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A two-parameter self-consistent theory of the electronic structure of copper is presented. The first
parameter, the exchange coefficient a appearing in Slater’s X a theory, is adjusted so that the
ground-state energy bands generate the measured Fermi surface. The second parameter, the
electron-electron contribution to the effective electron mass m * appearing in the Sham-Kohn
local-density theory of excitations, is adjusted to optical-absorption data. The theory treats all electrons
identically and provides a more accurate unified interpretation of Fermi-surface, optical-absorption, and
photoemission data than previously obtained. We show that the transition probabilities (momentum
matrix elements), while their inclusion is necessary for a convincing description of €,(w), can for the
most part be assumed constant in the calculation of photoemission spectra. Comparison with the
Chodorow potential shows that it gives excellent results for the d bands, but leads to excited-state
energies which are approximately 7% too low. A detailed description is given of our computational

-

procedures, including the generation of momentum matrix elements, k - p extrapolation, k-space
integration procedures and convergence tests, a5 well as our procedure for constructing photoemission

energy distributions.

I. INTRODUCTION

Crystalline copper has for many years provided
a testing ground for our theoretical understanding
of the electronic structure of the nonsimple ele-
ments, i.e., metals involving d bands. Some of
the reasons for this are as follows: (i) Optical data
show clear structure which is unobscured by col-
lective excitations (plasmons); (ii) Fermi-surface
data of very high precision are available; (iii) it
is light and therefore relatively uncomplicated by
relativistic effects; (iv) it is nonmagnetic; and (v)
its face-centered-cubic crystal structure is tightly
packed, which makes the theoretically convenient
muffin-tin approximation justifiable., The fact that
copper is the only element possessing these virtues
is the basis of the long-standing and continuing in-
terest in its electronic structure.

The purpose of this paper is to describe the ex-
tent to which the optical and Fermi-surface mea-
surements can be quantitatively explained by con-
temporary models for the interacting electron-ion
system responsible for the macroscopic behavior.
The relationship between macroscopic measure-
ments and microscopic models is a computational
chain consisting of many internally complex links,
the most prominent and well studied of which are
(i) the reduction of the many-electron problem to

an effective one-electron problem, (ii) determina- .

tion of the one-electron states, (iii) evaluation of
transition probabilities between the one-electron
states, (iv) interpolation between the inevitably
sparse sampling of the ~ 10?® individual one-elec-
tron states, and (v) averaging over the many states
or pairs of states contributing to a given measure-
ment. The principal uncertainty in this chain is
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step (i) and the information we seek is the relation-
ship between approximations made at this level and
experimentally measured quantities. Steps (ii)-
(v) must be executed with sufficient precision to
leave the desired relationship unobscured.

In Sec. II we summarize our results for the
Fermi surface, dielectric constant €,(w), and pho-
toemission spectra D(E, w) for copper and com-
pare with experimental quantities., Calculations
of the optical properties of copper have been per-
formed for the Chodorow® potential and for the
self-consistent Xa potential, Z using the value of
a=0."77 which we earlier found® by fitting Fermi-
surface data. According to Sham and Kohn* (see
also Hedin and Lundqvists) application of the self-
consistent ground- state potential to the excitation
spectrum requires self-energy corrections. Near
the Fermi energy, the self-energy corrections
are expected to have the effect of increasing the
excited-state energies E‘,,(E) relative to the ener-
gies E, (k) computed from the ground-state poten-
tial by an amount proportional to E,,(E) -E;, i.e.,

E,(K)=E,®)+\E, &) -E;], (1)

where A is related to the electron-electron contri-
bution to the effective mass as described in Ap-
pendix A, We have found that the Xa (a=0.77) po-
tential, which fits the Fermi surface of copper,
also gives good agreement with the optical prop-
erties of copper and the photoemission properties
for photon energies up to 25 eV if the excited-
state energies are assumed to have a self-energy
correction of this type with A =0. 08. Further de-
tails on the construction of the potential and the
self-energy correction are given in Appendix A.
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Detailed descriptions of the computational as-
pects of this work appear in Appendices B and C.
Basically, our purpose has been to perform all the
calculations required to go from a parametric de-
scription of exchange and correlation to experi-
mentally accessible quantities. The calculations
must be made with sufficient precision to test the
adequacy of simple one-electron direct-transition
theories of optical absorption and photoemission.
The calculation also shows what is necessary to
get agreement with experiment, both physically
(e.g., how important are many-body effects, optical
transition probabilities, etc. ?) and computationally
(how many k points are required to make the cal-
culations converge?).

Briefly, we calculate the energy bands, wave
functions, and matrix elements using the Korringa-
Kohn-Rostoker (KKR) method. KKR calculations
are relatively costly, and we obtain the energy
bands E,(k), gradients V,E,(kK), and optical transi-
tion probabilities |{n|Pl7n’)|? on a mesh of k points
sufficiently fine to permit accurate evaluation of
integrals by using E-ﬁ extrapolation locally around
each KKR point. The density of states, imaginary
part of the dielectric constant, and photoemission
energy distributions are calculated using the Gilat-
Raubenheimer method with appropriate generaliza-
tions.

II. DENSITY OF STATES, FERMI SURFACE, DIELECTRIC
CONSTANT ¢, (w), AND PHOTOEMISSION SPECTRA D (E,w)
FOR COPPER

We have carried out a series of extensive cal-
culations designed to provide an internally consis-
tent interpretation of photoemission, dielectric
constant, de Haas—van Alphen (dHvA), and cyclo-
tron-resonance data for copper in terms of the
underlying electronic states; comparison with ex-
periment yields information on the adequacy of
the theoretical model. Where agreement is ob-
tained, additional information (e.g., which states
are responsible for optical activity at a given pho-
ton energy) can be inferred from the experimental
data by examining the details of the calculations.

The foremost questions regarding the adequacy
of the theoretical model are (i) the validity of the
local density treatment of exchange and correla-
tion, and (ii) the validity of the independent-par-
ticle approximation for each of the experiments
considered here. Hohenberg, Kohn, and Sham®’
have shown that all ground-state properties can be
found by self-consistently solving a single-particle
Schrodinger equation with an effective ground-state
one-electron potential. The exact functional de-
pendence of this potential on the charge density is
not known, nor is it known, in general, to what ex-
tent the results of the ground-state calculation ap-
ply to excited-state properties. For example, the
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ground-state potential implies a Fermi surface,
but this surface may not be the same as the one
measured experimentally, 8 even though a corre-
spondence has been established by Sham and Kohn*
for the case of slowly varying electron density.

