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Spin relaxation of conduction electrons in n-type indium antimonide at lo~ temperature
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We present a theory of'the spin relaxation time of the conduction electrons in indium antimonide at

liquid-helium temperature; earlier work on the subject is reviewed and discussed. The theory is

compared with our measurements and the experimental data available in the literature: The relevant

mechanism in highly doped samples (n p 5 X 10'" cm '} is shown to be scattering by ionized

impurities. The spin-flip matrix element arises from the admixture of different spin states in the Bloch

functions of the conduction band (Elliott process}. Good agreement with experiment is obtained with no

adjustable parameter. In the less-doped samples (n 6 5 &( 10" cm } the currently invoked relaxation

mechanism (modulation of the g factor or of the hyperfine interactions by the motion of the electrons)

is shown to be ineA'ective. The impurity Elliott process is reconsidered; the effect of disorder is

included by using a model of quasimacroscopic fluctuations of the electron density, which qualitatively

accounts for the observed linewidths.

I. Im RODUCTIOX

The spin resonance of conduction electrons in
indium antimonide has been systematically investi-
gated at low temperature by Isaacson. ' The line-
w'idth was measured as a function of electron con-
centration n for various samples from n= 3&&10'~

cm ' up to n= 10"cm '. Qershenzon, Pevin, and
Fogelson reported similar experiments and also
measured the linewidth as a function of tempera-
ture. ' Here, our purpose will be to explain the
low -temperature linewidths. At 1.3 'K the phonon
processes do not contribute and the linewidth
arises from impurity collisions. This process
was mentioned by Elliott' and Yafet' but has often
been overlooked in the literature"; no detailed
calculation has been published until now. The
equations used by some authors will be criticized;
our theory will be compared with the experimental
results of Refs. 1 and 2, and with our own line-
width and electron-mobility measurements.

tential U is the sum of two terms, U = V+ A, ; V
is a spin-independent potential, and A, is the spin-
orbit part associated with V. This contribution
has been considered for metals by Asik, Ball, and
Slichter. ' The corresponding spin-flip matrix
element is of order Aa' where A, is a typical spin-
orbit energy, and a anatomic length. (b) As was first
pointed out by Elliott, ' a second contribution is due
to the spin-orbit interaction in the host crystal,
which results in a mixing of spin states in the
eigenfunctions of the crystal Hamiltonian. The
spin-flip matrix element is then of order Va*',
where a* is some characteristic length of the
range of V; in a semiconductor, a* is of the order
of the first Bohr radius ao* of a neutral donor,
which is much larger than an atomic length. For
this reason, the Elliott process is expected to be
much more efficient than the Asik process in most
semiconductors, and especially'in InSb, where
a~ = 680 A. In the following we shall be concerned
only with the Elliott process, and thus we drop the
spin-orbit part A(r) of the impurity potential.

II. THEORY

A. Principle of the low-temperature spin-relaxation

mechanism

The low-temperature spin-relaxation time arises
from the spin-flip transition probability Tk
of an electron colliding with an impurity poten-
tial U. When calculated within the limits of
first-order perturbatio~ theory, this transition
probability involves only the matrix element
(ko

~

U~k'o''). This may be compared with the
non-spin-flip matrix element (ko

~
U ~k'o) which

determines the momentum-relaxation time v.
Tmo contributions can lead to a nonvanishing

spin-flip matrix element: (a) the impurity po-

8. Detailed calculation of the impurity EBiott process

In order to compute the spin-flip matrix element
between states ~k) and ~k'), we need the expres-
sions of the wave functions of the conduction band

in a III-V semiconductor. These functions are of
the Bloch type g-„, =u-„e'"'. The gap is direct
and located at the center of the first Brillouin
zone; at this point, the conduction-band Bloch
function is s-like (u, = s) and the valence-band
ones (X, Y, Z) are P-like. The valence band de-
generacy is partially lifted by spin-orbit interac-
tion. %e call E~ the band gap and 6 the spin-orbit
splitting of the valence band.

