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Theory of degenerate 1s excitons in zinc-blende-type crystals in a magnetic field:
Exchange interaction and cubic anisotropy

K. Cho, * S. Suga, %. Dreybrodt, ~ and F. Willrnann~
Max-Planck-Institut fiir Festkorperforschung, 7 Stuttgart-1, Federal Republic of Germany

(Received 16 September 1974)

The magneto-optical behavior of the eightfold 1s-exciton states arising from the I 6 conduction and I,
valence-band pair is studied. The effective Hamiltonian for these states is obtained by symmetry
considerations as the sum of invariant terms with appropriate coefficients. The explicit forms of the
coefficients are described in terms of the band parameters by using the perturbational scheme proposed

by Altarelli and Lipari. The most general forms for the 16 and I, band edges are considered as well

as the electron-hole exchange interaction. By separating the problem into a spherical part and an
anisotropic part of cubic symmetry, a clear-cut view is obtained with respect to the dependence of the
optical spectrum on the direction of the magnetic field. The result is expressed in matrix forms for the
magnetic field along the (001), (111), and (110) crystal axes.

I. INTRODUCTION

Although there have been many studies on vari-
ous aspects of excitons in solids, the nature of the
highly degenerate exciton states resulting from the
degeneracy of the bands is still one of the main
points of interest to be clarified. For the study of
these kinds of systems, magneto-optical measure-
ments are very powerful, because in a magnetic
field all the degenerate levels split into sublevels,
each of which has its own characteristic oscillator
strength and pola, rization. The theory applicable
to such measurements has not yet been fully de-
veloped. Recently Altarelli and Lipari' (hereafter
referred to as AL) proposed a perturbational ap-
proach to the ls excitons in zinc-blende-type semi-
conductors by extending the method of Baldereschi
and Lipari~ (BL, hereafter) in the presence of a
magnetic field. In this approach, one treats the ef-
fect of the magnetic field and the nonspherical part
of the valence bands as perturbations. Thus one
can write down all the matrix elements in terms of
the hydrogenlike wave functions, which provides a
good view through this complicated problem. What
AL have actually calculated, however, is not satis-
factory for experimental analysis for the following
reasons: (a) The calculation was done only for
Hll (001), where one has no essential contribution
from the anisotropic terms (in contrast to the other
configurations). (b) The electron-hole exchange
interaction which was neglected by them turns out
to be very important for the low-field splitting
patterns in many substances. (c) Some important
correction terms are missing in their results with-
in the second-order perturbation.

In this paper, we study the problem from a more
general point of view with respect to the above-
mentioned drawbacks and the perturbational ap-
proach. We first derive the general form of the
effective Hamiltonian for the eightfold states of the

1s exciton from symmetry considerations. In this
paper we restrict the treatment to excitons with
vanishing translational wave vector K. (The effect
of the finiteness of K is discussed separately. ')
Then the effective Hamiltonian is a sum of invari-
ant terms composed of the magnetic field H and the
effective spin operators v (o.=-,') and Z (J=—', ) for the
electron and hole, respectively. This Hamiltonian
contains all the information about the energies of
the exciton states and their optical selection rules
including their dependences on the direction of the
magnetic field. As the next stage, we calculate the
explicit forms of the coefficients of the invariant
terms by means of AL's perturbational scheme and
see the contribution of the first- and second-order
perturbations. Finally we reduce the general ex-
pression for the exciton energies to a matrix form
with the basis quantized along the magnetic field.
This representation makes it easier to compare the
result with experiments.

II. EFFECTIVE HAMILTONIAN

The exciton states under consideration consist
of eight pair states arising from the I'6 and I'8
bands. The degeneracy of each band can be de-
scribed in terms of the effective spin operators cr

or J according to the method of Luttinger. The
effective Hamiltonian should be expressed as the
sum of invariant terms which can be formed by the
various combination of 0., J, and H. Since we are
interested in the low field case in this paper, we
drop the terms of order higher than II~. In Table
I, we list the transformation properties of the in-
dependent components of these three quantities.
From this table together with their time-reversal
properties, one can easily form various invariant
expressions. Since the coefficients of the invariant
terms obtainable from the products given in Table
II turn out to be zero within the following perturba-
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TABLE I. Transformation properties of 0, J, and II.

0 I

J 1

H H

I'2

+JeJy Jx

Irreducible representation
I'3 I'4

(0» 0'y, 0'e)

(J»J„,J )

(Hx, H~, Hs)

(v„, v„, v,)'

(0„,0„,U.)'