A further problem exists for the optical experi-
ments, since the one-electron picture ignores
vertex corrections due to the Coulomb interaction
between the excited electron and the hole left be-
hind. (In other words, the optical properties are
exactly given in terms of two- and three-particle
Green’s functions, which are replaced by products
of one-particle Green’s functions in the one-elec-
tron picture. This is an approximation even if
the one-particle Green’s functionisknownexactly. )
Of the two optical experiments we consider, our
single-particle model for photoemission is more
approximate, in that it additionally ignores the ef-
fect of the nearby (usually less than ten monolayers)
crystal surface on the excitation and transport
processes.

A. Density of states

The computed density of states is shown in Fig,
1. The energy scale in this figure, and all other
figures in this paper, includes the self-enevrgy cov-
rection of Eq. (1). To conserve electrons, the
magnitude of the density of states must also be
scaled. Thus, if p(E) is the density of states ob-
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FIG. 1. Density of excitation states of copper for the
Xa (o =0,77) potential. The figure includes the self-
energy correction of Eqs. (1) and (2).
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FIG. 2. Errors in de Haas—van Alphen areas, for field
in [111] direction, as a function of exchange-correlation
coefficient . Points for Chodorow potential were placed
so that Chodorow neck error falls on neck-error curve;
points for local-density potential were placed at & =0.7
because the energies obtained for this potential are very
close to those which would be obtained for Xo (@ =0.7).

tained without the self-energy correction of Eq. (1),
the quantity shown in Fig, 1is

1 E
v oy o) @

Studies of the d-band peaks with an energy spac-
ing of 0.015 eV revealed no critical points; if
these peaks have flat or slanted tops, they are less
than 0.015 eV wide.

B. Fermi surface

Figure 2 presents the errors in some calculated
Fermi-surface areas for several potentials, in-
cluding the Chodorow!® potential, and a number of
self-consistent potentials: the Xa potential of
Slater? with « =0.706,° the local-density potential
[denoted in the figure by a(»,)], which is an imple-
mentation of the Kohn-Sham” local-density theory
by Hedin and Lundqvist® using the electron-gas re-
sults of Singwi ef al.,'® and the Xa potential with
a=0.77, the value which fits the Fermi-surface
necks.® The belly areas vary very little with «,
reflecting the constraint on the total volume of the
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Fermi surface. Thus, in the case of copper, one
parameter (o) is being fit to one experimental da-
tum (the neck area), and it remains to be seen
whether the procedure will work equally well for
materials with more complicated Fermi surfaces.
It is likely, however, that the Fermi surface of any
close-packed, nonrelativistic element can be fit
with a self-consistent potential parametrized by

a. This follows because KKR theory shows that the
Fermi surface is generated by only one, two, or
three material-dependent numbers, the low-/ phase
shifts at E;. 1 If we regard the self-consistency
process as a plausible one-parameter relationship
among these few numbers, then it is likely that
most details of the most complicated Fermi surface
can be fit with the parameter a. Because so little
information (just three phase shifts) is involved,

we also expect that other parametrized forms of
the exchange-correlation portion of the one-elec-
tron potential would work comparably well.

C. Dielectric constant €, (w)

Figure 3 shows the experimental results of John-
son and Christy!? for the interband contribution to
the imaginary part of the dielectric constant, €,(w),
and the results of our calculations for several val-
ues of A. The value of X =0.08 brings the leading
edge and several peak positions simultaneously into
agreement with experiment.

As stated above, our calculation of €,(w) ignores
vertex corrections due to electron-hole interac-
tions. An earlier calculation by Mueller and Phil-
lips®® deviated from experiment to such an extent
that these interactions were felt to be essential to a
quantitative interpretation of ea(w). We have
shown'* that the two principal sources of the earlier
deviations from experiment were inaccurate transi-
tion probabilities and inaccuracies in certain band
energies implied by the Chodorow potential. Fig-
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FIG. 3. Dielectric constant €,(w) for ¢ =0.77 and
several values of A compared to experiment.
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FIG. 4. Dielectric constant €,(w) for the two-parame-
ter (@=0.77, A=0.08) potential and for the Chodorow po-
tential compared to experiment, (An estimated intra-
band contribution has been subtracted from the Pells and
Shiga data. )

ure 4 compares the €,(w) implied by the two-param-
eter potential and by the Chodorow potential with
experimental measurements. !!5:1 Apn encouraging
aspect of Fig. 4 is that the calculated amplitude, as
well as the shape, of the theoretical curve lies be-
tween the two measured curves. There is little ev-
idence in Fig. 4 of the breakdown of the independent-
particle picture.

Figure 5 shows the decomposition of the calcu-
lated €,(w) into contributions from different band
pairs. The peak at 3.9 eV, which is seen in the
theory and in the data of Johnson and Christy,? is
due to transitions from bands 4 and 5 (which are
d bands) to band 6. These transitions occur in the
neighborhood of the X point of the Brillouin Zone.
The peak at 4.6 eV, also seen in the data of John-

PHOTON ENERGY (eV)

FIG. 5. Band-by-band decomposition of dielectric con-
stant €,(w) for two-parameter (o =90.77, A=0.08) potential.
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TABLE I. Theoretical and experimental values (eV)
for energy differences in copper.

Theory Theory
Quantity Experiment (Chodorow) (present)
Ep—Ls 2.1+0,1% 2.1 2,15
Xy — X5 4,0+0.1% 3.94 3.97
Egs—Ly 0.75° 0.73 0.90
E;—X; 2.0° 2.0 1.95
X5 —X4 3.34 3.42 3.55
Li—Ly 4.8 4.6 5.16

aReference 17,
PReference 19.
°References 16, 18, and 19,
dReference 18.

son and Christy,'? is due to transitions from band
6 to band 7; these occur in the neighborhood of the
L point. We believe the bulk of the remaining dis-
crepancy between our two-parameter theory and
the experimental data involves temperature effects
in the (room temperature) Johnson-Christy'? data
and the high-w extrapolation required for the
Kramers-Kronig analysis of the Pells and Shiga'®
data. The relative amplitude of the 2- and 5-eV
peaks should be more reliable in the Pells and
Shigal® low-temperature data because ~ 30% of the
5-eV peak is due to temperature-sensitive transi-
tions between nearly-free-electron-like bands; the
amplitude of the 2-eV peak should be more reliable
in the Johnson-Christy data because their tech-
nique'? avoids normalization uncertainties intro-
duced by Kramers-Kronig analysis.

