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A new type of instability is shown to occur if a temperature gradient is present across a n n+, pp+,
or p n junction with no voltage applied. The critical temperature gradient depends on the size and

steepness of the junction and is smaller for large and less abrupt junctions. The instability should occur
in the best thermoelectric materials, characterized by a figure of merit Z T & 1, In other materials the
required temperature difference between the homogeneous semiconductors at the end of the junction
turns out to be too large.

I. INTRODUCTION

In a nn', PP, or Pn junction the current carriers
are comparable with a gas in a gravitational field.
The Boltzmann equilibrium in the internal electric
field of the junction corresponds to the equilibrium
of a heavy gas which is described by the barometric
formula. If the gas is heated from below, instabil-
ities, convection and turbulence will appear suc-
cessively. Suppose that the temperature gradient
is directed downward and exceeds a certain critical
value. Arbitrarily small temperature perturba-
tions will grow then exponentially, leading to ther-
mal convection. The critical gradient increases
with the viscosity of the gas and decreases with the
density, the gravitational acceleration and the ther-
mal dilatation coefficient.

The aim of this paper is to show that similar in-
stabilities appear in semiconducting junctions, if
the temperature gradient across the junction is big
and has the corresponding direction. Similar to
the ease of a heavy gas heated from below, eddy
currents and electrical noise will appear in semi-
conductor junctions without any applied voltage.
In order to get a physical picture of these instabil-
ities, it is convenient to express the underlying
macroscopic perturbations of the carrier motions
in terms of the well-known thermoelectric effects.

I.et us consider a small spatially periodical tem-
perature perturbation in the plane of an unbiased
semiconductor junction. It will generate small
Seebeck-current curls. The initial perturbation
will be attenuated both through the Peltier heat of
the Seebeck-current curls and through thermal
conduction. However, if a large temperature
gradient is present perpendicular to the junction
plane, these losses can be overcompensated by
the Thomson heat which also appears as a conse-
quence of the mentioned Seebeek-current curls.
Denoting by Q& and Q~, the thermoelectric powers
of the materials forming the junction; by v, the
mean value of the Thomson coefficient in the junc-
tion; by l, the length of the junction; by j, the

—~VT & «T

for instability, in which e = (Qe —Qz)/l is the gradi-
ent of the Seebeck-coefficient in the junction. In
Sec. II we shall take into account thermal conduc-
tion also.

II. SIMPLIFIED TREATMENT

I.et 0 be the electrical conductivity, x the ther-
mal conductivity, Q the Seebeck coefficient, p the
electrochemical potential of the electrons and e & 0
the elementary charge. Then the density j of the
electric current and the density w of the thermal
current are given by

j=(1/e)eVp, —oQVT, V j=0,
w = (TQ —p, /e) j —~VT .

(3)

(4)

Consider again a planar junction with free termi-
nals, in which a uniform temperature gradient is
present perpendicular to the junction plane. In
the unperturbed state j = 0. Denoting unperturbed
values by the index 0, we obtain, from Eqs. (3)
and (4),

(1/e)vpo= QovTo,

wo= —z VTO ~

(5)

(6)

The evolution of the perturbation generated by a
small temperature variation 6T is described by the
following linearized equations:

eddy current in a curl; and by VT, the temperature
gradient, the condition of overcompensation of the
Peltier heat by the Thomson heat in a volume unit
is

(1/l)T (Qe —Q~)j ( —~j VT .
Here the Peltier coefficient P has been expressed
through the Thomson relation P= TQ which is a
consequence of the Onsager principle. Neglecting
thermal conductivity we obtain the heuristic criteri-
on
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9@pbj = —ooVbp. —ooQoVAT —oo — o 5TVTo, V6j =-0,

bw= (ToQo —P, o/e) bj —)) V5T, (s)

95T
cp +Vow=0 .9t

Here c is the specific heat and p is the density.
I et x= 0 be the junction plane. Then To, Qo, p, o,
and Op do not depend on y and z. If we eliminate
5w, we obtain

cp —— + (& j)„—TOQO ———g& 5T = 0 . (10)
95T ~ d JUP 2

Equation (10) has to be considered together with
Eq. (7).

In the simplified treatment of this section we
shall neglect the spatial variation of oo and BQp/
BT. We shall also consider the dependence of Qo
and Tp on x to be linear. Actually, p depends
strongly on x both due to the spatial dependence of
doping in the junction and because the temperature
depends on x. Physically, the effect of this spatial
variation is only a, distortion of the j curls, which
should not influence the stability criterion too much.
The effect will be taken into account in Secs. III
and IV.