Since we are concerned with small electron con-
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centrations, the Fermi energy E~ remains much
smaller than E~, and we are mainly interested in
the expressions of uk, near the k origin. These
expressions may be derived, by k ~ p perturbation
theory, from the k = 0 wave functions and energy
levels. If one takes into account only the Lower
conduction band and the three upper valence bands,
then the calculation may be carried out exactly.
This is a very good approximation in InSb, be-
cause the eneI gy gap is much smaller than the
Other interband spRclngs. The result. I1Rs be6n
given by Zawadzki. ' Within our appr oximation
E~, «E~, it reduces to

T - = —5(E —E-)V
2' 2

k)~k'& @ k k

E~ 4+E~ 24+3'
k,'+k,' —2k, k.' cos(9kk

kp

2m
T =—6(Ekr-E) )VkQ~ kO g

The spED relaxatlon time cRn then be computed
together with the momentum relaxation time 7,
with the equations4 "

k IR & 2 ~ f (kxIR, &)

jp~ 26 +3'

where IR& is the vector oi' components I~&, I 7&,
IZ&, and k„ is the Fermi wave vector The. ad-
mixture of spin states is brought by the spin
operator S in the last term and is of order
(~!E,)(E,/E, )'".

Once the expression for uk is known, we can
compute the spin-flip matrix element (ko IVI I'o'&.
If we assume that V is slowly varying on the scale
Qf R Unit cell and sinc6 N'k has the LRttlc6 periodi-
city, the matrix element can be fRctol ized

(k~ IVIk ~&= v~;, (u-„Iu-, ., &

~E )((a ~ 2E )

E, ()(+E,)(2a+S. )E

Here the spin has been taken as quantized along
the z axis, and Vkk is the matrix element of V
between plane-wave states of wave vectors k and
k'

ei():'-Tc) r V(~) day

For the same slowly varying potential V, the non-
spin-flip matrix element can be expressed as

(koIVIko&= V-, -„.(u-,.Iu-„..&= V-„-, .

The spin-flip and non-spin-flip transition proba-
bilities Tk~ k ~ Rnd Tk „. are then readily ob-
tained from first-order time-dependent perturba-
tion theory:

2~ 3 2~ kt k'&

dk'
s (1 cosi u) ') Tka--) 'a(2v)'

Our equation for the spin relaxation time refers
to zero external magnetic field and weak polariza-
tion conditions, namely, the Fermi -Dirac distri-
bution function f is assumed to be almost the same
for the up and down electron subbands, i.e. ,

I f(E0) —f (E 4) I
« 1; specifically, the polarization

must be much smaller than k~T/E~. These condi-
tions are experimentally fulfilled, since the reso-
nance ls usually performed at X-band frequency:
gp, &B=S~&&A&T, which ls indeed the cRse fox' our
measurements.

The exact calculation is performed by taking for
V R screened Coulomb potentiaL which is RdeqURte
for InSb since the dominant scattering centers are
ionized donors

V=(1/4vee, )(e'/r)e "" .
Rationalized units are used„e is the dielectric
constant of the material and k, the screening vec-
tor; according to Debye-HGckel theory in the case
of Fermi statistics, we have k~ = 38/2eeoEp. . By
substituting the matrix element (ka I VI k'o& in the
transition probability T-;,„-k. , we obtain for the
momentum relaxation time the well-known result
of Brooks and Herring"

b—= ——., —,t2v in(1+a)--—
7 m*ao 4'~ j.+6

where b =4k~2/0,'and N, is the impurity density.
The (luantity 5'/m*a,*' is twice the effective Ryd-
berg constant of the medium.

Similarly~ by substitution of the spin-flip matrix
element in the spin-flip transition probability and
E(l. (4), we obtain the expression of the spin re-
laxation time
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5 h N;
T T ~+@+2 Q3

x — —— 2m -ln I+b —2

l g 1/2g 1/2 -E/QgT d
0

/3 1 y
'Lz 2 /

(b T) 1/2
(b T) 1/2

where y is a function of 6/E~,

y =2a(a+2E, )/(2Z+2E, )(S+E,) .
The b, factor in y may be stressed by introducing
the effective Landd fa,ctor g~ and the effective
mass m*:

y = (2 —g+)(m+/m)(6+ 2')!(6+E~) . (9)

In the limiting case b-0, our equation for 1/T,
reduces to the result of Lewiner et al." In the
limiting case b —~, we would expect to find the
same result as Abakumov a,nd Yassievich"; their
relaxation rate appears, in fact, smaller than
ours, by a factor —, whose origin remains mys-
terious. Moreover we think that their equation is
valid only for A»E~, since they implicitly make
this assumption in the derivation of their Eq. (5)."