(H&Hs~ FSg Hx~ HxHy)

LV„={(Z2-Z,')J„},U„={J,J }, {AB}=(AB+BA)/2

V~ = {(jg -j„)j ), U„={Jg j„},
Vg = {(j„-J~)Jg}, Ug = {Z„JJ.
The axes z, y, and z are parallel to the three {001)

crystal axes.

dielectric constant. It should be emphasized that
the function B;,. is the amplitude of the exciton state
on the ith conduction band and on the jth hole states
(not the jth missing electron state). The effective
Hamiltonian formalism by Luttinger4 provides the
most general forms of H'" and H'"'. But H "' in
Eq. (3. 1) is not the so-called Luttingex Hamilto-
nian itself. As seen in Appendix A, all the signs
of the effective angular momentum operators in
tuttinger's formalism, J„, J,, and J„should be
reversed, which changes the signs of the terms in
the original t.uttinger Hamiltonian with odd powers
of j, that is, H'"' in Eq. (3. 1) is the Luttingex
Hamiltonian toith reversed signs fox the K, q, and
k /ineax terms. Thus,

tional calculation of Sec. III, we omit these terms
from the following equation. With this condition,
the general form of the effective Hamiltonian is
given by

H"'(k) =k /2m,*+g,p.so ~ H,
-H'"'(1) =(1/ .)[(),.—:y.)k'/2

(3. 2)

E = Es + &,Z - o + La(a„js + a, j~a + a,js)

+ go &so ~ H —2ps[KJ ~ H+ q(H„J„'+H J'+H, J',)]

+ (eas/2c) —[c,H + ca(J ~ 8) + ca(H„H„(J„J}
p.p

+ H Hz(jjj+ Hz H~{jg J„})], (2. 1)

where {j„j„)= (J„j' + J„j„)/2 etc. , and )to and a~a are
the mass and the Bohr radius of the exciton defined
later in terms of the spherical parts of the band
masses [see Eqs. (3. 12) and (3. 18)]. The axes
x, y, and z refer to the three (001) crystal axes,
p,~ is the Bohr magneton, —e is the electron
charge, and c is the light velocity. The nine pa-
rameters (Es, ~„~a g, K q ct, ca cs) de-
scribe the exciton energies in low magnetic fields
completely. The splitting pattern and the optical
selection rules will be discussed in later sections.

P

III. EFFECTIVE-MASS EQUATIONS AND A
PERTURBATIONAL TREATMENT

—2ys({k„k }{j„j)+cycl. perm. )]
—2gs K& ~ H —2ttsq(H„J„'+ H„J,'+ H,j,')
+R;(k„{(j,—J,)j}+cycl. perm. ),

(3.3)

where m~ and g, are the mass and the g factor of
the conduction electron, mp is the free-electron
mass, (y„yz, ys, K, q) are the Luttinger param-
eters, ' K, is the coefficient of the k linear term,
and cycl. perm. means the cyclic permutation of
the preceding term. As for the electron-hole ex-
change interaction, we add to the effective-mass
Hamiltonian in (3. 1) the following terms, '

H,„,„=&a+ &,J ~ o + &a(o„j„+o, J~a + o,J,') . (3.4)

Concerning the approximation used in (3.4) see the
last paragraph of Appendix A.

For the further calculation, we rewrite Eq. (3. 1)
in terms of the coordinates for the relative and the

For the excitons arising from the I"6 and I',
band pair, the effective-mass equations without
exchange interaction are given by

EB,,(r„r„)=Q Q $5,, ,H!;.,'[p, +(e/c)X, ]

—5, ,'H, ',", '[p„—(e/c)X„].
—6,.;,5,, , ea/e

~
r, —r„~fB,,;(r„r„) .

(3. 1)
The indexes i(i') and j(j') refer to the conduction
and valence bands, respectively; r, p, and X are
the coordinate, its conjugate momentum, and the
vector potential, respectively, with suffixes e for
the electron and h for the hole; and & is the static

TABLE II. Omitted invariant terms. ~

I', (H2) x I', (I'4(o) x I'4(J)}

rq{H2)x I',{r4(o)x r4(J )}

r4{rp (J') x I', (H')}x I'4 (o')

r,{r,(J') x r, {H)}xr, {o)

r,{r,(V) x r, (H')}x r, (o)

r,{r,(V) x r, (H')}x r, (o)

r,{r,{v)x r, (H)}xr, (o)

I"&(X) means the I'& component of the quantity X tab-
ulated in Table I. The first invariant term of this table,
for example, is therefore H20' ~ J.
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translational motions, —e'/e ~+ H.„,„, (s. 8)

re rs

R= (m,*r,+ m„*r„)/(m,*+m*„) .
(3.5)

(s. 6)

Although m,*= m„* was chosen in the former treat-
ments, ' we choose here as the hole mass

where K is the wave vector corresponding to the
coordinate 0, and p and X refer to the relative mo-
tion. Since the magnitude of K is very small in the
case of our interest, we neglect the terms contain-
ing R in (3.8). Then we divide H into two parts

m„= m, /y, . (3.7) H=H~+H', (s. 9)
The final form of the effective-mass Hamiltonian
is given by

H =He'[p+ (e/c)X+ m,*ffK/(m,*+m„*)]

