to go beyond the HF ap-
proxlmatlon.

x G(x~~ xi, QP —&0)e d(d

and, using (18) and (19), this becomes

P(x„x„~)
k

Ql, Xy Qy X2 Qyi Xy Qyi X2 ~

(»)
where n~ is the occupation number (either 0 or 1)
of the state u„.

li(ri, r2, &) =
( )6 W(q, q, ~)e" ' " '2dqdq

(25)
where

W(q, q', (d) =v(q)e '(q, q', &o), v(q)=47ie'/q',

e(q, q', id) =(2v)36(q, q') —P(q, q', ~)v(q') .
(26)

(2'7)

The HF wave functions, which are calculated us-
ing the LCAO method, have the form

Nc g b„.(k)e"' y. (r-R„) (28)

where the sums are over atomic orbitals P; and
direct-lattice vectors R„, the b„-'s are the coef-
ficients of the Bloch functions associated with the
a,tomic orbita. ls, and N, is the number of unit cells
in the crystal. The 6 function is related to a sum
over direct-lattice vectors as follows:

Q f, (k K) Q eiC Rp'
0

where the sum on the left-hand side is over recip-
rocal-lattice vectors K and 0 is the volume of the
unit cell. Using (28) and (29), (27) becomes

(29)

e(q, q', ~v) =(27')'6(q, q')

—P P (q, q+K2, &u)v(q+K2)
K

&&5(q+K2, q'), (30)

where the sum is over reciprocal-lattice vectors
Kz a,nd P' is given by

2 (2v) p k+q+Ki ti . Jcl'P' q, q+K„&v) =
kll' k+q+ Kl~/ kl'

x(kE ~e
" 'iik+q+K„E)

&&(kE ~e
''" 2' '2ik+q+K„E)* .

(»)
The factor of 2 in front of the sum is due to spin,
V, is the volume of the crystal, K, is the recipro-
cal-lattice vector such that k+q+K, is in the first
zone, and ikE) =uk, .

The dielectric function given by (30) is known as
the random-phase-approximation (RPA) dielectric
function. Wiser' has shown that in many cases the
effect of the off-diagonal terms of the RPA dielec-
tric matrix is small. Therefore we make the ap-
proximation of keeping only the K~ = 0 term in (30),
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in which case & becomes

e(q, q', &) = ~(») -P'(q, q, +)v(q)]5(q, q'), (32)

where

2(2v)' p &i"„,.K, , ) —&) )P'(q, q, ~) =
aS) '~" K

x l&kf'le-"" lk+q+K„f& l'.
The inverse is then readily obtained:

2v'
e '(q, q', ~) = ~ 5(q, q'),

(33)

(34)

~ ~
(

~ ~
)x'e" '~ '2 u)"„(r2)dr, dr& dq+ —

( )s v(q)

where

q Qp 0

p(r„r,.)= ~ ug. , (r,)uf, (r,) .
k'sg' OCC

Using (28), (29), and (38), (37) becomes

(38)

1be- =-—
kl y

Kyk t E OCC

1&k'Z'I

xe """""''lkf&l'v(k-k'+K)

c
1 1 1x —

, —1 + — , v(q)e(k-k +K, ~=0) 2 (2v)

x -- -1 dq, (39)

where the sum on K is over reciprocal-lattice vec-
tors. Making the approximation that the dielectric
function e(q, &u = 0) falls off to 1 outside the first
zone„we keep only the reciprocal-lattice vector K
in the above sum such that k-k +K is in the first
zone, and we limit the q integration in (39) to the
first zone. Since the factor 1/e —1 appears in both
terms of (39), the above approximation neglects
positive and negative terms which, in addition to
being small, cancel each other to some extent.

IV. RESULTS FOR LiF

The energy shifts described above have been cal-
culated for LiF using the LCAO HF energy bands of

e (q, (u) = 1—,, v(q) P'(q, q, ~) .
2 7)')

Combining (34), (26), and (25), we have

(2m) . e(q, &

Then, using (24) and (36), the energy shifts become

Vr„-, = —, , v„, (r, )p&r„rr)v&q) . . —
1)(27)) . 6'(q, (d = 0)

TABLE I. BPA for LiF at q=(x/2a) (1, 0, 0) vs total
number of conduction bands used in calculation.