We may express the spin relaxation time as a
function of the momentum relaxation time:

Thus for classical statistics, Eq. (11) is replaced
by

(14)

I ~ ~ ~ I
o Isaacson
o Gersherizon et aL

fo ~ Our

~ ~ ~ I I ~ ~
I

Additional disagreement, of a factor of two, with
Abakumov a.nd Yassievich" for Eqs. (11) and (14)
might arise from a different weighting factor in
the averaging procedure for the definition of v.

At this point we can, attempt a comparison of our
theory with the experimental data in n-type InSb.
Since our calculation proceeds from first-order
perturbation theory, a good agreement is expected
only for highly doped samples, where the first
Born approximation is known to be valid. " The
case of the less-doped samples is far more diffi-
cult and will be considered later.

ln(1+ b ) —2b/(b + 2)
ln(l + b) —b/(1+ b)

(10)

Since the first Born approximation is good only
under the condition b» 1, the result becomes

f

�/3/2e
-+l&g~ dg

0 '0

~/
(b Z)3/2 — (b T}&/2 (12)

Similarly, the E'" dependence of 1/T, becomes

Because of the factor y', the spin relaxation ra, te
vanishes in the limit h/E~ = 0; this is to be expect-
ed, since mixing of spin states in the Bloch func-
tions arises from spin-orbit interaction in the
host crystal.

Qur calculations have been carried out assuming
Fermi -Dirae statistics. Although it is not relevant
to the present experiments, appropriate averag-
ings could be performed to obtain the correspond-
ing results in the case of classical statistics. As-
suming b»1; 7 is proportional to E'"; for classi-
cal statistics, the E~" factor becomes'

Oo),
)O13 )O14 )O15 O16

ELECTRON CONCENTRATION (cm-')

I'IG. 1. Concentration dependence of the ESR line-
width (peak to peak of the derivative of the absorption
curve). Dashed curve represents the results of our first-
principles calculation [Eq. (17)] corrected for the elec-
tron-electron interactions. Solid curve corresponds to
the semiempirical Eq. (11). Dotted curve in the lower-
concentration range has been drawn according to Eq.
(17), with an adjusted value (Ez) = 30 K. Experimental
points of various authors are reported on the same scale.
Temperature is T = (1.3 +0.1) K; the results of Gershen-
zon et al. were extrapolated from variable temperature
measurements above 1.7 K. Linewidth is very sensitive
to strains and surface defects so that the relevant points
for comparison with theory are the lowest ones.
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III. COMPARISON WITH EXPERIMENT:
HIGHER-CONCENTRATION RANGE

The linewidth, as measured by various authors,
is plotted in Fig. 1 as a function of electron con-
centration n. As can be seen, there is a large dis-
persion of the experimental points. We do not
think that this arises from a dispersion of the im-
purity content N; due to the various origins of the
samples. For higher-doped samples we can trust
the impurity content N; to be equal to the measured
electron concentration n. Now in the case of the
less-doped samples, where the compensation is
important, N; is the sum of the donor and acceptor
contents ND+N&. But experience has shown" "
that for ingots of different origins A; =N~+N& has
an a.lmost constant value, approximately 4 &10'~
cm '. Thus, the samples obtained by different
authors from an "undoped" commercial ingot are
expected to exhibit similar characteristics, what-
ever be the subsequent doping method. We there-
fore believe that the dispersion of the experimen-
tal linewidths for different authors, or from one
sample to the other, is due to the experimental
difficulty of avoiding strains and surfa, ce defects,
both of which can considerably increase the line-
width. The relevant experimental values for a
comparison with our theory are thus the lowest
ones,

Our samples were doped by neutron irradiation,
according to the procedure described by Clark
and Isaaeson. " The electron and impurity content
were deduced from classical transport n).easure-
ments between 1.3 K and 150 'K. The impurity
content N; as deduced from the 40 K mobility
measurements is of the form ¹

= n+ 4 & 10"cm '.
The momentum relaxation rate at 1.3 K, as de-
duced from our mobility measurements, and in
accordance with the literature, "is plotted in Fig.
2.

The theoretical curve on the same scale has been
deduced from the Brooks-Herring formula [Eq.
(6)j, corrected for the electron-electron interac-
tions which increase the momentum relaxation
rate by a factor 1.58. ' The critical electron con-
centration for the failure of the first Born approxi-
mation is clearly n= 5&&10" cm '. Below this con-
centration, the experimental points markedly de-
part from the theoretical curve. Moreover this
concentration corresponds to a change of behavior
of the linewidth.