—H '"'[-p+ (e/c) X+ m „*5K/(m,*+m „*)]

where

Hp = (p /2 go —e /ef')5((r5~~r

H —Hq+ Hg + H + Hq j + Hq~ + H,„,h,
1/go= 1/m, + y, /m(),

(3. 10)

(s. ii)
(s. i2)

H = (y /mo)[-po —(poJo+ po Jo+Po Jo)]—(2y, /mo)(pp(J J]+cycl. perm. ),
5

H, = —
~

— ' [$(yp, - zp, )+ cycl. perm. ]+ yo[(gz - gy)p„Jo+ cycl per.m. ]2C Ate SZp Sgp C

(s. is)

+ yo([ t(xp„-y p„)- $zp„+ pzp„](JJ']+ cy'cl. perm. )+ ps[- 2(('Z ~ 8- 2qH($ Jo+ qJpo+ k'Jo)'+go ~ H],slpc
(s. i4)

eH ~

H, = — + —yo [(((iz —fy)o+ cycl. perm. ]—y o [((lz —fy)oJo+ cycl. perm. ]2e 2P,p 4 mp pnp

—2 [(r)c —(y)((r —(r)(y, p)+cycr. perm ] I,0

H» ——K, [p„((Jo—Jo)J„]+cycl. perm. ],
(3. 15)

(s. i6)

H» = K, [(rlz —p—y) ((Jo —Jo)J„f+cycl. perm. ], (s. i7)

E~ ———(R++ 40 —bj —b~,

&2 =&a ~

(3. 19a)

(3. 19b)

(S. i9c)

where ($, tT, f) are direction cosines of the mag-
netic field H. Following the method of BL and AL,
we take H, as the unperturbed Hamiltonian. Then
the Rydberg energy (R* and the Bohr radius do of
the exciton and the y factor are given by

(((*= )((oe4/2hoe2, ao~ = ek3/(((oe2, y= effH/2)((oc(R~ .
(3.18)

Before going into the details of the perturbational
calculation, it is useful to note the character of
each term in H': In the first order, only parts of
H~, H„and H,„,„give nonvanishing contributions.
In the second order, the nd states of the hydrogen-
like series contribute through K~, H„and H„ the
np states through H» and H», and the ns states
through H, . After lengthy calculations we are able
to express the coefficients of the invariant terms
in (2. 1) in terms of the more fundamental material
parameters in (3.2)—(3.4):

gc=gc ~

Pc = z d ", d(7 -1)+-oi—f, -
q= q+ & d(v 1) —r'f, —

can= I- v —4~

1ca=5

c3 = 25 ——1 + 2'1 1 1

(3. 19d)

(3. 19e)

(3. 19f)

(s. i9g)

(3. 19h)

(s. 19i)

d = +, ( po/mo) y ,'M,

r= y3/yo,

f= 4(mo/(((o) G( poao% /hi

v = —,", ( p.,y, /m, )'(2+ 3/~')(S~ + W),
5' = (1+ 16W/1 5) p,y, /m, ,
a'' = 2E( Poao Ki /@o ~

(S. 2Oa)

(s. 2ob)

(3.20c)

(3.2Od)

(3.20e)

(s. 2of}

where b, and b~ are the corrections for the binding
energy due to the H„and H ~, terms, respectively,
which were calculated by BL [see their Eqs. (13a)
and (22). Their H~ and po correspond to our H»
and 2mo p,o/K„respectively], and
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The definition of the constants M, G, N, W', and F
is given in Appendix B, and their numerical values
are given by

M=O. 281,
G=O. 375,
N= 0.469,
W'= O. '719,

F=0.844 .

(S.21a)

(s. 21b)

(3.21c)

(3.21d)

(3.21e)

In the above expressions (3. 19a-i), the terms d
and d(v —1) are due to H„H, . This contribution was
calculated by AL, but a part of the term, i. e. , vd,
is missing in their result. The terms f and a are
due to H~,H» and HI, » respectively, 5' comes from
H, and H~H„and v is due to H2 and H~H . AI
neglected the contribution from H„H„but it turns
out to be important because the terms containing
8' make considerable contributions.

IV. SPLITTING PATTERNS AND SEI.ECTION RULES

J"'=J+a (J" =2 or 1) . (4. i)

This basis diagonalizes the 4,-exchange interac-
tion. The relation between IZ"', J~~') and {o.', P)
x I J, J&) is given by

Since we are now able to estimate the values of
the coefficients of the invariant terms in (2. 1) from
a given set of material constants, we discuss the
splitting patterns and the optical selection rules of
the 1s-exciton states in a magnetic field by using
the effective Hamiltonian (2. 1). We use a matrix
representation of (2. 1) which is convenient for the
analysis of experiments. For the quantization axis
of the basis functions, see akvays take the axis
along the magnetic field H (f axis). We denote the
eigenfunctions of o~ and J& as {n, p) and (I2 + 2),

I —,, + —,)], respectively. In the present treatment
of the excitons, we are emphasizing the impor-
tance of the exchange interaction. Therefore we
use the I

J"',Z~" ') basis, where

13 -1 13 1
Il, o)= ——, — n ———,— P,$2 2' 2 $2 2'2

Wss -s is -i
2 2' 2 2 2' 2

(4. 2g)

(4. 2h)

Among these states 11, 1), Ii, o), and I1, —1) are
electric dipole active for the o„p, and 0 polar-
izations, respectively, and other states are dipole
inactive in the absence of the external perturba-
tions.