D. Characteristic features of the band structure

Information about a few level separations in the
band structure can be inferred directly from the
optical’®!? and photoemission'®!® data. Experi-
mental values for these separations are compared
with those given by our two-parameter self-consis-
tent excitation potential in Table I. The differences
between the calculated and measured quantities are
not random but appear because of the following sin-
gle physical effect.

As discussed in Appendix A, the X appearing in
Eq. (1) is actually the diagonal matrix element of
an operator. We have neglected its # and k depen-
dence and adjusted its value to obtain agreement
with selected optical measurements. Since we are
trying to fit many measurements with a single pa-
rameter, we cannot expect perfect agreement
everywhere. Furthermore, the prescription for
the 7 and k dependence of \,; [Eq. (A2)] shows that
X will be larger for d states than for more plane-
wave-like states, and largest for the localized
states at the top of the d band. Our single value of
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FIG. 6. Comparison of experimental and theoretical
(@ =0.77, A=0,08) photoemission energy distributions
for 7w between 8 and 12 eV.

) is appropriate to the “average” d state; it is
therefore too small for the top of the d band and
too large for the plane-wave-like L, and L,. states.
This is consistent with our X; level (top of the d
bands) being too close to E;, with the d-band width
(X; -~ X,) being correct and our L, - L,, separation
being too large. The experimental determination of
E; — L,. is less certain'® and we believe a value of
0.85 eV is consistent with the above arguments and
the fact that our ground-state potential is fit to the
Fermi-surface neck radius, which in turn is di-
rectly tied to the E;— L,. separation.

E. Photoemission energy distributions

Photoemission data represent the most stringent
test of our simple model; there is a great deal of
data to explain with no additional parameters at
our disposal. Furthermore, there are several
physical processes contributing to the measured
quantity not present in the other measurements
(surface effects on optical excitation and electron
escape, electron transport, and secondary-elec-
tron production), which can complicate comparison
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with theory. A description of our three-step di-
rect-transition model of the photoemission intensi-
ty D(E,w) for a polycrystalline solid appears in
Appendix C.

Figures 6—9 compare the calculated photoemis-
sion energy distributions with those measured by
Eastman and Grobman?® at a number of photon en-
ergies. The amplitude of the experimental data is
arbitrary, and has been adjusted for each photon
energy so that the areas under the theoretical and
experimental curves are the same.

Although the relative amplitudes of certain peaks
are not always as measured, the over-all curve
shape as well as peak locations and their evolution
with photon energy is in agreement almost every-
where. In light of the crudeness of our model, we
feel there is also very little in Figs. 6-9 to war-
rant an appeal to more complicated physical pro-
cesses, nondirect transitions, vertex corrections.
etc.

F. k-space location and localization

Most of what we know concerning the E—space lo-
cation and localization of optical transitions in Cu

I I I I
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FIG. 7. Comparison of experimental and theoretical
(@=0.77, A=0, 08) photoemission energy distributions
for 7Zw between 13 and 17 eV.
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FIG. 8. Comparison of experimental and theoretical
(@ =0.77, A=0, 08) photoemission energy distributions
for 7w between 18 and 22 eV,

stems from a detailed analysis of photoemission
from cesiated copper reported elsewhere.? We
have applied the same analytical techniques to
higher-energy excitations, and here we summarize
the results of both analyses.

Transitions between nearly-free-electron bands
are almost a factor of 10 more localized in k space
than are transitions out of the d bands. Transitions
also tend to follow the nearly-free-electron ex-
cited-state bands. At low photon energies (5-15
eV) these bands are experiencing their first reflec-
tion from the Brillouin-zone faces and as a result
optical excitations sample only the portion of the
zone near the faces. In particular, since the d
bands attain their full width near the zone faces
this photon energy region is ideally suited to the
resolution of the internal structure of the d bands.
At higher photon energies (15—25 eV) the nearly-
free-electron bands move back into the interior of
the zone. Correspondingly, the d-band derived

structure in the photoemission distribution narrows.

G. Adequacy of the Chodorow potential

A substantial fraction of all the theoretical anal-
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ysis done on the electronic properties of copper
has been based on the effective electron-ion inter-
action proposed by Chodorow in 1939.! Our calcu-
lations provide a basis upon which to judge the ac-
curacy of the Chodorow potential.

Figure 2 shows that the Chodorow potential leads
to Fermi-surface properties in roughly as good
agreement with experiment as our two-parameter
self-consistent potential.

If we compare the energy bands given by the
Chodorow potential to those following from our
two-parameter self-consistent potential, requiring
that the Fermi levels coincide, then the d-bands of
the two calculations agree to within 0.1 eV. All
the other bands given by the Chodorow potential
fall approximately 7% too close to the Fermi level,
in agreement with our earlier investigations!*'22
and the more recent work of Wagner ef al.?® This
provides a simple interpretation of Fig. 4: All
contributions to €,(w) due to transitions from the
d states to states near the Fermi level are accu-
rately predicted by the Chodorow potential. The
spurious peak near 77w =4 eV is due to transitions

T T I I I I
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FIG. 9. Comparison of experimental and theoretical
(@=0.77, A=0,08) photoemission energy distributions for
7w between 23 and 26 eV,
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from the Fermi level to higher levels which the
Chodorow potential underestimates by 7%, as men-
tioned above. The accuracy of the Chodorow d
bands including their distance from the Fermi level
also explains the success of recent analyses?* of
photoemission data, since the latter is qualitatively
dominated by the d levels and their distances from
E;.

