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Dispersion of surface plasmons and phonons in inhomogeneous media
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The dispersion relation of surface plasmons or phonons is obtained, by solving Maxwell's equations,
for the case that tke dielectric function i(w) has a small exponential variation below the surface,
perpendicular to the propagation direction. Only the usual two branches are found. The lower one
exhibits the properties, at large propagation vector, that the limiting co is determined by the surface
value of e and the shape depends on the spatial extent of the variation in e.

In an earlier paper' we discussed the guided sur-
face modes that can propagate in a planar semi-in-
finite medium whose dielectric function varies with
distance below the. surface. In that paper and the
present one we take x to be the propagation direc-
tion, z is the direction of the gradient in E, and
z =0 is the plane separating the inhomogeneous
medium (z& 0) from a, homogeneous medium above.
The amplitudes of the guided modes, while expo-
nentially decaying for z &0, were found to be oscil-
latory for some range, depending on mode number,
below z = 0, before again decaying exponentially as
z approached —~. In the present paper we consider
surface plasmons and phonons, whose amplitudes
decrease monotonically, although not necessarily
exponentially, with increasing Izl in the medium
with varying E. We find that the properties of the
plasmon dispersion at large k„are determined by
the value and gradient of e at the surface. In the
limit of very small spatial extent of the variation
in c we obtain a dispersion relation similar to, al-
though not identical with, that obtained by Guidotti
et al. in treating the same problem for metals.
We show that this dispersion relation does not, how-
ever, lead to an extra branch in the surface-plasrnon
dispersion as claimed by them.

Qne question of interest here is the effect on sur-
face plasmons of a semiconductor accumulation or
depletion layer. In past treatments of this problem
the graded-index region has been replaced by a step-
function discontinuity between the bulk, with dielec-
tric constant —

) &„(, and a thin layer of constant
6 4 —

j 6~ ) representing the surface. 3 Another case
of interest is that of a graded index arising from a
composition gradient in a polar material due, for
example, to in or out diffusion of impurities or one
of the constituents during crystal growth. To cover
both cases, we may write the dielectric constant in
the usual form, 4 neglecting damping,

8602 COs(~;~)= —
2 2+e- l- 2

~(&; z) = e, + &me'~', (2)

where &&, the difference between surface and bulk
values, depends onyo, d~, /dy, dS/dy, de„/dy, etc.
For the plasmon case, the z dependence arises
from the dependence of &~& (= krXe2/m"e„) on the
carrier concentration N and, in some cases, the
effective mass m~. The variation of N or & with z
for an accumulation or depletion layer can be ap-
proximated by (2) with a suitably chosen d. From
(l) we calculate, for the plasmon case,

+&/'4 = (&py —&~ps)/(&py —~ ) p

where the subscripts s and b indicate surface and
bulk values, respectively. Note that, although both
4& and &~ approach ~ as ~ 0, their ratio remains
finite.

As in the case of homogeneous media, the sur-
face plasmons and phonons must be transverse-
magnetic modes to satisfy the boundary conditions
at z =0. For simplicity, we take the inhomogeneous
medium to be isotropic. Assuming a solution of
the wave equation in the form

H=H, =&' '(z)E(z)e'"+ ""
(4)

and inserting this into the wave equation, we obtain

dE 1 d6 3 g~ (d 2
dz 26 dz2 4&2 dz c2z+ — - — ——+& —-k. E=O. (5)

tems we are mainly concerned with here. ) As a
model system for the polar crystal we may consider
Se-diffused CdS, i.e. , CdSe, S,~, wherey is a func-
tion of z. From the results of Verleur and Barker,
for small y the quantities ~„ the principal TQ-pho-
non frequency of the host lattice, S, its oscillator
strength, and &„, the high-frequency dielectric con-
stant, all vary linearly with y. Except for ~ close
to z„&will then also vary linearly with y. From
studies of Se diffusion in CdS, y =yoe' ", where yo
represents the surface concentration and d a diffu-
sion depth. For small y, therefore, except for
close to ~„ the z dependence of & may be written

where $, ~„6„,and ~~ are all functions of z. (We
use local theory, as is generally done for the sys-

Although they could be neglected at optical frequen-
cies, ' the terms involving derivatives of & cannot
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be neglected in the frequency range where «0.
With e in the form (2), we can solve Eq. (5) interms
of known functions when

«)
and we limit further discussion to cases where (6)
is satisfied. For surface phonons in our model
system, provided y& 0. 1, Eq. (6) can be satisfied
over most of the range in which «0, with only the
regions of & close to &, and very close to &„ the
J Q-phonon frequency, 'excluded. For plasmons, as
seen from Eq. (3), Eq. (6) can be satisfied, pro-
vided (i) ~~~, is close to w~~~ and (ii) ~ does not come
too close to &g» or co~,. To achieve i &e/s~ j

~ 0. 15,
for example, in the range 0 &~ &0. 95 ~» requires
(N, N, )/—N, = 0. 015 independent of the material.
Larger values of (N, N~)/N-t, may be tolerated if
the surface plasmons do not attain such high fre-
quencies. No restriction need be made on the val-
ue of cf.