The expression (2. 1) can be divided into two
parts: The one is spherical and the other is an-
isotropic with respect to the dependence of the
optical spectrum on the direction of the applied
magnetic field.

A. Spherical case

This case is defined by the relations

h2 —0, q-0, c3 —0 . (4. s)

Then the 8X 8 matrix (2. 1) can be reduced into
three 2~2 and two 1&&1 matrices by choosing the
quantization axis along the magnetic field. They
are given by the sum of the common diagonal term

(Es+ c)1 (4. 4)

ri 0) ri 0)
(-,' a, + c,) (

+ (-', g, —M) (
for the states I 2, 1) and I 1, 1),

(s 0) (i
—2' 1+ 4&& I+ 4(g + 2z —2c2)0 —5j

' —vs

(4. 5a)

-~s'I
-1 i'
(4. 5b)

for the states I 2, - 1) and I 1, —1),

(s 0) (i ~s)
+ 2K1+ 4 Ag —4(g~+ 2K+ 2c2)

(4. 5c)

and the following submatrices; for the states I 2, 2)
and I2, —2) (the order along the rows and columns)

I2 2)= ——n
3 3
27 2 j

v3 3 1 13 3
I2 1) = ——o.'+ ——— p

2 2'2 2 2'2

13 —1 13 1
I2 0) = —— — e+ ——— p

Q2 2' 2 $2 2'2
1 3 —3 v3 3 —1

I2 -i)=--
2 2' 2 2 2' 2

3 —3
I2, -2) = —, — p,

(4. 2a)

(4. 2b)

(4. 2c)

(4. 2d)

(4. 2e)

r '~q - C2

K+ &gc

K+ 2gc

—4&) —C2

where

gc=gc~aH ~

K= KPgH ~

c= -', y~(R*(c, +-', c,),
2C2=-, y 8 e2.

and for the states l2, 0) and I 1, 0),

(4. 5d)

(4. 8a)

(4. 8b)

(4. 8c)

(4. M)

-is i vs's s
(4. 2f)

Since the system is axially symmetric along the
f axis, only the states with the same J& values mix
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Spherical case H«(00'I)
Energy ) Ji

6y

S'"=1(r) ———Tt'

(strong)

Non- Spherical cases

Hi&(111)

0~

I

H»(110)
(o 1) (1 0)

!
o oj

' ' '
qo

- 1)
'

~I~ ~~
0 0

n 1 0

(4. 8)

6+

S -2(r I-) ———T(;
(t)

(weak)

H
a)

0 H
b)

0

g+
I
--- —Qp

3 (j

cl

TC
I"

~
======= 0

K
r ———a

3

0 H
d)

FIG. l. Examples of the initial splitting. The order-
ing and the separation of the 0 spectrum is arbitrarily
taken. Negative values of 6f and 62 are used. Dotted
lines are not observable. The energies at zero field are5- 4f- 39-
E(F5) = —

4 6, —T662, E(I'3) = —6f+ f662 E(T4) Af+ fo

For a given direction of the magnetic field, we
first rewrite the anisotropic terms in (2. 1) in terms
of the ((, g, g) components of J and o, and then,
with the aid of (4. 7) and (4. 8), we get the matrix
representation of the anisotropic terms for the
basis functions (4. 2).

Z. H ll&oo&&

The additional terms to the spherical part, (4. 4)
and (4. 6), are reduced to the following four 2x 2
submatrices: for the states (2, 2) and [2, —2) (the
order along the rows and columns)

with each other. We can observe the l2, 1), l2, 0),
and )2, —1) states as weak lines in the o„w, and
v spectra, respectively. The states l2, +2) are
not observable in this case. An example of the lin-
ear splitting pattern is given in Fig. 1(a).

One may regard the spherical ease as the main
framework of the magneto-optical spectrum of the
1s-exciton states. While the splitting pattern is
independent of the direction of the magnetic field
in this case, the remaining terms (Zz, q, c3) do
give the directional dependence which leads to some
extra complications in the splitting pattern as de-
scribed in the next subsection.