H. Summary

We feel that our two-parameter model provides
an internally consistent and remarkably accurate
description of the Fermi-surface and optical mea-
surements on copper. Both parameters of the
model are physically interpretable and amenable to
a priori calculation. The values of these parame-
ters required to fit the data do not differ greatly
from the predicted values. It is dangerous to infer
a great deal from a parametrized model owing to
the unknown relationship between the parameters
and the effects ignored in the model. For example,
our adjustment of the exchange coefficient could be
compensating for our neglect of non-muffin-tin con-
tributions to the potential and charge density.
Nonetheless, the ability of our model to provide a
quantitative understanding of such extensive and
diverse measurements suggests to us that the fun-
damental conceptual building blocks out of which it
is made are probably adequate; these are (i) the
local-density description of the ground state, (ii)
the single quasiparticle picture of optical excita-
tion, (iii) the independent three-step (excitation,
transport, and escape) picture of photoemission,
and (iv) the direct (K-conserving) picture of optical
excitation.
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APPENDIX A: PARAMETRIZED GROUND-
STATE-EXCITATION POTENTIAL

In the text we have described the philosophy be-
hind our two-parameter semiempirical potential
and its ability to interpret Fermi-surface and op-
tical data for copper; in this section we provide
the theoretical justification for its particular form.

Hohenberg, Kohn, and Sham®7 have shown that
the electronic charge density p implies all prop-
erties of the ground state. Furthermore, they
showed” that p could be obtained by standard one-
electron techniques from a Schrodinger equation
containing, in addition to the usual electrostatic
interaction of an electron with the nuclei and the
electronic charge density, an exchange-correlation
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potential p,, which, while unknown in detail, is also
uniquely determined by the charge density.

Most workers have assumed a local or nearly
local relationship between u,. and p, i.e., that u,.
at the spatial point ¥ depends only on p(¥), or at
most p(¥) and its low-order derivatives. We have
assumed that u,. is proportional to p” 3, and taken
the constant of proportionality to be an adjustable
parameter. If it is obtained from atomic calcula-
tions, ° one has the Xo method of Slater?; if it is
allowed to vary with p as it would in an electron
gas of slowly varying density,” one has the ex-
change-correlation potential obtained by Hedin and
Lundqvist® from the electron-gas calculations of
Singwi el al.'® As stated above, we propose ob-
taining @, or perhaps its parametrized dependence
on p, by fitting self-consistent one-electron calcu-
lations to Fermi-surface data (we assume that the
experimental Fermi surface and the one implied by
the effective one-electron potential are the same).

The second parameter in our potential deals with
the excitation spectrum, and is determined inde-
pendently of the ground-state parameter. If vertex
corrections are neglected, the optical transition
frequencies are determined by the one-electron ex-
citation spectrum. This is obtained from the ei-
genvalues of the ground-state potential by including
the energy dependence of the self-energy. Sham
and Kohn* (the same results can be derived from
the expressions given by Hedin and Lundqvist®)
have shown, when the density is slowly varying,
that the excited-state energies E,,(E) are obtained
from the eigenvalues En(ﬁ) of the ground-state po-
tential by

E,(®) =E &) + 0z [E,&) - B/ (A1)

for low-lying excited states near the Fermi energy,
where

1@ 191 [1 - mr ()]
T [ d%r 19z 2m*(p(P)

Here, m* is the effective mass (in units of the
free-electron mass) for the interacting electron
gas, evaluated for each 7 for a density equal to the
ground-state charge density p(%), and $,;(¥) is a
ground-state Bloch function.

In our parametrized potential, we take X to be
real and independent of » and E, and we assume
that

E,K) =E,&® +\[E,&) -E/,] ;

(A2)

(A3)

we take this relationship to hold over the entire
range of energies covered by dielectric-constant
and photoemission experiments, and we obtain A by
fitting to experimentally observed optical-transi-
tion energies.

If V,(T,E) is the excited-state exchange-corre-
lation potential, Eq. (A3) can be obtained by writ-
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FIG. 10. 1-—m*(ry)/m, for the homogeneous electron

gas as calculated by Rice (Ref. 26) and Hedin (Ref. 27).
The 7, range shown includes contributions from both
core and valence electrons.

ing

xc(r, E) ch(r)+ (E Ef) (A4)
This potential differs from the ground-state ex-
change-correlation potential by a term which is en-
ergy dependent but independent of position. Thus
there is no change in the one-electron wave func-
tions, and, in particular, there is no change in the
momentum matrix elements evaluated using the
ground -state Bloch functions. Futhermore, €,(w),
the dielectric constant evaluated using the E,,(E) de-
fined by Eq. (A3), is related to €,(w) [the dielec-
tric constant evaluated using the ground-state ei-
genvalues E,(K)] according to

- 1 w
ez(w) = TTA€2(1—+—A), (A5)

with a similar relation holding for the photoemis-
sion distributions. Thus, in addition to supplying
a single parameter to fit the optical spectra, the
assumptlon that X is a constant (independent of »
and k) greatly simplifies the calculation by per-
mitting the use of the ground-state momentum ma-
trix elements.

In practice, similar values of A are found for
copper either from Eq. (A5), or by matching a sin-
gle-optical-excitation energy (e.g., the d-band-
Fermi-level separation) to dielectric-constant data.
In this way, we have found that A =0. 08 gives a good
fit to the optical properties of copper for our po-

* tential.

It is known that the effects of exchange and cor-
relation become negligible at sufficiently high en-
ergies,25 so we expect Eq. (A3) to fail for energies
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which are too far from the Fermi energy. There
is little indication of this failure in the copper pho-
toemission spectra shown in Figs. 6-9 for ener-
gies up to 25 eV above E;. Note, however, that
because the photoemission spectra are dominated
by the d-bands, we do not know how sensitive they
are to errors in Eq. (A3) for the higher-energy
conduction bands.

We show in Fig. 10 a plot of 1 —m*(r) for the
interacting electron gas as calculated by Rice® and
Hedin.# Also shown is the range of 7, values cov-
ered by our ground-state copper charge density.
The value of ),z obtained from Eg. (A2) will be
some average over the shaded region of the figure.
Thus, it is encouraging that photoemission is ac-
curately described by the value of A determined
from fitting €,(w), and also that the value of 0. 08
actually required is not much larger than that given
by ab initio calculations.

