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Minority carrier injection in relaxation semiconductors
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On the basis of normalized continuity equations solved by numerical procedures, it is shown that the

predicted Van Roosbroeck depletion of majority carriers does indeed occur, not only in materials of
near-zero lifetime ro but whenever rp/ro ( 1, where r~ is the dielectric relaxation time. A
recombination front appears for ro/rD«1 and/or high currents. Carrier concentrations, field, and

recombination rate are evaluated as a function of distance from the injecting boundary, and the

implications for the voltage-current characteristic are analyzed. In contrast to the lifetime case, the

computed characteristics show an extended linear region, resulting from the opposed tendencies of
of majority-carrier depletion (sublinear) and minority-carrier injection (superlinear). Total resistances

higher than those calculated on the basis of the unperturbed bulk resistivity have not been found

for the conditions investigated.

I. INTRODUCTION

The concept of the relaxation semiconductor
and some of the corresponding transport relation-
ships have been introduced by Van Roosbroeck
and co-workers. ' ' These papers are concerned
with materials in which 7D) 7„where 7 p is the
minority-carrier lifetime and 7D is the dielectric
relaxation time, the contention being that this
inequality implies (a) a region of majority-carrier
depletion, (b) a recombination front, (c) a criti-
cally important region of minimum conductivity
which implies a specimen resistance greater than
that expected from the bulk resistivity value, and
(d) a sublinear voltage-current relationship. In
a recent paper by Kiess and Rose, 4 this was de-
scribed as an "attractive and provocative idea, "
but the final conclusion of the authors was that
the model was internally inconsistent, inasmuch
as it failed to ensure current continuity inthepres-
ence of Van Roosbroeck space charge and con-
ductivity contour s.

In his analysis, Van Roosbroeck concerned him-
self with explicit solutions, obtained by neglect-
ing the spatial derivatives of the carrier concen-
trations. As Kiess and Rose point out, the inser-
tion of diffusion terms by itself does not correct
the internal inconsistencies of the carrier concen-
tration and field contours which resulted from the
Van Roosbroeck analysis. Their conclusions are,
however, excessively far reaching. It will be
shown below that the majority-carrier depletion
predicted by Van Roosbroeck can in fact occur in
a manner consistent with the demands of current
continuity. Accordingly, a computer analysis of
the complete transport equations yields self-con-
sistent concentration contours. They also demon-
strate that there is a continuous transition from
the lifetime case (v, ) 7~) to the relaxation case

(&0( &o). To = TD represents the app~oxirnate bound-
ary condition for which majority-carrier deple-
tion first appears.

Beyond this point, the carrier depletion can be
increased to the limit given by Pn = n2 in two ways:
(a) by increasing To/v„or (b) by increa. sing the
current. In the depletion region, the current is car-
ried by diffusion as well as drift of minority carriers,
in the undisturbed material by equilibrium car-
riers drift. A recombination front appears be-
tween these two regions, if the depletion is suffi-
cient. The calculated concentration contours show
that a minimum value of np. „+Pp.& does not always
exist. When it does, its value is not necessarily
equal to n; p, „+P;p, ~, nor does it have a controlling
influence over the resistance of the specimen.
The minimum occurs within the recombination
front, and because of the strong diffusion, the
minimum-conductivity concept has no functional
meaning. A sublinear voltage-current relation-
ship is not intrinsically associated with the re-
laxation case, though it can appear in special
circumstances. For p, „=p. ~ a significant sublin-
earity has not been found. The most significant
difference between the present results and Van
Roosbroeck's predictions is that the total resis-
tance of the sample is loaner, not higher, than
that evaluated from the unperturbed bulk resis-

tivityy

.
Previous numerical cal.culations concerning

relaxation semiconductors are limited by the
assumption np =n';, which implies zero recom-
bination rate throughout. This assumption is not
made in the present calculations, which show that
departures from this condition appear and have
an essential function in defining solutions. For
this reason, definitions' which link the character
of a relaxation semiconductor to nf~ =-n'; are best
avoided.
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II. TRANSPORT EQUATIONS

The continuity relationships for electrons and
holes have a common recombination term which
can be written'

It =(np n, p,-)/v;(n, +p, ),
where n„p, are the equilibrium concentrations
and 7, is a carrier lifetime, here assumed to be
independent of the injection level. With this term,
the two standard continuity equations, together
with Poisson's equation, can be written, for a
trap-free n-type material as

6N 5(NE) 5 N p,
5t 5X '5X ""' ..