B. Nonspherical cases

Here we consider the effects of the 4~, q, and
t."3 terms which depend on the choice of the f axis.
We now need the explicit forms of J& (g&) and 8 (o„)
which together with J~ (o~) compose the three per-
pendicular components of the angular momentum
vector J (o). We choose the following representa-
tion:

, (27(~, -4q)

16 12&2 27 &2+ 4q

for the states l 2, 1) and I 1, 1),

(15(&z —2q) —26m 3q

16 —26 3 q —41 ~~+ 2q

for the states l 2, —1) and j 1, —1),

(16(~,+2q) 26V 3q

16 26 3 q —41 &~ —2q

and for the states I 2, 0) and l 1, 0),

(39&, 4q
e

16 4q —41&,)
'

where

(4. 9a)

(4. Qb)

(4. 9c)

(4. 9d)

(4. 10)

(ops 0

0 0
tfg + EJg —

0 0 0

W3 0 0

O OW3O

0 3 0 0 0

o o —i 00000-3
(4. 7)

The matrices (4. 9) have essentially the same struc-
ture as those of (4. 6): The states t2, 1), l2, 0),
and t2, —1) can be seen as weak lines in the a, , w,

and o. spectra, respectively. Although the states
(2, + 2) mix with each other, they still remain di-

pole inactive. An example of the initial splitting is
shown in Fig. 1(b). The only qualitative difference
between this and the spherical cases is the exis-
tence of the I'3-I'4 splitting, that is, the weak lines in o
and g spectra converge to different energies at
zero field. The effect of the q term appears as a
correction to the effective g values. The c3 term
makes no contribution in this case.
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2. 8 Il (111)

(4. 11a)

The additional matrix is reduced to the following two 3&& 3 and one 2&& 2 matrices: for the states ( 2, 2),
12, —1), and 11,—1) (the order along the rows and columns),

~

~

23(&z —4q ) + 4c3 —i8 v 2 (Z2 —q) —i8 v 6 q

i8W2(&z —q) 31(&~+2q) —2c, 2WS(5q+ cs)

i8 v 6 q 2V 3 (5q+ c~) —41(b.2 —2q) + 2cs

for the states l2, -2),

23(62+ 4q ) + 4c3

i8v 2(& +q)16
—iBV 6q

[2, 1), and l1, 1),

—z8W2(~, + q)

31(&,—2q) —2c,

2'(- 5q+c,)

i8v 6q

2v 3(- 5q+ cs)

- 41(E~ 2q)+ Rc~)

(4. 11b)

and for the states I 2, 0) and l1, 0),

(15&2 —4cg
1
16 52q

52q

—41&2 —4c,j ' (4. 11c)

where

c3= 2y S*cs . (4. 12)

In this case the states l2, +2) become observable in the o and o, spectra, respectively. Since they are
allowed only through the cubic anisotropy, their observation will give a good estimate of the 4~, q, and c3
coefficients. An example of the initial splitting is given in Fig. 1(c).

3. H ll(»0&

In this case the additional matrix is reduced to two 4x 4 submatriees; for the states l2, 2), 12, 0),
12, —2), and I 1, 0) (the order along the rows and columns)

1

16

4(&2 —4q)+ 6c,

u 6(3&& —6q —c3)

W6 (6q+ cs)

W6 (342 —6q —c3)

21~~ —6C3 v 6 (3hz+ 6q —c3)

40q -&6(6q- c,)

v 6 (3&2+ 6q —cs) 24(&z+ 4q) + 6c3

—W6(6q+ c~

—W6(6q- cs

—4 1&~ —6C3

(4. 1Sa)

and for the states 12, 1), t2, —1), ll, 1), and I 1, —1),

27(&, —2q) —sc,
—3(4~, + c,)

16 v 3 (Sc3 —14q)

v 3(12q —c,)

—3(4&,+ c,)

27(&, + 2q) —Sc,

—Ws (12q+ cs)

v 3 (Scs+ 14q)

Ws(sc, —14q)

—Ws (12q+ c~)

—41(b2+ 2q)+ Scs

3C3

v 3(12q- c,)

v 3(sc,+14q)

SC3

—41(E,—2q) + sc,)

(4. 1sb)

In this case, four lines are, in principle, ob-
servable in each of the 0 and p spectra. The mix-
ing of the cr, and o spectra is possible through the
cubic anisotropy. The states l2, +2) are observ-
able in the p spectrum in contrast to the previous
case, H II (111), where they appear in the cr spec-
trum. An exa.mple of the initial splitting is shown
in Fig. 1(d).

V. DISCUSSION

In this section we discuss the results of the pre-

vious sections from a physical point of view, which
clarifies the role of each parameter.