Bands

1
2
gC

5
6
7
8

1.121
1.167
1.206
1.244
l. 250
1.253
1.255
l. 258

Euwema et a/. ' The energies &g& and wave func-
tions up, were initially determined at 20 points in

48 of the Brillouin zone, and then the coefficients
f),

&
in (28) were permuted to obtain the u)-„'s at 341

points throughout the zone. Using these 341 points
in the sum over k' in (39), the energy shifts &eh
were computed for the six occupied bands and first
eight conduction bands at 20 points in «of the zone.

The dielectric function that appears in this meth-
od is the one given by (32), which is also known as
the diagonal part of the RPA dielectric function.
Since we are using first-order perturbation theory
to obtain the energy shifts, the dielectric function
must be computed with the HF energies and wave
functions. For this calculation, the six occupied
bands and first eight conduction bands were used,
with the k summation in (33) being carried out over
341 zone points. The RPA appears to be fairly
well converged after eight conduction bands, as in-
dicated by Table I.

Figure 1 shows a comparison between the RPA
computed with HF wave functions and energies (HF
RPA), the RPA computed with HF wave functions
and SECH correlated energies (SECH RPA), and
the Penn-model" dielectric function, where the
latter is a semiempirica, l model that takes on the
experimental value for the optical dielectric con-
stant when q=0. We see that the HF RPA is quite
a. bit smaller than the experimental value as repre-
sented by the Penn model. This is due pa, rtly to
the fact that the uncorrelated HF energy differ-
ences, which appear in the denominator of (33), are
too la, rge; however, the SECH RPA shows that cor-
recting the HF energy differences produces only a
small change. Other factors contributing to the
difference between the HF RPA and experiment a,re
the uncorrelated wave functions used in the matrix
elements in (33), the neglect of higher-order po-
larization terms beyond the RPA, and the neglect
of the off-diagonal terms of the dielectric matrix
[the K~ c 0 terms in (30)] which correspond to local
field effects. Since the Penn-model dielectric func-
tion matches experiment, it was used to obtain the
SECH correlation corrections. Energy shifts were
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also computed using the diagonal part of the HF
RPA so that a comparison could be made between
the Penn-model and HF RPA results.

The energy shifts given in (39) are state depen-
dent due to the first term, which is the difference
between a screened and unscreened exchange, while
the second term, the Coulomb hole, is constant in
the approximation for the dielectric function given
by (32). If the full dielectric matrix as given in
(30), rather than just the diagonal part, is used,
then the Coulomb-hole term is also state dependent.
For core and valence bands, the first term in (39)
is larger than the second, giving positive energy
shifts, while for conduction bands the Coulomb-hole
term is larger and the energy shifts are negative.
Therefore these correlation corrections raise the
occupied bands and lower the conduction bands with
a, resulting decrease in energy differences.

Figure 2 gives the uncorrelated HF energy bands
which yield energy differences that are too large
in comparison with experiment. Table II shows the
SECH correlation corrections for the top valence
and bottom conduction bands and the corresponding
band-gap changes, obtained with the Penn-model
dielectric function. We see that as one moves out
from the center of the zone along the &, Z, and ~
axes, there is an increase in the gap changes which
tends to flatten the bands; however, these gap

50

20

IO-

5
EP

0-

K
UJ 0-
4J

)Xy

I
— ",X5

—'rX
I

FIG. 2. Uncorrelated HF energy bands for LiF.

changes do not vary over the zone by more than
one-quarter of an eV„The last column of Table II
gives the band-gap changes obtained with the diag-
onal part of the HF BPA dielectric function, and it
is seen that the HF BPA produces less than half of

I

C l5-
CF

Ig

SE'CH RPA

TABLE II. SECH energy shifts for LiF at several
points q in the first zone. 6&„ is the top valence-band
shift, Ae is the bottom conduction-band shift, and
hE '~ is the corresponding band-gap change, obtained
with the Penn model. AEz" R~A is the band-gap change
computed with the HF BPA. Shifts and gap changes are
in eV.