We conclude this section by pointing out that one
may view our procedure as a new level of pseudo-
potential theory. However, only the most uncer-
tain portion of the self-consistent effective elec-
tron-ion interaction is empirically parametrized,
whereas in ordinary pseudopotential theory, the
entire electron-ion interaction is parametrized.

In addition to being self-consistent, our model is
not restricted to simple metals. It is our hope that
during the period required to devise a practical and
accurate relation between exchange-correlation po-
tential and the charge density p, our scheme or
similar ones can be used to interpret data and
thereby guide the search for an improved theory.

APPENDIX B: COMPUTATIONAL DETAILS

Our calculations are performed in four steps:
(1) iteration of the self-consistent ground-state cal-
culation to convergence using the fast KKR method
developed by the authors?®; (2) construction of the
excitation bands and momentum matrix elements on
a coarse mesh in k space; (3) extrapolation from
the coarse mesh to a fine mesh of k points using the
k. p procedure; and (4) integration over the fine-
mesh points to obtain measurable properties.

-1. Excitation bands

The energy bands and wave functions are first
constructed on a coarse mesh of 240 2 points (13
points between I" and X) in the irreducible % of the
Brillouin zone, using the KKR method. The nor-
malization of the wave functions is obtained from
the energy derivative of the KKR secular matrix,

as follows. Schrodinger’s equation is
|7y =GV |m) , (B1)
where
N 1 (hK) (r-1*)
G, (T-7")== Z (B2)
° "9 T E-1k+RI®
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is the empty-lattice Green’s function, V is the
crystal potential, |7) is a Bloch function, and the
integrations in Eq. (B1) go over one unit cell of
volume Q. This Schrodinger equation can be ob-
tained by setting the variation of the KKR functional

n|M|ny=(n|V - VG,V |n) (B3)
with respect to [#) equal to zero. Noting that

3G

aE" ==G,Gy , (B4)
we have

oM 9G, _

?E—__V 3E V=VG,G,V, (B5)
so that

oM
(n| E ny={n| VGG,V |ny=(n|n) =1 (B6)

from Eq. (B1). Thus the wave-function amplitude
must be chosen so that the diagonal matrix element
of 8M/OE is unity. Finally, noting that M|») is
zero if M is evaluated at the energy E,, we have,
even though the orbitals are energy dependent,

oM 3
(nl‘afm E=En-5§<n|Ml”> E=E"‘1 : B7)

Because of the factors of V which appear in Eq.
(B3), construction of (z| M|n) (and its energy deriv-
ative, which is obtained in practice by numerical
differentiation) requires no knowledge of the wave
functions outside the muffin-tin sphere.

The matrix elements of momentum are obtained
from

N2 nlvyin')

E,-E, °’ (58)

(n|p|n
which also requires no knowledge of the wave func-
tions outside the muffin-tin sphere, where VV van-
ishes. Diagonal matrix elements, and matrix ele-
ments between degenerate states, are obtained
from the k derivative of the KKR functional M.
Since

3G,

—aﬁ—=i(F-F')(;o+zc;(,ﬁc0 , (B9)

we have, if |7 and |»’) are degenerate,
9 aM
— (nMn')> =(n| —|n")
ak( ] B=En(k) ok |
== 2An|VGBG,V|n")
(B10)

[the matrix element between degenerate sta.zs of
(F-¥)VG,V is zero], and thus, from Eq. (B1),

n|p|n' =—%a—€%<n|M|n’>. (B11)
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FIG. 11, Energy bands of copper for the two-parame-
ter (@ =0.77, A=0,08) self-consistent potential. Discon-
tinuities at high energies provide a measure of errors
introduced by truncation of k- p Hamiltonian.

2. kP

The third step is extrapolation from the coarse
mesh to a fine mesh of points by diagonalizing a
k- P Hamiltonian set up locally around each KKR
point (the maximum distance over which a k- p
Hamiltonian is used is thus half the maximum dis-
tance between KKR points).

The number of points required on the fine mesh
is determined by the convergence of the integration
procedures, and the number of coarse-mesh points
needed is in turn determined by the convergence of
the k- p extrapolation. The K- P convergence is
also influenced to some extent by the number of
energy bands included; the largest errors are ex-
pected to occur in the highest bands at each E, be-
cause these will generally be the bands with the
largest interactions with those states which have
been omitted. Figure 11 shows the excitation bands
for the self-consistent Xa (a = 0. 77) potential (in-
cluding the 8% self-energy spreading discussed
above). Only the energies E, (k) and gradients
V, E,(K) produced by the k- p procedure were used
in constructing this figure, so that any inadequa-
cies in the extrapolation would lead to discontinui-
ties or other unphysical behavior in the plotted
bands. Since the only place where this occurs is
for the highest bands at T', it appears that k- D ex-
trapolation is adequate for of the order of 10 bands
with 240 points on the coarse mesh [so that the
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maximum distance over which k- p is used is
~0.07(21/a))].

3. Integration procedures

The final phase of the calculation is the integra-
tion over the fine-mesh points to obtain the density
of states for the fcc structure from

1 -
N(E)=§Zfd3k6(E—E,,(k)) (B12)
n
(in states/Ryatom, both spins, for one atom per
unit cell if E is in rydbergs and k is in units of
27m/a); the dielectric constant €,(w), given by

2 - -
ez(w)=3£3—%—3-m’ [ a%o(E, @ -E)o(E, - B,&)

x| |B] 7Y |*0(E 1o (&) = E(®) - ) (B13)

(in which Kk is in units of 27/a; the band energies,
optical matrix elements |{z|p!7’)12, and photon en-
ergy w are in rydbergs; a is the lattice constant

in atomic units; and ©(x) is 1 for positive x, zero
for negative x); and the photoemission energy dis-
tributions, which require the evaluation of inte-
grals of the form

PyE,w)=O(E —E;)O(E;+w—-E)
x 2, [a’RTE,B)|(n[B]n")]?