Let us first focus our attention on the higher
concentration range n~ 5& 19"cm '. In order to
compare our theory with the experimental results,
we can either compute 1/7 and 1/T2 from first
principles with Eqs. (6) and (7), or use the experi-
mental value of 1/v and compute 1/T, from 1/T,
= (1/ v) && 3(yZz/E~)' [Eq. (11)].—This semiempirical

method is expected to give better results, since
most of the difficulties are bypassed and the un-
certainties are confined to a single dimensionless
scaling factor. In the higher-concentration range,
the two methods lead to the same result within a
factor of three, provided the electron-electron
interactions are taken into account in the first-
principles calculation; this increases 1/T, [Eq.
(7)j by a factor 1.58, in the same manner as 1/7
The theoretical value of the linewidth ~ can then
be deduced using AB = (2h/@3 g*ij.s)1/T„where we
take for AB the derivative peak to peak width and
we assume no inhomogeneous broadening of the
line. The agreement with the measured values of
AB is good. The concentration dependence of the
linewidth is of the type AB ~n'".

IV. DISCUSSION OF EXPERIMENTAL RESULTS
IN THE LOWER-CONCENTRATION RANGE

In the lower-concentration range n~ 5X10"
cm ', the linewidths as computed with the above
equations become much smaller than the measured

. values. Moreover the observed linewidth varies
a,s n ', in contrast with the high-concentration be-
havior. We first review and criticize the interpre-
tations proposed in the literature to account for
this concentration dependence; as they appea, r un-
satisfying, we propose another explanation, based
on an extension of the previous calculation.

The observed concentration dependence of the
linewidth ~ CC 1/n first suggested a relaxation
mechanism of the type"

(15)

The correlation time 7, associated with the inter-
impurity motion, increases with decreasing con-
centration, which would give the right qualitative
dependence. The magnetic energy term 0 of Eq.
(15), motion narrowed by w„should correspond to
some magnetic interaction felt by an electron when
located on an impurity center: shift of the g-value,
or hyperfine interaction with donor nuclear spin
or with the neighboring In and Sb nuclear spins.

The authors in Ref. 2 have proposed for A a ran-
dom distribution of g factors. This seems unlike-
ly, since in this case the linewidth should increase
with the resonance frequency, in disagreement
with the experimental results of Ref. I.

Another possibility for the origin of 0 could be
the hyperfine interaction with nuclear spins, as in
phosphorus-doped silicon in the intermediate-
temperature range. " This wa, s suggested by the
authors in Refs. 1 and 2. A quantitative discussion
of this process is given in the Appendix, but the
resulting linewidth is several orders of magnitude
too small to account for the experimental results.
We are thus left with the previous impurity Elliott
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process; our treatment of Sec. II can be reconsid-
ered and adapted to the lower concentration range,
where the approximations b» 1 and n= N; are no
longer valid.

V. IMPURITY ELLIOTT PROCESS IN THE
LOWER-CONCENTRATION RANGE

For n~ 5&&10" cm ', the parameter b becomes
small and the first Born approximation fails. This
failure is observable in the mobility behavior,
since the calculated values of 7 become several
times larger than the experimental ones. Higher
Born approximations and multiple-scattering cor-
rections for 7 have been successfully considered
by Moore in a similar case." This increases the
momentum relaxation rate I/v by a factor of order
I/O, which improves somewhat the agreement with
experiment.

For the spin relaxation rate 1/T„we have car-
ried our previous calculation of Sec. II one order
further in the Born expansion. An enhancement
factor appears at low b but it is rather smaller
than for 1/T. This can be understood if a partial-
wave analysis is used to solve the scattering prob-
lem. This has been done by Krieger and Strauss. "
They find that most of the enhancement factor for
I/v. arises from an increase of the s phase shift
(l =0); the other phase shifts remain small and
are correctly given (within 16%) by the first Born
approximation. Qn the other hand, for the spin
relaxation rate, the formulation of Nozieres and
Lewiner" shows that the spin-flip matrix element
may be viewed as the matrix element between
plane-wave states of an effective spin-orbit inter-
action, and thus vanishes for an s state. Thus the
increase of the s phase shift, which is the princi-
pal source of the enhancement factor for 1/T, is
ineffective for 1/T, .