FIG. 1. LiF dielectric functions along the A axis from
the center of the zone to the zone boundary 2z/a, where
a is the lattice constant.

q

(~/2a) (0, 0, 0)
(1, 0, 0)
(2, 0, 0)
(3, 0, 0)
(4, 0. 0)
(1, 1, 0)
(2, 2, 0)
(3, 3, 0)
(1, 1, 1)
(2, 2, 2)

2. 39
2. 39
2. 41
2. 43

2. 38
2. 39

2. 39
2. 39

62
2. 63
2. 67
2„74
2. 80
2„65
2. 70
2. 75

2. 69

5. 01
5. 02
5. 08
5.17
5 24
5. 03
5. 09
5. 17
5, 05
5. 08

1.87
1.88
1.90
1,95
1„98
1.88
1.91
1.94
1.89
1.91

~E (Penn) ~E (HF H,PA)
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the correlation obtained with the Penn model.
Figure 3 gives the SECH correlated energy bands,

while Table III compares the corresponding SECH
correlated energy differences, obtained with the
Penn model, to the uncorrelated HF band gaps at a
few symmetry points. We see that the SECH cor-
relation correction reduces the HP band gap at I'
from 22. 9 to 17.9 eV, compared with the experi-
mental value of 13.6 eV. ' Thus the SECH method
provides over half of the correlation needed in LiF
for the top of the valence band.

An additional correlation correction, due to
relaxation effects, is important in alkali halides
and needs to be included along with the SECH
energy shifts in order to describe excitations
of the N-electron system. If this correction is
treated in the approximate manner of Mickish et
al. , then an additional gap change at I' of 4. 6 eV
is obtained. This reduces the fundamental band

gap to 13.3 eV, which is in close agreement with

experiment.
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'I'ABI E III. LiF HF and SECH band gaps in eV.

I')~ —I'(

X~I X4'

HF

22. 9

25. 0

26. 0

for providing the Hartree-Fock energy bands used
in this calculation.

a=+ a(x,.)+—g ~(r;, r,.)+P P(x;t)+ V„„„,
i 2 g~

(Al)
The sums are over electronic coordinates x;, where
x includes space and spin coordinates, (x) = (r, $),
k is the kinetic energy plus the interaction of the
electron with the nuclei, g is the Coulomb interac-
tion given by

APPENDIX A: BASIC FORMALISM

In deriving the expression for the energy shifts
in the SECH method, we follow closely the work of
Hedin and Lundqvist, who formulated the problem
ln terms of Green s functions. Consider a small
external potential acting on a neutral crystal con-
taining N electrons. Then in the linear approxima-
tion the Hamiltonian is given by

l5-

IO'

-5-

I

)X5 where 8 ls the chal geof an electrony ~nuclem ls the
Coulomb repulsion of the nuclei which is treated as
a constant here, and P is the external potential
which is introduced in order to derive an expres-
sion for the dielectric response function. After
the final equations have been obtained, Q will be
set. equal to zel"o.

Now let us introduce the field operator g(x) which
satisfies the following anticommutation relations:

&0( ), (( '))=(0'( ), 0'( '))=o,
~I&(x), (r)'(x ')) = h (x, x') .

Then the Hamiltonian can be written in second-
quantized form as follows:

&(t)=f("( )h( )(( )d*

I

L2

+ — ' ('(x) P'(x') v(r r') g(x')(1)(x) dxdx'

+ x )~xj xt dx+V,„„,.

FIG. 3. SECH corre].aged energy bands for I.iF.

IJ,+ e,(t), -

&,(t) = fn(x) ( (x&i «,
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p(x) = 0'(x)P(x) . (A5) we have

Let lt) be the state of the N-particle system at
time t. Then the time-evolution operator U is de-
fined by

it) = U(tt') it'),
where

ti
[26(t~, ts)+ tvo(t~ts)H~(ts)], , dts

= —zv, (t,t,)p(x,)v(t, t, ) (t, &t, &t,)

=0 (t, & t„ t, &t,),
which implies that

(A13)

U(tt) = 1,
v(t, t,) = v(t, t,) v(t, t,) .