XB(E - w—E, (k) 8(E, (k) -E), (B14)

where E is the final-state energy and w is the en-
ergy of the incident photons. This integral is the
starting point of the photoemission calculations,

which include in addition lifetime effects, second-

I I I T I

— 10100 POINTS
--- 2600

- 878

- 203

hw=11.6ev

D(Ew) (ARB. UNITS)

-5 -4 -3
E,eV BELOW E ¢

FIG. 12, Convergence of photoemission distribution
D(E,w) for fiw=11.6 eV for the Chodorow potential with
number of k points used for integrations.
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ary production, and escape through the crystal
surface. The approximations which are used in
these calculations are discussed in detail in Ap-
pendix C.

The density of states [Eq. (B12)] is computed
‘using the Gilat-Raubenheimer (GR) method, #* in
:which we consider each of the fine-mesh points
to be the center of a cube, and we assume that
within each cube the energy surfaces are approxi-
mately planar:

E, &)= E,(&o)+ (VEE )y - (k ko) (B15)

The number of fine-mesh points must be large
enough that this local neglect of the curvature does
not lead to serious errors in the computed quanti-
ties.

The optical absorption €,(w) [Eq. (B13)] can be
thought of as the density of states of the difference
bands, and thus computed in the same way as the
density of states, if it is assumed that the mo-
mentum matrix elements in each of the GR cubes
are constant, equal to their values at the cube cen-
ter. The number of fine-mesh points must be large
enough to make this approximation reasonable, in
addition to the requirement that the surfaces of con-
stant energy difference should have small curva-
ture in each cube.

The photoemission energy distributions [Eq.
(B14)], since the integral contains two & functions,
require a somewhat different approach. As has
been discussed in detail elsewhere, *° this integral
can be rewritten as a line integral along the inter-
section of the two surfaces defined by the 6 func-
tions, and the number of fine-mesh points must be
large enough that it becomes reasonable to replace
the curve of intersection of the two energy sur-
faces in each cube by the straight line of intersec-
tion which results when each energy surface is ap-
proximated as in Eq. (B15).

4. k convergence

Calculations of a typical photoemission energy
distribution curve and of the dielectric constant
€,(w) for various numbers of fine-mesh points in
the irreducible wedge are shown in Figs. 12 and 13.
Although small changes in amplitude occur as the
number of fine-mesh points is increased, it is
seen that a mesh of 2600 fine-mesh points is ade-
quate for photoemission and €, calculations; it is
doubtful that the differences between the 2600-point
and 10 100-point calculations are of any importance
in comparing to experimental data with a resolution
of 0.1 eV or more, Surprisingly, the major effect
of using fewer than 2600 points is a shift in the peak
positions; even the curves computed with 203 points
have the correct over-all shapes, and would be ade-
quate for comparison to experimental data of low
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FIG. 13. Convergence of dielectric constant €,(w)

for the Chodorow potential with number of k points used
for integrations.

resolution. (An 875-point calculation over a 2-Ry
energy range, including the Eio’ extrapolation, the
density of states, dielectric constant, and one pho-
toemission distribution, requires less than one
minute of central-processing-unit time on the IBM
360/91). Although the results presented in this
paper are all obtained from 10 100-point calcula-
tions, it is clear that such calculations are capable
of much higher resolution than is presently attain-
able experimentally. This is particularly true of
the photoemission calculations, where the com-
bination of our method of obtaining bare distribu-
tions with the correct area, and the convolution
with a relatively broad (~ 0.5-eV width) hole-state
Lorentzian (see Appendix C) leads to quite rapid

k convergence.

TABLE II. Optical matrix element | (z 151z’ )12/2m
in rydbergs and transition energies in rydbergs for copper
(Chodorow). All nonvanishing matrix elements at I', L,
and X are given for » and n’ =<7,

Transition energy [ {n1Bln’)i%/2m

Transition (Ry) (Ry)
Ty — T 1.976 0.330
Ly—Ly 0.3442 0.051
Ly—~Ly 0.214% 0.009
Ly—Ly, 0.2142 0.003
Ly—Lo 0.1062 0.141
Ly—Ly 0.1062 0.052
Ly —L, 0.336 0.721
X=Xy 0. 540 0.042
X5 — X, 0.289 0.120
Xy — X, 0.387 0.780

aTransitions between occupied states.
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Since the band density of states is not an experi-
mentally accessible quantity, the only justification
for obtaining it to high accuracy (which may re-
quire of the order of 10* points) is to permit nu-
merical integration for finding the Fermi energy.
We circumvent this problem by computing the in-
tergrated density of states, using a generalization
of the GR method suitable for finding volume in-
tegrals (one can construct algebraic expressions
for the volume of that portion of a cube on one
side of an arbitrary plane). In this way, the Fermi
energy can be obtained to an accuracy of better
than 0.001 Ry from a 203-point calculation,

5. Matrix elements and band velocities

It is of some interest to determine whether it is
necessary to include the momentum matrix ele-
ments in calculations of €,(w) and the photoemis-
sion distributions, and to see how important it is
to use the electron group velocity implied by the
band calculation, rather than a free-electron ex-
pression, in the transport factor appearing in the
photoemission calculations [Eq. (C2)]. One ex-
pects matrix-element effects to be less important,
in general, for transition and noble metals (be-
cause the d states are more localized, and the
momentum matrix elements less k dependent) than
they are for nearly-free-electron materials; the
following discussion is pertinent only to copper, and
there is some danger in trying to generalize the
results to other materials.

Even if the momentum matrix elements were ap-
proximately constant over the region of k space for
which a particular band pair contributes to €,(w)
or photoemission, they can still differ for different
band pairs, and thus alter the relative magnitudes
of the various contributions to the total. Thus, to
the extent that the contribution of a particular band
pair to the optical absorption or photoemission
comes from a relatively small region of k space,
one would expect the main effect of omitting the
momentum matrix elements to be a change in the
relative peak amplitudes.