This argument falls down if multiple-scattering
corrections are taken into account: In this case
the whole scattering potential no longer has spher-
ical symmetry, and a partial-wave analysis is ir-
relevant. The Born expansion is the only firm
ground for this problem, but the corresponding
terms are very difficult to handle. In fact, this is
a problem of disordered systems. We thus content
ourselves with a somewhat qualitative argument,
given as follows: In low-doped InSb, the impurity
content N, =ND +N„ is much greater than the elec-
tron concentration n =ND -N~ and the interimpurity
spacings become smaller than the Debye screening
length. In such conditions, the random character
of the impurity distribution leads to quasimacro-
scopic fluctuations of the self -consistent potential
seen by an electron.

If the scale of the fluctuations is assumed to be

much greater than the electron mean free path,
then a local Fermi energy EI,(r) can be defined
from the local electron density n(r). In spite of
these local fluctuations, the resonance line still
appears as a single homogeneous line, since, in
any case, the scale of the fluctuations is much
smaller than the spin diffusion length [(DT,)'"
=1 pm]. The observed linewidth is then given by
the average spin-relaxation rate

n(r)d'r . (16)

/T, ) =(I/~)x-, ~ &~,&/ (17)

This equation fits the experimental points in the
lower-concentration range with an almost constant
value (Ez)'"= 30'K (see Fig. 1). This value is
consistent with the g-vs-T measurements of Kaplan
and Konopka, ,

' from which a quite similar va, lue
can be obtained. " Although our argument is rather
qualitative, we obtain the right order of magnitude,
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FIG. 2. Concentration dependence of the momentum-
relaxation rate. Curve is theoretical and corresponds to
the Brooks-Herring equation corrected for the electron-
electron interactions. Our experimental points are re-
ported on the same scale, together with the data of
Putley (see Ref. 15). Latter have been extrapolated to
the temperature 1" = 1.3 'K.

Since 1/T, is a fast rising function of n, this aver-
aging procedure strongly favors the higher-con-
centration regions, which explains qualitatively
the high value of the observed linewidth.

In fact, the scale of the fluctuations L and the
electron mean free path A, are of the same order
of magnitude (A.= I= a,*= 10' A) and most probably
the momentum relaxation rate does not exhibit
strong spatial fluctuations. Then, if the above
a,rgument holds, and if the semiempirical Eg. (11)
is used for 1/T„

1/T. (r) = (I/~) &-:(r&~(r)/&, )'

and
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and thus we think that this local Elliott process is
the clue to the observed linewidth in the lower-
concentration range. The less ambiguous test of
this mechanism would be the investigation of purer
uncompensated samples, where the linewidth is
expected to be smaller.

VI. CONCLUSION

A detailed analysis of the spin-flip Elliott scat-
tering of conduction electrons by charged impuri-
ties has been given. The results for the ESR line-
width in indium antimonide are in good agreement
with experiment in the higher-concentration range
(n~ 5x10" cm '). In the lower-concentration
range, the usually invoked relaxation process
(modula. tion by the interimpurity motion of the g
factor or of the hyperfine interaction) has been
considered quantitatively and shown to give a re-
laxation rate too small by several orders of mag-
nitude. Most probably the linewidth in the lower-
concentration range is still accounted for by the
Elliott process, provided allowance is made for
the local fluctuations of the electron density.
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APPENDIX: CONTRIBUTION OF HYPERFINE
INTERACTIONS TO THE LINEWIDTH
(LOWER-CONCENTRATION RANGE)

Our purpose is to evaluate the order of magnitude
of a process of the type 1/T, =Q'7„where 7, is
the correlation time associated with the interim-
purity motion, and 0 is the hyperfine interaction
felt by an electron when located on a neutral donor.

At the concentration of 10" cm ', where the
Fermi energy E~ is of the same order of magnitude
as AT and F.; (ionization energy of isolated do-
nors), the correlation time 7, must be of order
7, =5/F~= 10 "sec. When the electron concentra-
tion becomes lower than 10"cm ', 7, increases
above this value.

The spin relaxation rate for n= 10" cm ' is
1/T, = 4 x 10' sec '; if it were ascribed to the pres-
ent mechanism, this would require an interaction
9-2&10'0 sec

In order to see whether such a large value of 0
is attainable, we now look for the hyperfine inter-
action of a donor electron with the nuclear spins
in InSb.