With these simplifications, we try a solution of
the form

—cod(~y+ eT) & xk', (is)
where we restricted ourselves to perturbations
with k„= 0 and where T is a mean temperature,
corresponding for instance to the junction plane.
Perturbations with k, = k, = 0 would never yield in-
stabilities. Thus k, and k should be considered
equal to the inverse of a characteristic dimension
of the junction [see Eqs. (49) and (51)).

III. INTEGRAL CRITERION

Starting from Eqs. (V) and (10) we shall now
avoid the drastic simplifications of Sec. II. As-
suming in the junction

oo(x) = ooe ", b = const , o.o
= const.

as a realistic form, we consider a perturbation

bj = VxA, PA=0, with A=a(x)e2e'"'"'

and

bT = 8(x)e'"'"' .

with the Thomson relation

8@pT=T
9Tp

Choosing by convention in each junction the direc-
tion of the x axis so that q & 0 we see that the
heuristic criterion (2) is a necessary condition. In
fact, instability means s &0 and thus the criterion
for instability is

5j = 7'xA,
ikr+s t

VA=O,

g
iCr+st

Here k is a vector perpendicular to x and e~, e2,
and e3 are unit vectors of the three axes. From
V'A=O, we obtain

where a, k, 0 and s are constants.
Taking the curl of Eq. (7), we obtain

k a=i8ookxVQo —ioO8 k'x %To .9T

We calculate ikx a, from Eq. (1.2) and substitute it
for 5j in Eq. (10). Using Eq. (5) we obtain the
dispersion equation

dQo dQO BQO dTo
dx dx 9T dx

k, = 0, A= a(x)e2e' "".
Taking the curl of e '" times Eq. (7) yields

k a+2b —— .=io,(x) 8(x)k—2 cia d g s@o
dx dx 9X

Applying the Fourier-tra, nsform method, we obtain

k)) ~

" X($)e'"'d(
$ +2 bg+k'

with

x I('k2
)) ($)=—' 8(x) oo(x) e '"'dx .9@o

I et us denote by e the big bracket which repre-
sents the isothermal gradient of the Seebeck coef-
ficient, a characteristic of the junction. We ob-
tain, finally,

2

«««= —«,«( «+«1',)(« —m —««
k„
k

Thus, Eq. (10) yields

dip k
" d(e'"~

cps 8 (x) + To(x) dx 2)) ~ „g +if)+k

x 8(u)oo(a) e '"~ da
9@o
9u

9Qp dTpr-=
9X dX

(14)
2

d'
+~ k — 2 Ox =0.

dx (22)

Here the Thomson coefficient ~ was introduced All transf o rmations are permitted since the per—
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turbation is confined to the junction region.
After another Fourier transformation the Fred-

holm integral equation

y, &, ~p and 7' are constants. Using
the definitions in Eqs. (14) and (15) we obtain

To(x) -- — — o = &[7(x)y+ &T(x)]
dqo Bqo

9(~) = K(r, v)8(v) dv
ce

follows for the transform 8 of 9, with

k'~—,/(b'+ k')" '
K(r, v =

4m(cps+uk +xr )

(24)

&[~op+@ Too+(~ +e)yx] for ——&x&—1 l l

(28)
0 otherwise .

dq, (x) Sq, (u)
"-i/2 "-&l~ dx BQ

x exp[- (b + k )'/
l
x —u

l
+ b(x+ u)

—ixx+iuv] dxdu . (25)
Here the two integrations were limited to the width
of the junction t, because Sqo(u)/au and dqo/dx
are both zero elsewhere. The temperature gradi-
ent is considered to be different from zero only
within the width of the junction.

The homogeneous equation (24) admits a nonzero
solution only if s is the root of the dispersion rela-
tion

0= 1 ——, K(x, r)de+ —, ,

' ' dudv
1 K(u, u) K(u, v)

yf 2! Kvu Kv v

Usually 7 = —a. Indeed, considering for example the
n-type part of the junction, we express the Seebeck
coefficient in the form

q, = —(k/e) (lniV, /b!, +-,' lnm„, /m

+-, lnT+-, + r),

where the effective mass ~n„„of the electrons, the
free-electron mass m, k, e, and x are all con-
stants. N, =—2(27/m„~kT/k )

/ is the degeneration
concentration, and the concentration of electrons
has been approximated by the concentration of
ionized donors ND. If we assume that the concen-
tration of ionized donors is controlled by an activa-
tion energy ED, i. e. ,

1
ldudvd~+ "

3t (26) pr /~ e sv /ar

given by Fredholm's series. If this root s is posi-
tive, the system is unstable; otherwise stability
prevails. This is the integral criterion, which
can be handled with computers up to any order. In
Sec. IV we shall give an analytic'. l treatment, re-
stricting ourselves to the first order of Eq. (26).