(A6)

(A7)

6 U(ted@)

6y(xt) 0 ~ t4 t1~ t4 t2 ~ (A14)

Applying the Schrodinger equation

we have

z—v(tt') =H(t) v(tt') .
8$ (As)

Therefore we can change the lower limit of integra-
tion in Eq. (A13) to t4. Solving Eq. (A12) for
Uo(t, t4), substituting this into the right-hand side
of (A13), comparing the integrands of both sides,
and using (A14) yields

6 U(ht2)
6 P(x,t,)

= —tv(t, t,)p(x, ) U(t, t,) (t, & t, & t,)

Also the time-evolution operator for Ho satisfies =0 ta&t2) .
(A15)

t „v,(tt ') = a,—v, (tt '),

where

(A9) Define an operator O~ in the Heisenberg repre-
sentation by

U (tt() e-(Ho(t-(')

v', (tt') = v, (t't) . (A11)

Equations (As) and (AQ) can be combined to ob-
tain an integral equation for the time-evolution
operator

U(t(t2) = Uo(t, t2) —i Uo(t, t3)H((ts) U(tst2) dts . (A12)
f2

Taking the functional derivative of both sides with
respect to the external potential and using Eq. (A4),

I

o„(t)= v(t, t) o, v(tt,), (A16)

where O~ is the corresponding Schrodinger opera-
tor. In this case the equivalence of the Heisenberg
and Schrodinger pictures occurs at to:

Os(to) = Og

i4, (t,)& = I~.&,

where l&~& and l+z& are Schrodinger and Heisen-
berg states, respectively. Also define the ground-
state expectation value of a time-ordered product
of Heisenberg operators as

(Nl vo(t„- t,)v(- t„ t.)r [o,(t,)o,(t,) ."]lN)
(N l Uo(to, —to) U(- t(&, to) lN)

(A17)

where lN& is the Heisenberg ground state of the
N-particle system. Then, using Eqs. (A15) and
(A1V), we have

(T [ ( t) o (t )o (t ) ])6y( t) p 1 1 2 2

+ t(p(xt)&(T' [o,(t, ) o,(t,) ."]),
(Als)

p(xt) = tp(xt) g(xt), g(xt) = U(t, t) g(x) U(tt, ) . (A19)

The Heisenberg field operator satisfies the
Heisenberg equation of motion

t—st 4(xt) = [4(xt), H(t) ]
8

Define the one-electron Green's function as

C(xt, x't') = —t(Z'[g(xt) g'(x't')]&

= —t[(g(xt) g'(x 't')&e(t —t')

—(0'(x't') 0( t)&e(t' - t)],

e(t —t') = 1 (t& t )

(A21)

and, using (A2), this becomes

z —,((xt) = [1((x)+ y(xt) ]g(xt)
. a

+ Je(r, r")gt(x "t)g(x "t)g(xt) dx . (A20)
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=0 (t(t') .
Using the relation

—e(t- t') =&(tt')

we have

. 8i—„G{xt,x t ) = Tl —, 4(«)4'{x't') +5(x, x')5(», t').
(A22)

Multiplying Eq. (A20) on the right-hand side by
gt(x t ), taking the time-ordered product and
ground-state expectation value of both sides, a,nd
using (A22), we have

g(x) (t(«) G(xt, x't')+i v(r, r")5(t+q, t")(T[(~(x"t") I()x)t )((xt)$ (x t)J)~ ~

8t

xdx" dt" =t)(x, x')&(t, t'), (A23)

where we have inserted a 5 function and integra, -
tion over t" in the second term on the left and
lim„o is understood. Using the notation

(1)= (x„ t,), (1') = (x„ t, + g),

v(12) = v{r„r,)&(t„ t,),

5(12)=5(x„x,)5(t„ t,),

.5G(22')
P(12) =-i

5 (1)
1

= i G(23) G(42') d(34),

where we have used the identity

( ) l"G(14)
'( ) G(52)d(45)