-A NP ——', 3
5P p~ 5(PE)
Ot p,„5X
OE p,—= P-N+1 ——',
5X n,

where N is the electron concentration normalized
to n„P is the hole concentration normalized to
n„E is the electric field normalized to k T/eLD„,
(voltage normalized to kT/e), X is the spatial co-
ordinate normalized to LD„, t is the time normal-
ized to v „, with

I,D„= (kTe/e'n, )'~', (5

the Debye length defined for equilibrium elec-
trons, and

7'an = e/e p n +e ~
(6)

the dielectric relaxation time, defined for equili-
brium electrons, and practically equal to the di-
electric relaxation time of the n-type material in

equilibrium, which is

(7)

It is immediately clear that the parameter A,
which for usual materials is approximately equal
to r~„/7„ is a very important quantity in th se
equations. It governs the balance between recom-
bination on the one hand and neutrality restoration
on the other. In this respect, the ca,se A. =1 re-
presents a significant boundary: when A = &, Eq.
(2) is compatible with N = 1 for all t and X, irre-
spective of P. Next we will see how A. affects the
manner in which a system recovers after a temp-
orary departure from equilibrium.

from neutrality, while the third term depends on
recombination. For present purposes we assume
that carrier concentrations remain uniform dur-
ing the recovery process, i.e., the second terms
in Eqs. (2) and (3) are neglected. The magnitude
of A controls which process is the more import-
ant in determining the rate of change. If A. «j. or
A» 1., the recovery process always has two well
defined stages as shown below.

For A. «i, the recovery of neutrality takes
place first, followed by recombination of elec-
trons and holes in equal numbers. This in the
normal ("lifetime" ) case and is denoted by the
contour Ij.o in Fig. 1(a). In the first stage, the
equations show that the electron concentration
increases (dN/dt &0), while the hole concentra-
tion decreases (dP/dt& 0). This decrease is in-
significant as long as P «&. As &N approaches
bP (neutrality) the field terms tend to vanish.
After that, the last terms in Egs. (2) and (3) pre-
vail. Since they are the same, the process is
then governed by recombination, implying dN/dt
=dP/dt& 0. If A were zero, the contour would be
IB'0 .

For A»1, the case of a relaxation semiconduc-
tor, recombination prevails first (contour IC ).
Its rate diminishes with time and becomes nearly
zero around C (actually zero at C'). This is a
zero recombination point which does not, how-
ever, represent equilibrium, because we have
not yet returned to neutrality. Neutrality is re-
stored approximately along the hyperbola (con-
tour CO). As A-~, C-C', a limiting case which
corresponds to the Van Roosbroeck approxima-
tion. Majority carrier depletion is associated
with all stages of this process. The time depen-
dence of the two processes is shown schematically
in Figs 1(b) and 1(c).

For the limiting case A. =1 the recovery takes
place along the line JQ. This means that elec-
trons brought from the outside in an attempt to
recover neutrality recombine immediately; the
electron concentration thus remains unchanged.
This happens because the rate at which electrons
are brought from the outside in an attempt to re-
cover neutrality is equal to the rate at which they
recombine with the excess holes; the electron
concentration thus rema. ins unchanged in time
and as we will see below, also in space.