A. Effect of the exchange interaction

The eightfold degeneracy of the 1s-exciton states
is lifted by the &, exchange interaction into three-
fold (8"'= 1, I",) and fivefold (J'"'=2, I', + I',) de-
generate sets. The latter splits further due to the
&2-exchange interaction. The explicit forms of
the wave functions belonging to each irreducible
representation depend on the choice of the quantiza-
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tion axis:

for a (001) axis

Is .. 12, o), [12,2)+12, -2)]/~2,
F. :12, 1), [12, 2)-12, -2)l/~2;

for a (111)axis

I's: [12 2)+sW212, —1)]/~3,
[12,—2). sW~12, I)]/~S, (5. 3)

I': [0 2 12, 2) —i
I 2, —I)]/W3,

[~212,- 2) - s
I 2, I) ]/~3, 12, o);

for a (110) axis

Fs: [ I » 1) -
I » I)]/ 2

[~312,2)+~212, 0) +~3 12 2)]/W8,

r, : [12, »+ 12, —I)]/~2, [12,2) 12 2)]/~2,

[12,»-~&12, o)+12, -2) l/~~; (5 5)

(5. 1)

(5. 2)

for any axis

I": 11,+ 1), I 1, 0) .
Thus we get various splitting patterns depending on
the direction of the magnetic field, as shown in
Fig. 1.

The existence of the exchange splitting gives
rise to the magnetic field dependence of the oscilla-
tor strength ratio between the strong and weak
components of the spectrum. The oscillator
strength of the 1"3 and I 4 components starts from
zero at H =0 and increases quadratically with H and
then saturates. If we neglect the exchange splitting,
however, the ratio of the oscillator strengths is
quite different from the above case: In the non-
spherical case, with H l~ (001) and rhs ——As=0, for
example, the ratio of the two lines in each of the
o„c&, and s spectra is (3: 1), (3: 1), and (1:1),
respectively, independent of the magnitude of the
magnetic field. This of course applies also to the
spherical case. These values are the saturation
values at high field in the case of the finite exchange
splitting.

In both cases of GaAs and InP, one sees only
strong components at low fields, and the weaker
components begin to appear only at finite magnetic
fields with much lower intensity ratio than the —, (o)
or 1 (v) expected in the absence of the exchange in-
teraction. Therefore, it is clear that the exchange
splitting exists at zero field in these materials, al-
though we do not see it clearly when we extrapolate
the high-field pattern to zero field. In the cases of
CdTe, ' and CuBr, o we can see the exchange split-
ting of -0.6 meV and -4 meV, respectively, by di-
rect extrapolation of the high-field pattern. In both
of them one sees a small structure in the reflec-
tance spectrum at zero field at the energy position

In the presence of the exchange splitting, the init-
ial splitting of the (1,+I) states in magnetic fields
is given by g „p,&H, where

g~ = —5K -g~/2 —4 lq/4 (5.8)

This value does not depend on the direction of the
magnetic field, as we see from (4. 9)-(4. 13).

The weak-field g values of the J"' =2 components
show a peculiar behavior in the presence of the ~~-
exchange splitting: The I ~ states do not split lin-
early for any direction of the magnetic field. If we
denote the splitting of the I', states as f&p, ~H, then
we get the relations

f&oos&
= 3&&+8'c/2 —15&I/4

f&oos&

f&s&o&
= 0 ~

(5. 9a)

(5. 9b)

(5. 9c)

The second equation means that the order of the 0,
and 0 lines of the I'4 states is reversed between
the cases Hll (001) and (111). For Hli (111), the I s

states are active for the 0, polarizations, but they
have no linear splitting. If 3 &

= 0, the splitting
pattern looks more or less like that of Fig. 1(a)

mewhat different selection rules). There-
can use the above result to check the

e of an apyreciable Z~ splitting.
s the ab/ove-mentioned g factors, we can
rious |..ffective g values; for example, the
for the case of Es= 0, or the coefficient

of the noridiagonal element between I 2, 0) and I 1, 0)
which determines the oscillator strength of the
weak 7& line originating from t 2, 0). All of them can
be easily calculated from the matrices in Sec. 4
and the eigenstates (5. 1)-(5.7). Since the effective
g values are linear combinations of R, g„and j,
the measurement of several different g values is
useful to determine the values of these parameters.

C. Clamping effect between the sublevels

As we see in the previous sections, the diamag-
netic energies are different from sublevel to sub-
level. Since cs (ys) is positive and cs» lcsl in most
cases, the diamagnetic shift is biggest for the

of the J~"= 2 exciton states. It is interpreted as
due to the effect of the finite translational wave vec-
tor of the exciton connected with the k-linear term
of the valence band. s

In contrast to the 4~-exchange splitting, the exis-
tence of the ~,- exchange splitting is not definitely
established. Although there is one report on

CuBr, 1 the assignment is not unique, and further-
more our recent measurement on the single crystal
of CuBr disproves the existence of &2 exchange
splitting. ~~

B. g factors
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) 2, a 2) states. Combining this with the fact that
the 8"'= 1 states have higher energy than the J"'= 2
states at zero field, we can expect a level crossing
between the I 2, + 2) and 8"' = 1 states at certain
finite fields. As long as the spherical assumptions
(4. 3) are valid, nothing happens at this crossing
point in the optical spectrum. When we switch on
the nonspherical interactions, however, the cros-
sing levels interact with each other, giving rise to
a clamping (anticrossing) effect. This effect de-
pends strongly on the direction of the magnetic
field.