5 v(s) . 5 v(s)

(Aso)

(Asl)

we can write (A23) as

i —h(x, ) —$(1) G(12) +i v(1'3)(
~ 8

8ta 4

x (T [p(3) (1)(l)(1)'(2)])d(3) = 6 (12)

and using (A18) this becomes

—h (x,) —)'(1))(' ()2)
8

8tg

-i v(1'3), d(S) =5(12),5 G(12)

V(1) = (t (1)+ v(13)(p(3))d(3) .

(A24)

(A25)

so that (A27) becomes
to

W(12) = v(12)+ lv(13)P(34)w(42)d(34) . (As2)

Let us write the second term on the left-hand
side of (A24) as

. " (, )5G(12) 5V(3)
( )

5V(s) 5y(4)

From (A29) and (A27), the inverse of the dielectric
function is

e '(12) =5(12)+ i P(13)W(32)d(3),

Using the definition of the Green's function, V'(1)

becomes

{A28)

Then, using the relation

,( )
5 V(3)
Sy(4)

Define the screened interaction W by

W(12) = 'lv(1S)~ '(32)d(S), (A27)

and (A27), the second term in (A24) becomes

6G 12
5 v(s)

—i W(1'3) d(3)

and, using (Asl}, this becomes
where the dielectric response function e is defined
as i

l
W(1'3)G(14)

6
G(52)d(345) .5G '(45)

6v3
&(12) = =5(12)+i v(23) d(3) .& y(2) . «(33")

d (A28) Defining the self-energy Z as

Then define the irreducible polarization propagator
P by

Z(12) = —i W(1'3)G(14} 5
d(34),

5G-'(42)

e (12) = 5 (12) — i P(13)v(32)d(3),

so that

(A29)
Eq. (A24) becomes

(
—h(x, ) —V(1) G(12) — Z(13)G(32)d(3) =~(12) .

1 (As4)
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Define the vertex function I" by

6G '(12)I"(12,3) =
( )

(As5)

Multiplying (A34) on the right-hand side by G (24)
and integrating over 2, we have

curate approximations for Z as a functional of G.
The expression for Z so obtained can then be put
into Eq. (A34), yielding a self-consistent equation
for the Green's function.

If we use Z = 0 as a starting point, then I' be-
comes

—h(x;) —V(1)) & (14) —Z(14) = G '(14),
1

so that I' becomes

I'(12, 3) = & (12)6 (13)+
5Z(12)

I'(12, 3) =6(12)6(13)

and this yields a new expression for Z,

Z(12) = iW(1'2)G(12),

with a corresponding expression for I'

(As9)

(A40)

= 6 (12)5(13)+ d(45),
"6Z(12) 5G(45)

and, using (Asl) and (A35), this becomes

I'(l2, 3) =6(12)5(13)+j G(46)I"(67, 3)

x G(75)d(4567) .
Putting (A35) into (A33) and (A30), we have

(A36)

Z(12) = i ~ W(l'3) G(14)I'(42, 3)d(34),
v

(A37)

P(12) = —i G(23)1 (34, 1)G(42')d(34) . (Ass)

The last three equations together with Eq. (A32)
can be iterated to obtain successively more ac-

P(12) = —fG(12')G(21) . (A41)

Since the iterations become increasingly more com-
plicated, we will stop at this point and use the ap-
proximation for Z given by (A40). This is the first
term of an expansion for Z in powers of a screened,
rather than bare, interaction. This approximation
for Z neglects vertex corrections due to the sim-
ple expression given for the vertex function in
Eq. (A39).

Now that the final equations have been obtained,
we set the external potential equal to zero, in which
case the dielectric function becomes a linear re-
sponse function. Since Q = 0, H(t) = Ho~ U= Uo and
the ground-state expectation value defined in (A17)
takes the usual form,

(r[o,(f,)o,(t,)... j)=&air'lo, (f,)o,(t, ) "1ix) .
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