IV. STEADY STATE; EQUATIONS AND BOUNDARY

CONDITIONS

III. RECOVERY IN THE HOMOGENEOUS CASE

Consider that &P =~Po, and hN=~, =O at
t=0, all over the sample. In Eqs. (2) and (3),
the first term depends, via Eq. (4), on departures

In the transient relaxation case, some useful
results can be derived by neglecting the current
divergence terms as shown above. However, in
the steady state, no terms can be neglected with-
out sacrificing the possibility of evaluating car-
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FIG. 1. Recovery of eqUl-
librium in the homogeneous
case. (a) Recovery pl o-
cess in the N-I' plane.
(b) and (c) Time evolution
of the recovery process
for lifetime case and re-
laxation case, respectively.
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rier concentration contours. Thus, when the time
derivatives are zero, Eqs. (2)-(4) become

d'N p, d(NE)

d'P P, p, „d{PE)

consistent values have to be found by a search
procedure involving successive approximations.
It can be shown that the equations automatically
ensure N„=N, =1, P„=P,=P, /n„(dN/dX)„
= (dP/dX)„=-0.

According to these considerations, the expres-
sions for the boundary conditions are (a) at X=0,

dE Pe—=P -N+1 ——'
dX +e

Correspondingly, in the same terms, the equa-
tions for current densities are

( dP LD„p,
(dX, L~ n,

n, djP

J„and Z~ being normalized to eD~P, /I ~.
The model here used is that of a semi-infinite

trap-free n-type material. The space origin of
the distributions has been taken at the injection
plane, where the field is equal to zero. This no-
tion comes from junction and contact theory and
represents conventional practice. As a simplify-
ing assumption, the injection efficiency is taken
as unity (J„,=0 at X =-0). The above equations
could be solved, in principle, if N„P„dN/dX,
dP/dX, and E, were given. The solutions would
automatically conserve a certain current J =J,.
However, what is needed here are solutions for
a semi-infinite material. This implies zero
space charge in the bulk and a finite limiting
field E„which secures a drift current (equal to
the injected current) in the unperturbed bulk.
Since these are two additional conditions, No
and Po can no longer be arbitrarily chosen. Self-

(b) at X=

p, J
L~ n„p„/p, ~+p, /n,

'

It can be shown that the search for proper val-
ues of N, and P, is aided by the fact that (N, N,~-
& ~N« N, (, where N« is-the value of N, which

corresponds to zero curvature of the electron
concentration contour, i.e., to (dN'/dx'), =0. &t

should be noted that N„-K, is positive, zero or
negative, for A&1, A=-l, and A&1, respectively.
Prom the pattern of computed contours, an as-
sessment can be made as to the sign of 5PO

=I', -I',
&,,„,& and 5N, =N, -N

&,„,„., &, and this as-
sessment guides the process of successive ap-

p rox3.t,3.3.,t'Ron.
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V. STEADY-STATE CONCENTRATION

AND FIELD CONTOURS

The results which follow show the effect of
changing the parameter A. , when the injected cur-
rent of (minority) holes is kept constant. Equal
mobilities of electrons and holes have been as-
sumed in an n-type semiconductor with P, /n, =10 '.

For purposes of comparison, Fig. 2 shows com-
puter solutions for a typical lifetime case. Neu-
trality is not complete at X =0, but becomes an
increasingly useful approximation. It is this ini-
tial departure from neutra. lity which produces the
field which, in turn, ensures the electron flux
necessary for recombination with the injected holes.
In addition the field serves to compensate for an
opposed diffusion gradient of majority electrons.
The various components of the current are also
shown; they add (as, indeed, they must) to the con-
stant total current. The recombination rate is
given by the top curve.