~. H ll&O01)

No clamping occurs, because the I 2, a 2) states
do not interact with the other states [cf. Eq. (4. 9)].

2 H II&111)

In this case the states I 2, + 2) appear in the o,
spectra, respectively, as seen from (4. 11).
Therefore there occurs one clamping in each of the

o, spectra. This clamping will occur at higher
magnetic fields than in the case of H ii (110), be-
cause the difference in the diamagnetic energies
between the clamping states is smaller for H ii (ill)
than for H li (110).

3. H il(110&

The clamping occurs in the m spectrum between
i I, 0) and l2, +2) states, as seen from (4. 13a).

An example is shown in Fig. 2. The correspond-
ing 0 spectrum shows nothing peculiar in this case.

The importance of the clamping effect is that it
provides a peculiar way to observe the strongly
forbidden states ~ 2, a 2). Outside the clamping re-

gion they normally have very small oscillator
strengths. As we approach the crossing point,
their oscillator strengths increase very rapidly,
which makes the observation easier. Although the
clamping effect may not always be observed be-
cause of the linewidth, the effect will provide a
peculiar spectrum in favorable cases. One can
use this effect as a measure of the degree of cubic
anisotropy.
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APPENDIX A

Here we discuss the proper way to connect the
Luttinger Hamiltonian with the effective-mass
equations of the exciton. We start from a many-
electron formalism and finally give the correct
description of the electron-hole two-particle pic-
ture.

We denote the one-electron band functions with
the wave vector k by X&»(r) for the jth valence band
and by Q, „(r) for the ith conduction band. They
form an orthonormal set (together with the higher
and lower band states, whose contribution to the
formation of the excitons can be neglected). Now,
an electron. -hole pair state can be expressed by a
Slater determinant

(Al)

which represents a state where the valence-band
state y&-, is missing and the conduction-band state
&f& g is occupied. All the other valence-band states
are occupied. An exciton state is a linear com-
bination of such electron-hole pair states

i, j, k, a
(A2)

which diagonalizes the many-electron Hamiltonian

K
LU

LU

N N

H, =Q h(r„p, ) +—Q Q g(r„r„)
/=1 l m (l gm)

(A3)

MAGNET I C FIEL 0

FIG. 2. An example of clamping in the m. spectrum for
H II (110). The lines 2 and 4 at lower fields and j. and 3
at higher fields correspond to the states I 2, +2). 6& is
taken to be zero in this case.

H, +=Eg
~+

we get the secular equation for A, &(k, q):

(A4)

where h and g are the one- and two-electron oper-
ators, respectively, of the many-electron system,
namely, h is the sum of the kinetic and effective
one-electron potential energies and g is the Cou-
lomb repulsive energy between each pair of elec-
trons. The one-electron wave functions y's and
&f&'s are related to the eigenfunctions of h. From
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ZLZZ I5 5-.-'&~'-. I~I~"-&
Jt Pt qt

—5)p 5ggt &xy! ~! I
6

I xp~&

+g;-.(»x~; (2) Iilx~;(I) y~ ' (2»

—9;;(I)x,'; (2) Ig I x, ;(2) e,';.(I)&]

xA, ,, (k', q')=EA, , (k, q) . (A5)

Note that the order of the wave function is reversed
in the second term on the left-hand side. This is
because it comes from the missing orbital in (Al).

'

The third and fourth terms in the left-hand side are
the exchange and Coulomb interaction between elec-
tron and hole, respectively. Although the reversal
of the order of y's also occurs in the Coulomb and
exchange terms, it is not important within the ap-
proximation of this paper. By using this equation
we can precisely follow the argument of Luttinger
and Kohn. " Therefore, we do not give the details
in the intermediate stages. We first make a ca-
nonical transformation A;,. -A;,- which eliminates
the first-order interband matrix elements of the
momentum operator, and we rewrite the resulting
secular equations for A, , in terms of the Fourier
transform

gg !!,,.st!tl~ p, +—!!.—II„.H!P~!
~

—!!„+—A„)

—5 ' 5g; s /eIr. —&aI B'y (r. &a)=EB;(r., ra) .
(A7)

In this equation the exchange term is neglected for
the time being, and the usual form of the Coulomb
term' is used. The exchange term is discussed
at the end of this appendix. The matrix II'~' is the
transposed form of the Luttinger Hamiltonian: The
reversed order of the indexes j and j' is still kept
in (A7).