The matrix elements for some of the low bands
at I', L, and X for the Chodorow potential for cop-
per are given in Table II, and the effect of the ma-
trix elements on €,(w) and the photoemission dis-
tributions is illustrated in Figs. 14 and 15 (both
calculations were made with the Chodorow poten-
tial). Itis necessary to include the matrix ele-
ments to obtain an €,(w) for copper which is in even
qualitative agreement with experiment, but the ef-
fect of the matrix elements on the photoemission
distribution is generally much less pronounced;
the only place where the matrix elements have a
large effect on the photoemission distributions of
copper is in the neighborhood of nearly-free-elec-
tron gaps, e.g., the peak near zero initial energy
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PHOTON ENERGY (eV)

FIG. 14, Effect of momentum matrix elements on
dielectric constant €,(w) for copper. Solid curve: in-
cluding computed matrix elements; dashed curve: con-
stant matrix elements.

for w=4.5 eV in Fig., 15 (the work function in these
calculations was taken to be 1.8 eV, the value ap-
propriate to cesiated copper, in order to show ef-
fects occurring near the L gap). There are also
small shifts in peak positions in the photoemission

D(E,w) (ARB. UNITS)

|
-5 -4 -3 -2 -1 o

eV BELOW Ej
FIG. 15. Effect of momentum matrix elements on
photoemission distributions for Chodorow potential for
copper. Solid curve: including computed matrix ele-
ments; dashed curve: constant matrix elements.
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D(E,w) (ARB. UNITS)
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FIG. 16. Effect of band velocities on photoemission
distributions for Chodorow potential for copper. Solid
curves: with computed band velocities; dashed curves:
with free-electron velocities.

distributions; these are presumably caused by
changes in peak amplitudes when there is a smooth-
ly varying background.

The general conclusion is that, for copper, one
can do a reasonable calculation of optical proper-
ties without matrix elements only for transitions
from the d bands; unfortunately, much of the struc-
ture in €, (w), and that portion of photoemission
data for cesiated copper which is due to transitions
across the L gap, are due to transitions between
sp states, and the matrix elements for these transi-
tions must be taken into account.

Figure 16 shows photoemission distributions for
the Chodorow potential for copper computed using
two different electron velocities in the transport
factor (see Appendix C), which is essentially the
probability that an electron excited somewhere in
the crystal will get to the surface without being
scattered. One of the calculations in the figure
was performed using the velocity obtained from
the band calculation, and the other was performed
assuming that the velocity of an electron with re-
duced wave vector k was proportional to kK. In
general, one expects the only important differences
to occur near critical points in the excited bands,
where the band velocity is much smaller than the
free-electron velocity (to test this, one needn’t
worry about including the appropriate reciprocal-
lattice vector in the free-electron velocity, since
it will still be much larger than the band velocity).
Thus, the major differences for the copper pho-
toemission distributions occur for transitions near
the L gap (the peak near zero initial energy for
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w=4.5eV).

It is interesting to note that omitting the band
velocities in the photoemission calculations tends
to compensate for omitting the matrix elements
for transitions near the L gap in copper. We have
not studied this effect near other nearly-free-elec-
tron transitions, either in copper or other ma-
terials, although it would constitute a useful sim-
plification of photoemission calculations if it oc-
curs in general.

APPENDIX C: DETAILS OF PHOTOEMISSION
CALCULATIONS

In our direct-transition photoemission calcula-
tions, we assume independent excitation, transport,
and escape processes (closely following Berglund
and Spicer®! in our treatment of transport and es-
cape), and treat electron-electron scattering using
Kane’s®? random-# approximation. We include
both primary and secondary (once-scattered inelas-

tically) electrons in the photoemission distribution. "

The first step is to calculate the bare primary
distribution according to

Py(E,w)=OF —E;)0(Es+w - E)
XZ Jd3k T(E,K)|(n|§|n")|?

X8 - E, (k) - w) 6(E,. k) -E) , (C1)

where T(E, k) is the transport factor for excited
electrons:

= _aW)EK)
TE,¥)- a(w)l(E, k

1+a(w)l(E,k) (C2)

Here a(w) is the inverse of the photon mean free
path of photon energy w, for which we use experi-
mental values, and I(E,K) is the mean free path of
the excited electron,

L(E, k)=[7(E)/N]| Vi E(®)| . (C3)

The relaxation time for the excited state, 7,(F),
is found from Kane’s random-% approximation® as
described below.

We calculate Py(E, w) by rewriting the integral
as a line integral and proceeding as described in
Appendix B. If neither electron nor hole states are
sharp, the & functions in Eq. (C1) should be re-
placed by the spectral densities of the hole and
electron states:

S - w ~E, (k) 6 (B, (k) - E)
~AE - 3 E, (k) A (E; E, (B))

where we assume that

-1_-1
ALE;E . (k)= [ 7, ) (C4)

E-E.®)P+[IE)E °
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) ~ 7N E - w)
AME = 03 Bl = (5= T, )T [ E @)

(C5)
with 7,(E), the relaxation time for holes, also com-
puted from Kane’s random-£ approximation® as
described below. [Equations (C4) and (C5) are
identical to the usual expressions for one-electron
spectral functions, except that it has been assumed
that the imaginary part of the self-energy, although
energy dependent, is independent of wave vector k
and band index #.] The resulting distribution func-
tion, denoted by ISO(E, w), can be written as a con-
volution over Py(E, w):

PO(E,w)=J' dE'dw' Py(E',w')A,E,E")

X AE -w;E' - w’) (C6)

(the sharp edges at E=E; and E =E;+ w are pre-
served if the spectral functions become & functions
at the Fermi energy). Including the lifetime
broadening effects by convolution after the k inte-
gration is completed, rather than carrying out the
k integration over the spectral functions, results
in a substantial savings in computer time, and is
an exact procedure as long as the imaginary part
of the self-energy is independent of K. This is
probably an unrealistic assumption, but it is un-
likely that any slight improvement in agreement
with experiment resulting from the use of a k-de-
pendent relaxation time would justify the increased
cost and complexity of the calculation. We have
made tests of various procedures for including the
spectral broadening, and have found that the dis-
tribution

Py, )= [ dE'Po(E", 0) A4E - wi E' - ) (CT)

is usually indistinguishable from that given in Eq.
(C6), and, since it involves no integration over w,
can be obtained at a still further substantial sav-
ings in computer time.