Figure 3 refers to a case close to the boundary
A = 1. It may be seen that ~N= 0 throughout, as
expected. The space charge is due to holes and
all of it now serves to generate the electron field
current which ensures recombination. The elec-
tron diffusion current is, of course, zero through-
out. (Computations of the actual boundary case 4
=1 would be very time consuming and would not
yield additional insights. )

We go now to the relaxation case. When the life-
time becomes shorter than the relaxation time it
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FIG. 3. Spatial contours of concentrations, field,
voltage drop, current components, and recombination
for the boundary case. Parameters are as for Fig. 1,
except that A =1 (~D„/v.o

= 0.99099).

is more and more difficult to secure electrons for
recombination, and electron depletion appears.
Figure 4 corresponds the case of A =99, in which
the electron depletion can be clearly seen. The de-
pletion has three helpful consequences: (a) The
electron-concentration gradient is now reversed
and the electron diffusion now adds to the electron
drift. (b) The electron depletion increases the
positive space charge which builds up the field.
(c) The recombination rate is reduced through
electron depletion. There is a minimum of N+I',
smaller than the equilibrium value. However, the
effect of this general depletion is not critical, be-
cause it appears in a region with strong diffu-
sion currents. ~+I' as such therefore does not
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FIG. 2. Spatial contours of concentrations, field,
voltage drop, current components, and recombination
for a moderate lifetime case; TD„/70 = 0.1(A. =0.099).
J'= 10, p„= p&, P~/n = 10 2. Magnitudes are normalized
as shown in Sec. II. NP-N/', is proportional to t' he
r ecombination rate.
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FIG. 4. Spatial contours of concentrations, field,
voltage drop, current components, and recombination
for a relaxation case. Parameters as for Fig. 1, except
that ~D„/Tp = 102 (A. =-'99).
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FIG. 5. Spatial contours of concentrations, field,
voltage drop, current components, and recombination
for a pronounced relaxation case. Parameters as for
Fig. 1 except that wD„/Tp

——103 Q = 990) .

control the conduction process in any simple way.
In particular, this minimum does not lead to a
field higher than the field in the unperturbed bulk.

In all the cases presented above the recombina-
tion played an essential role in current continuity,
beginning from the injection plane, where it had
its maximum value. The situations which follow
are different.

Figure 5 shows a pronounced relaxation case
(A =990) for the same current as above. The
space charge and concentration of the injected
holes now becomes so high that from the injected
plane, to a certain depth in the material, the holes
are able to carry the entire current by themselves.
As is usual under space-charge-limited current
conditions, the current gradually changes from
diffusion to drift as the field increases. On the

other hand, the field near the injecting contact,
also to a certain depth inside the material, is
insufficient to secure the influx of electrons for
recombination. As a consequence, there are
practically no electrons in this region; the recom-
bination rate is practically zero and plays next to

no role in current continuity. %hen the field re-
sulting from the hole space charge becomes great
enough to secure the necessary electrons, a re-
combination front appears, as predicted by Van

Roosbroeck. It is within this front that the change
over from hole current to electron current takes
place. N+P has a minimum smaller than the

equilibrium value, situated in the recombination
front where diffusion currents are prominent. The
highest field is again in the unperturbed bulk.

The complete majority carrier depletion we have

seen in a pronounced relaxation case may also ap-
pear in a, moderate relaxation case (A =9.9) when

high recombination rates are imposed by very high
currents (Fig. 6). The current is now a hundred
times greater than in the previous situations. The
diffusion currents are negligible everywhere, ex-
cept in close proximity of the injection plane. In
contrast to previous cases, N+P now has no min-
imum and the field is again greatest in the unper-
turbed bulk.
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FIG. 6. Spatial contours of concentrations, field,
voltage drop, current components, and recombination
for a moderate relaxation case and high current. Param-
eters as for Fig. 1, except that 7D„/7p= 10 eJ= 10 .

VI. VOLTAGE-CURRENT RELATIONSHIPS

Two important Van Roosbroeck predictions re-
main to be discussed: (a) the prediction of higher-
than-bulk resistance, and (b) the prediction of
sublinear behavior. In Van Roosbroeck's system
of approximation, (a) and (b) are closely related,
both being a consequence of an N+ I depletion re-
gion in which the field is higher than in the bulk.