The transformation property of the function (A. 1)
under all the possible symmetry operations is the
same as that of the product

B, (Jr„r„)= g exp(ik ~ r, —iq ~ r„)A„.(k, q),
a (A6) '

which results in

&x,'; I
I

I x,;& (A10)

(I) transposition,

(II) reindexing j-j,
(A12)

(A13)

(A14)(III) sign changes as in (All) .
The processes (A12)-(A14) applied to the J oper-
ator simply change its sign. Since the Luttinger
Hamiltonian is expressed in terms of the linear,
quadratic, and cubic forms of the components of
the J operator, we finally get the Luttinger Hamil-
tonian with reversed sign of J in the secular equa-
tions for B;, Since I(-, q-, and k-linear terms
are odd in the J operator, these three terms appear
with reversed signs in the equations for B;,, i.e. ,
(3.3). AL recently corrected the wrong signs of v

and q in Ref. 1. As we have just seen, the k-linear
term also suffers from the sign change.

One can summarize the result as follows: We
can choose one of the two representations, the
missing electron picture with transposed Luttinger
Hamiltonian or the hole picture with negative signs
for~, q, andK

Finally we give a short comment on the exchange
interaction which is neglected in (A7). From the
symmetry argument the exchange term should have
the form

f0+ f,o ~ J + fa(c„J„'+o,J,'+ v,J3 ), .(A15)

where f's are the operators acting on the functions
of r, and r„. From the localized nature of the
Wannier functions it is reasonable to assume'

because of the transformation properties of the g's
under the time-reversal operation K. If we choose
the phases of X's as

&I 2, +2&=+I 2, +2&, AI 2, +2&=+
I 2, +2&, (All)

the matrix element (A10) should be multiplied by
the factor (- I)"~ in this new picture. Here j and
j' take the values 1, 2, 3, and 4 corresponding to
the band indices I —,, —,&, I2, 2&, I

—„—~&, and
respectively. Thus, in order to obtain

the secular equations for B;,, we must use the
Luttinger Hamiltonian with the following modifica-
tions:

4 ~axg;, ! 5(r, —r„) . (A16)

where Xz,", is the time-reversed state of X,.; [q,
= —q; for j see (A ll}]. Therefore we may work
with the more convenient function

n, gk, q, )=A,~(k, q) (A9)

and its canonical transform 8;& and the Fourier
transform B;&-(r„r„)of 8;& (k, q, ) instead of
A;, (k, q), A;,.(k, q), and B;,.(r„r„) In this pictu. re,
one must change the signs of certain matrix ele-
ments of

The third term in (A15) originates from the fact
that none of the valence band functions are simple
products of the orbital and spin functions because
of the cubic symmetry. Although there is a con-
tribution to the f2 term from the (A16) type of
operator, it is not yet clear if it is the main con-
tribution to that term. Therefore we take the sim-
plest assumption in this paper, i.e. , we use con-
stants ~p ~] and ~, for the ls states of the exci-
ton, instead of the operators fo, f„and fz which
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connect different hydrogenlike states [see (3.4)].
This assumption reduces the number of nonvanish-
ing coefficients of the invariant terms discussed in
Sec. G. If one uses a more elaborate operator
form for the exchange term, most of the invariants
in Table II have nonzero coefficients in the second-
order perturbation.

APPENDIX B

Here we give the definition of the constants 5',
F, and G which appear in the text. The constantsI and N arise from the second-order perturbation
due to H„H, and H„respectively, and their expres-
sions are already given by AI, .

The constant 5' comes from the term H„H, and is
given by

1 S (1s l(x/a~0) Ind)(nd l(1+ao/x)11s)
4 „3 1 —1/n

(Bl)
where bra and ket are the normalized radial eigen-
functions of the hydrogenlike solutions of H, (with
principal quantum number n), (3. 10), and the inte-
gration is carried out only over the radial variable

The symbol S denotes a sum over discrete (n)
and an integral over continuous (k) states (see BL
and AL). Only the d-like states contribute to the
constant W. The constants F and G arise from the
terms H»H„~ and H»H», respectively, and are
defined by

1 " (1slr/a~0 Inp)(np I ls)
4 „2 1 —1/n~ (B3)

(kd~ (~/a*, )') ls)
Z(1+4@')

(1 —e ~~ )(1+K')~
l/2K -2tag &E/E

((1—n" )() +14')'

(B7)

(B8)

1/2

(4p~ ninn ~(n) =14( „,)(,),
n"

(»)
where

K=A,'ao . (B10)

The matrix element (np I ls) corresponds to K„of
BI, except for the factor 2 coming from the defini-
tion of I 1s). Numerical calculation leads to the
values given in Eq. (3.21).

In these cases, only the P-like states contribute to
the sums.

The values of the constants 8', F, and G can be
calculated by the aid of the expressions

44n (n(n' —1)( ' —4)]'~'(, —1)"

(B4)
n~/~ n —1 "

& P~l)=8(,

n n —1"
(nP

~
x/a()

~
1s) = 16
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