IV. FIRST-ORDER APPROXIMATION OF THE INTEGRAL
CRITERION

Let us consider a spatial dependence of the form

7(x)-=T = —— ——ln-dq, k 3

dT e 2 ND

Nc k B Nc
7 =- —ln —=- —ln

e dx ND e Bx ND

k B Nc
+y ——ln--

e BT ND

(30)

we obtain the Thomson coefficient and its spatial
gradient

sqo(x)
l l

&& 0 for ——&x&—
2 2

0 otherwise,

l l
7p+T x for — & x&—1

2 2

const. othe rwise,

l l
Tpp+ yx for — & x &

To(x) =

~

~const. otherwise,

(2'/)

Qn the other hand,

B@p k B Nc 1 k B Nc= ———ln —= —7. +y — — ln --—
Bx e Bx ND e BT Ng

(»)
The last term in Eq. (31) would contribute to Eq.
(28) a term which is quadratic in the temperature
gradient y; Such terms, however, are considered
negligible in the present treatment which is based
on the linear transport theory anyway.

Putting ~~+ @ = 0 in Eq. (28) and performing the
integrations in Eqs. (25) and (26), we obtain

u, = bl, and S=—cpslo/ ym=- kl,

l'v, e(~,y+ eT,)m'( [(m'+S)"'+ (m'+ p, ')'/'] sinhu/!L —c»hu+e """'

l

�2m(mo+

p. )~/ (m +S) / (p —[(m +S) +(m +u ) ]]

re are dimensionless parameters. The first-order
(33) approximation of Eq. (26) is
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K{r, r)dr=1. —I o'p&(1rpp+ KTp) (2m —1+8 ) & BKm (47)

(m'+S)' +(m'+i/, )'- =-x, (m +S)' '

(
z: z)1/8

xg=S —p. )
2

x' —y'= 4(m'+ S)'/' (m'+ p, ')'/',
x +y —4p. —2xy=4m3 3

(36)

l'ape(~py+ &Tp) sinhp
p g x -- —cosh/. +e"2K(x-~) ~

" = '
(38)

we obtain

(x' -y')/(x'+y'-4g' —2xy) = P (39)

Here we changed from the variables m and S to x
and y. From Eqs. (37) and (39) we see that

P&0

is a necessary condition for instability. Supposing
P&0 we see that the discriminant of the quadratic
equation

(1+P)z —2Pz- 1+P+ 4' = 0;
z =- y/z, r = p, '/x', -

(41)

(42)

which follows from Eq. (39), is always positive.
There are thus always two real roots. Only the
root

y/x = fP [I+4'(P+—I)]'/ }/(P+1)
has physical meaning, as we see by comparison
with the case //, =-0. From Eq. (36), (43) and S'&0
the following necessary and sufficient instability
criterion follows:

P(1-~)& I+~. (44)

Thus, the explicit form which corresponds to the
first order approximation of the integral criterion
reads

If we substitute Eq. (32) into (34), with the notations

k„f =2/I . (49)

This is not unexpected because the overall k of
inequality (16) has always to reflect the smallest
dimension of the junction. The integral criterion
incorporates this result.

(b) In the case I » D, m should be large and ne-
glecting the exponential we obtain from inequality
(47):

o'p~('rp7+ &Tp) & z 4k/l = z(4/l) v/D

Thus, the geometrical mean

k„,= 2v/ID

(50)

(51)

has to be substituted into inequality (16) in this
case.

In the most general case, k,« is defined by di-
viding inequality {45)or (47) by the second bra. cket
onthe left-hand side and by l .

We also mention that the criteria (45) and (47)
can be illustrated graphically, drawing in the xy
plane, the hyperbolas S= const. , the straight lines
m = const. which are inclined to 45' and the dis-
persion relation (43). In all cases, the dispersion
curve starts from the origin, passes through a
minimum and approaches finally the asymptote
g= —x,

V. DISCUSSION

The criteria (16), (45), (47), (48), and (50) are
all of the form

Denoting by D the transversal dimension of the
junction„we observe that (a) in the case I«D of
abrupt junctions with large diameter, k which is
given approximately by v/D, will be small. Thus,
m is small and expanding the exponential we obtain
from inequality (47),

—op&(v. py+ eT, ) & ~(2/l)

Consequently, in inequality (16), k should also be
replaced in this case by a

—I o'pt(Tp 3'+ &Tp)

sinh p. -x 8 2xo —— — —cosh'. +e "»2v xo+ p, (45)

g(q+ $)+ c/= 0,
if the critical condition is just satisfied. Here

where &0 '/l ='(Tp/Tp)P& 0 (53)

x, -=m+(m'+ p')"'.
Here the notations (33) are still used. Inequality
(45) represents the most general form. The sec-
ond bracket in the left-hand side of inequality (45)
is always positive since xo& I p, I. Consequently,
the heuristic criterium (2) is still necessary for the
fulfillment of (45).