Figure 7 represents voltage-current character-
istics, the voltage being measured at three arbi-
trary distances from the injection plane. I, is an

arbitrary reference current, taken as the lowest
value for which the above computations have been
made. The voltage has been suitably normalized
to permit easy comparison with the unperturbed
bulk, which corresponds to the broken line. Up to
moderate currents the curves are nearly linear
(in distinct contrast with the lifetime case), with a
small but very real tendency towards sublinearity,
though not pronounced enough to be visible on Fig.
7, computed for p„=p'. (Preliminary calculations
show that this sublinear behavior becomes more
pronounced when g' & p, „.) At high currents (high

injection levels), a pronounced superlinear ten-
dency prevails. The physics of this behavior de-
pends on the fact that there are always two ten-
dencies, one due to the injected minority carriers
which lozvexs the local effective resistivity, and

one due to the depleted minority carriers which

inc~eases it. %hich of these effects "wins" de-
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pends on detailed circumstances, for which there
is no immediate intuitive assessment. Even when
the sublinearity component is too small to predom-
inate, it increases the region of approximate line-
arity. In the cases here discussed, the total re-
sistance is not higher but lower than the resistance
calculated on the basis of the unperturbed bulk re-
sistivity (curves on Fig. 't above the broken line).
This is a principal difference between the present
results and Van Roosbroeck predictions.

The question arises, could a greater-than-bulk
resistance be obtained if unequal carrier mobilities
and traps were introduced into the model? To
answer this, one could argue as follows: For a
higher-than-bulk resistance the field in the region
perturbed by injection must be greater than the
limit field in the bulk, and not lower as it is in the
situations here discussed. Since the field is zero
at & =0, it must have a maximum somewhere, and
this must be a location where the space charge
changes from positive to negative. This calls for
a significant negative space charge, which means
that excess electrons must be present, either free

FIG. 7. I-V curves normalized for comparison with
the unperturbed bulk behavior (broken line). p„= p&,
P, jn, = 10, 10 corresponds to J= 10. Voltage is mea-
sured at the distance X (normalized to LD„) from the
injection plane. R,„ is the resistance of the 0-X region
calculated on the basis of the unperturbed bulk resistivity.

or trapped. If all charges were trapped, the systen
would be self-consistent; however, the normal
assumption is that even though most of the excess
electrons might be trapped, some must be free.
Thus, for a higher than bulk resistance, the ma-
jority carrier concentration must not only increase
from total depletion to normal in the bulk, but
most overshoot. Kiess and Rose have already
shown that such an overshoot cannot occur in a re-
gion in which the field is higher than in the bulk.
Unequal mobilities cannot alter this situation; nor
can traps. One possibility is that the overshoot
might, in certain circumstances (e.g. , very high
currents) occur in a region in which the field is
still lower than bulk, i.e., closer to the injecting
contact. Whether this corresponds to a valid sol-
ution of the equations remains to be seen. Under
such conditions the computation is particularly
laborious, which explains why a quick and reliable
answer is still unavailable.

VII. SUMMARY OF CONCLUSIONS

Majority carrier depletion is the logical outcome
of minority carrier injection into a relaxation semi-
conductor, defined by A&1 (T„„/v,& 1+P, /n, ). The

depletion can become complete by enhancing the

total recombination rate, either by increasing A

or by increasing the injected current. Under such
conditions, there is a distinct region in which the

current changes from minority carriers to major-
ity carriers, i.e., a recombination front. Be-
tween the injection plane and the recombination
front the current is minority carrier space charge
limited; beyond it it is majority carrier dominated,

and eventually becomes the drift current in the

unperturbed bulk. The computed voltage -current
characteristics show an extended linear region,
resulting from the opposed tendencies of majority
carrier depletion (sublinear) and minority carrier
injection (superlinear). Total resistances higher
than those calculated on the basis of the unper-
turbed bulk resistivity have not been found for
the conditions investigated.
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