We consider first the hyperfine interaction with
the donor nucleus. The donors are most probably
Sn or Te atoms; in both cases the hyperfine inter-

action in the isolated atom is the order of 10"
sec ',"but the rather weak natural abundance of
the magnetic isotopes of these nuclear species
(16% and 8%, respectively) leads to a final hyper-
fine interaction 0= 3~10"sec ', which is the
right order of magnitude. However, this estimate
requires the assumption that the donor wave func-
tion g near the impurity nucleus is the same as in
the isolated impurity atom. This is completely
impossible, since the effective-mass wave func-
tion of a neutral donor spreads over a great num-
ber of unit cells (a,* = 680 A), a,nd even if centra, l-
cell corrections were important, such a value of
P near the impurity nucleus is far from being at-
tainable. Therefore the hyperfine interaction with
the donor nuclei cannot be reasonably regarded as
the cause of the observed linewidth.

A more probable origin for 0 might be the hyper-
fine interaction with the In and Sb nuclei, whose
magnetic moment and natural abundance are par-
ticularly large. We then consider the hyperfine
interaction of a donor electron with a nuclear spin
I; of the crystal":

If the hydrogenoid form is assumed for the wave—
function envelope F(r), we find

8p.opg 1
8(2w)'~' (a)a, )"'

~In ~ In ~Sb ~Sb

1/2

where JL(~ is the Bohr magneton, a, is the lattice
constant, and a,* is the effective Bohr radius. With
a, =6.48 A and ao~ =680 A, the result is 0 =0.7&&10'
sec ', which is two orders of magnitude smaller
than the required value.

The physical significance of this result is as
follows: If the wave function were confined to a
unit cell, i.e. , a pair of In and Sb atoms, the hy-
perfine interaction 0„„.would be of order 3 &&10"

(18)

where p, ;, m;, r; are, respectively, the nuclear
magnetic moment, the z component of the nuclear
spin, and the position of the nucleus. F(r) is the
electron-envelope wave function. q; represents
the bunching of the crystal eigenfunctions at the
nuclei. According to the day-shift data of Gu4ron"
in InSb, we have q; = 1.1&&10' for Sb nuclei and

q; = 0.635 & 10' for In nuclei. For an electron in a
donor state, we can sum the contributions of all
the In and Sb nuclei; since the directions of two
nuclear spins a.re uncorrelated, the result is
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sec '. %hen the wave function spreads over a
number N of unit cells, the hyperfine interaction
of the electron with a given pair of In and Sb nu-
clear spins is smaller than 0„,. by a factor N, due
to the normalization factor of the wave function.
As the electron can see N such pairs, the hyper-
fine interaction is increased again, but only by a
fa.ctor WN, since the directions of the nuclear
spins are uncorrelated. The final result is
0 =0„,/vN. . For the hydrogenoid donor wave
function, N is of order 10', which reduces the
hyperfine interaction to the previously calculated
value 0 = 10' sec '.

This result might be in error if central-cell
corrections to the donor ground state were impor-
tant, namely if a small part cy of the donor wave
function were localized in a small volume v around
the impurity ion (o. = JJJ ~ y(r) ~'d'~); in this case

if the volume v contained n unit cells, the hyper-
fine interaction would be 0 =0„,. n/en, which might
be greater than 10' sec '. However taking for n a
few units, a value of 10 ' for n would still be re-
quired to reach the needed value 0= 2 && 10"sec '.
Although we lack knowledge about central-cell
corrections for donors in InSb, a rough evaluation
of n can be made by writing the energy shift of the
donor ground state due to the localized part of the
donor potential. If kinetic-energy terms are ne-
glected, this gives: ~ = eE„, where E„ is some
atomic energy. The shift ~ of the donor ground
state is certainly less than 10 ' eV, otherwise
this would affect the transport properties. Thus
the most we could hope for n is n= (10 ' eV)/
(1 eV) =10 '. The required value n= 10 ' is thus
unattainable and the contribution to the linewidth
of the hyperfine interactions is negligible. "
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Another origin for 0 might be the presence of magnetic
impurities inside the spreading region of a donor wave
function. The resulting relaxation rate would be im-
proved by a factor of order (p~/p, ;)~ = 106, but because
of the very small concentration of such impurities,

10 9—10 ~ [see F. Bridges and W. G. Clark, Phys.
Rev. 182, 463 (1969)l, it finally turns out to be several
orders of magnitude smaller than the effect of the
hyperfine interaction with In and Sb nuclei.