One can derive Eq. (C7) from Eq. (C8) by writing
Py(E,w) as P,(E - w;w), and assuming the depen-
dence on the first variable (E - w) is strong, but
neglecting the variation with the second variable
(w) over the widths of the electron and hole spec-
tral functions. This assumption, which is appro-
priate to a material, such as a transition or noble
metal, with a photoemission spectrum with a num-
ber of stationary peaks (over a range of w of ~1 eV)
in initial energy, leads to an expression [Eq. (C7)]
which simply represents a broadening of the pho-
toemission distributions on the energy variable.
The only new feature incorporated here is that the
width of the broadening function has the energy de-
pendence implied by Kane’s random-# model for
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the hole lifetime. (A different way of saying this
is that the calculations were found to be insensitive
to broadening of the electron states, and it was
found unnecessary to take this broadening into ac-
count. )

In practice, the photoemission distributions are
calculated for each w on a uniform mesh of ener-
gies E. Since convolution with a Lorentzian con-
serves area, it is important that the bare (infinite
lifetime) photoemission distribution be calculated
in such a way that it has the correct area, It was
found that many of the fine-mesh cubes contribute
only to rather narrow energy ranges, and it is
thus possible to miss the contributions of such
cubes altogether (if the contribution happens to
fall between points on the energy mesh) or to gross-
ly miscalculate their contributions to the area (if
a mesh point happens to fall in the middle of a very
sharp but very narrow peak). This situation is
handled by finding the range of energy AE for which
each band pair in each cube contributes to the pho-
toemission; if AE is less than twice the spacing
between points on the energy mesh, we compute the
total area of the contribution (i.e., the integral
over energy,; this can be computed using the GR
method) and add it into the photoemission dis-
tribution for the energy point nearest the center of
gravity of the contribution.

After normalizing the distribution to one absorbed
photon,

JAE'PyE’, 0)AE - w; E' —w)
[dE'P,(E’, w) ’
(C8)
the next step is the calculation of the contribution
of secondary electrons according to

N,E,w)=

Ef+w

NE, w):J dE'S(E',E)N,(E",w) .  (C9)

E

Here S(E', E) is essentially the energy distribution
function for secondary electrons at energy E pro-
duced by a primary electron at energy E’ by elec-
tron-electron collisions.

In Kane’s® random-% model, the matrix elements
of the electron-electron interaction are taken to
be constant, independent of k and band indexes.
The K-space integrals which occur in second-order
perturbation theory can then all be contracted into
densities of states. If we define

Ef*E , , ,

RE)= [ 7 dE'p,E )y E - E), O<E
E
i’ (C10)
E

T E)= dE'p,(E')R(E -E'), E=E; (C11)
E
f
E

ThE)= | "4E'pE)RE'-E), E<E,  (C12)
E
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where p, and p, are the densities of states for elec-
trons and holes (simply the band densities of states
above and below the Fermi energy), then Kane’s

‘result for the distribution function for secondary

electrons is®

S(E',E)=2p,(ERE'-E)/T,(E'), E'=E>E,

(C13)
the electron lifetime is
TeE)= A /T,(E), (C14)
and the hole lifetime is
ThlE)= Ny /THE) , (C15)

where A, and A, are constants, A desirable prac-
tical aspect of Kane’s model is illustrated by Eq.
(C13), where a matrix is given as a product of vec-
tors, greatly reducing the storage requirement of
the calculation,

Our calculations involve a number of further ap-
proximations. First, in a material with d bands,
there is no reason to expect the electron-electron
matrix elements between s states and d states to
be similar; one would further expect matrix ele-
ments involving an odd number of d states to be
smaller than those involving an even number of
d states. In the noble metals, where the d states
are completely below the Fermi energy, the pair-
production process involves an odd number of d
holes; since the matrix elements for such processes
should be smaller than those involving only s
states, one makes a large error by including the
full d-band density of states in Eq. (C10). We have
tacken this effect into account in an ad hoc fashion
by cutting off the density of states in the d-band re-
gion at 6 states/Ry atom (or roughly twice the s-
band density of states) in the calculations in Egs.
(C10)-(C12).

Second, the secondary distribution function used
in Eq. (C9) is not that appearing in Eq. (C13), but
is instead

SE’,E)=[1,(E)/7,(E"))S E', E)
=2p,(E)R(E’ - E)/T,(E) .

The assumption is that, once a secondary electron
has been produced, it moves without undergoing
further pair-production processes (i. e., tertiaries,
etc., are neglected). The transport factor for the
secondary electrons should thus be evaluated at the
energy E, rather than at the energy E’ of the pri-
maries. To the extent that ol in Eq. (C2) is small
(which is true for transition and noble metals),
multiplying by the ratio of relaxation times in Eq.
(C16) takes this into account.

Third, if al is small, N,(E,w) and N4(E, w) will
both be proportional to A,, the unknown constant
in Eq. (C14) which fixes the size of the electron
relaxation time. We can determine A,, therefore,

(C16)
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by matching the energy integral of the theoretical
photoemission distribution to the measured quan-
tum yield at one photon frequency (we then use the
same value of A, for all other photon frequencies).
The value of A, in Eq. (C15), which fixes the size
of the hole relaxation time, is chosen to give a
reasonable match to the experimentally observed
broadening of the photoemission distributions.

It is clear that much remains to be done in the
theory of pair production; the distribution of sec-
ondaries calculated as discussed above is in only
qualitative agreement with experiment. We have
not tried to improve these calculations because
our main interest is in the primary distributions,
and because it appears that any substantial im-
provements in the treatment of the secondaries
(for example, calculation of the electron-electron
matrix elements) will require a major programing
effort.

The final step in the calculations is the inclusion
of surface-escape effects. Following Berglund and
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Spicer, *! we put

D(E,w) =Tt (E)[N,(E, w)+ N (E, w)] (C17)

and use a free-electron model to find the surface-
escape function T, (E). That is,

E SEf+ ¢
(C18)

4

S 0

Tert(E)z

21 (1—E¢E >’ E>E;+¢
—f

where ¢ is the work function. The distributions
are then normalized by matching to the experi-
mental quantum yield Y (w,) at one photon frequency
wp, so that the final theoretical photoemission dis-
tributions are given by

_ Y(wﬁ)ﬁ (E; (JJ)

DE )= BB E, wy)

(C19)

As discussed above, this procedure fixes the value
of the constant A, appearing in the electron lifetime.

*Based in part on work sponsored by the U. S. Air Force
Office of Scientific Research, Office of Aerospace Re-
search, under Contract No. F44620-70-0089.
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