If we neglect the variation of g, we obtain from
Eq. (45) with p-0,

=-Mn with q„= —2v n (54)

Thus, for a junction with $ = $„ the threshold gradi-
ent of temperature required for instability is
smallest. With n = vcr 'To k,«we obtain

~mtn 2ket! ~p (&Tp /&) (55)

and n differs in the mentioned criteria but is al-
, ways positive. The minimum of the absolute value
of q in Eq. (52) is obtained for



TEMPERATURE -GRADIENT INSTABILITIES IN. . . 1599

for
6~ = kefg(KG T o ) (56)

If we consider /«D, we set k,« = 2/I as in case a,
Sec. IV. By muitlplymg Eqs. (55) and (56) with l
we obtain the total temperature variation and the
total isothermal variation of the Seebeck tempera-
ture coefficient across the sample

b, T = —2~o (xTo/cr)'/o,

gq (xo-1T-1)1/2

(5V)

(58)

I et us discuss two special cases: (i) In the case
of a thermoelectric material with a given figure
of merit Z=- Q cr/x we take the square of Eq. (58)
and approximate hQ by the maximal value of the
Seebeck coefficient in the isothermal sample, Q.
This yields

ZTO (59)

= 2. 45x10 (60)

we obtain, from Eqs. (55) and (56),

y,.= —8. 18&& io '(V/K)k„, T, /~, ,

«„= 1.565 && 10 k„, V/K .
(61)

(62)

It is important to note that the linear theory of
transport phenomena on which the present work is
based will always be applicable for large enough
samples, no matter how large the applied tempera-
ture difference aT required by Eq. (5V) is. This
important scaling property can also be recognized
directly on any form of the instability criterion.
Whenever nonlinear effects become likely, we only
increase all linear dimensions of the sample by a
suitable factor and observe the instability with the

Thus, only the best thermoelectric materials, with
ZT I should exhibit thermal gradient instabilities.
Furthermore, the presence of ~0 in the denomina-
tor of Eq. (55) favors the occurrence of instabil-
ities in nn' or pp' junctions and pn' or np' junctions
with respect to symmetric pn junctions. (ii) In
the case of a metallic solid which obeys the Wiede-
mann-Franz law

same total temperature and Seebeck variation
across the larger sample.

As an example, let us consider inequality (48)
for a n-type PbTe sample. Simultaneous deter-
minations of thermoelectric properties for this
substance have led to the values x=0.039 W/cm,
&o= 185 (& cm), @=2.3V 10 V/K, To 811-K,
~o= 1.2&&10 V/K. The melting point of PbTe is
II97 K. With /=20 cm, 0,« —-0. 1 cm ~, q=1. 185
& 10 ' V/cm K, we obtain

2 3 0.039XIO'cm-11.2x10
185 x I. 185x10 '

+1.185 &1o '&&811 K cm, (63)

~

/'~ & 156 K/cm .
This gradient is about three times larger than the
gradient which can be sustained over the length /

of the junction without reaching the melting point
of the substance. This is not unexpected, since
ZTo = 1 is required by Eq. (59), whereas the sub-
stance considered has ZT0= 0. 216 only. Since
values of the ZTp product which are more thanfour
times larger have been achieved for some thermo-
electric materials, there is no doubt that the in-
stability criterion can be satisfied with them. As
an example, for the compound CusTe3S a value Z
= 1.5 x 10 and a melting point of 930' C have been
reported. Choosing Tp= 602 K a product ZT0
= 0. 9 can be expected. In the same way, for
Bi2Te3 with' Z = 2x 10 and a melting point of 575 C,
we obtain ZTp= 0, 848 at Tp=424 K. Unfortunately,
we do not have for these substances the systemat-
ic measurements of Q as a function of temperature
which allowed for the calculation of vp in the case
of Pb Te. In some cases, values of Z = 3.4 x 10 3 have
been reported but we do not even know the melting
point of the corresponding compound. For a
BioTeo+(BiSb)Te alloy Z=2. 65xlO o at T=SOO K
has been reported, which corresponds to ZT =0.8.

Experimentally, the instability should be charac-
terized by an abrupt increase in the electrical
noise of the junction at the critical temperature
gradient in the absence of any applied voltage.
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