When ) rM/s~ ( is small, it is useful to expand e
and e~ in the denominators of Eq. (5) in terms of
this quantity and, after changing variable to
u= —z/2&, we may rewrite (5),

where P, = (k„—v2/c2)' ~, the reciprocal of the decay
length in vacuum. This dispersion relation may be
simplified at the extremes of large k„and, for the
pla, smons, small k„. In the latter limit, since &,- ~
while all terms not involving p~ are finite, p3 must
tend to zero or k„=&g/c just as for the homogeneous
case. In the limit of large k„, the order of the
Bessel function, given by (8), goes to ~. Since the
surface phonon or plasmon frequency must remain
finite as k,-~, we expect P to approach some con-
stant value. %e may then use the asymptotic form
for the left-hand side of (12), which yields v plus a
remainder of order (I/p). Neglecting the remain-
der, we obtain the dispersion relation

2d(p, ~ &p, ) = —ze/e „k„large (13)

Using the definitions of Po and p» squaring to elim-
inate radicals and dropping terms higher than first
order in Ac/c, we obtain from (13) a quadratic
equation for k~ . The solution, normalized by di-
viding through by If = Q'/c~, where 0 is the fre-
quency for which e&=0, is

~k &u s ~
—E& ~ h6 (1 —e&)

where

v = 2dP = 2d (k —e u& /c )
'/

p~ = [(4d uP/c')+ (2/e, )LA&

(6)

(12)

The quantity Po is the reciprocal of the decay length
of the surface plasmon or phonon for the case 4& = 0,
i. e. , the homogeneous medium. Since the remain-
ing terms in the brackets of Eq. (7) are all ascending
powers of (b&/c~)e 2.", when

(10)

the term in (as/c, )~ and all the succeeding terms
may be neglected. In what follows we shall assume
that (10) is satisfied as well as (6). The solution
of (7) may then be written in terms of Bessel func-
tions. Imposing the condition that the field must
remain finite as z - —~, we obtain, using (4),

—As 1/ R(z )g yes/K)ef (&„x-~t)

where A is an arbitrary constant.
%e take the medium above z =0 to be vacuum and

assume H, decays exponentially there. Applying
the requirements of continuity of H~ and E„ to the
solutions valid above and below s =0, we arrive at
the dispersion relation for the surface plasmons or
phonons

(14)

where the plus sign is required for the case 6«0
(accumulation layer) and the minus sign for bs& 0
(depletion layer). If we allow &s -0 in (14), the
second term vanishes, &, &~ and we recapture the
dispersion relation for the homogeneous semi-in-
finite medium in vacuum. In the limit k„-~, we
will come to a, limiting value &„given, according
to (14), by the condition s,(&u„)= —1. It follows
that the limiting value or plateau of ~ vs k„ for an
accumulation layer will lie above that for the homo-
geneous case (i. e. , flat bands to the surface), while
for a depletion layer it will lie below.

We now show that, within the range of validity of
the present approximations, where the dispersion
curves depart from that for the homogeneous case,
that of an accumulation layer will always lie above
it, that of a depletion layer will always lie below.
%ith k„ large, both po and p2 are large. Since
&&/s, must be small, we expect the k„ that satisfies
(13) to be given, at least to a good approximation,
by a, term that satisfies Po+ &,P2=0 plus a smaller,
correction term involving b,e. Equation (14) is, in
fact, of this form with the first term giving pre-
cisely the value of k3 required to make Po+ &,p3
vanish. At a frequency ~ for which all three curves
could exist (i. e. , vc&u„ for a depletion layer),
) &, ) would be largest for the accumulation layer
and smallest for the depletion layer. Since ) &,|= 1
in the frequency range where (13) and (14) are valid,
the size of the first term in k2 will be smallest for
the accumulation layer, largest for the depletion
layer. The second term on the right-hand side of
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(14) will tend to bring both the values of k~ for ac-
cumulation and depletion layers ba,ck toward the val-
ue for the homogeneous case, but, as alreadypointed
out, this term must be smaller than the others in
the present approximation. We conclude, therefore,
that & vs k„ for the accumulation layer will lie above
that of the homogeneous case which in turn is above
tha, t of the depletion layer. Behavior characteristic
of a depletion layer has been seen experimentally
by Marschall et al. Unfortunately, &s/tbfo'r their
sample is somewhat too large for (14) to apply ac-
curately at large k„.

Although the dispersion relation (12) is valid for
arbitrary d, provided (10) is satisfied, the require-
ment that the second term of (14) be smaller than
the first places a lower limit on the values of Kd
for which that equa. tion is valid. For a depletion
layer, when e,= l. 1, for example, validity of (14)
requires Kd & 0.3. If we take 0 intherange 5&10'
to 5&& 10 4 sec, which includes I,O-phonon fre-
quencies of many materials and the plasma fre-
quencies of some typical semiconductors, K varies
from 1.7~ 10' to 1.7& 10 cm '. To achieve Kd & 0. 3
requires d &1.8 p, m at 5&10 sec ', &0. 18 p.m at

5 x 10'4 sec '. In or out diffusion could certainly
create d's of the magnitude required. Without dif-
fusion or other special treatment some accumulation
or depletion layer widths are in this range but many
are not. To treat layers with smaller d's it would
be necessary to carry (14) to higher order in ba/a.

In the plasmon case for small d values it is pos-
sible to simplify the dispersion relation (12) for all
k„. With small enough d, 4d2(&o2/c~) &e «2&&/E~
throughout the permissible range of ~. )P j is then
of the order of [(Ae/e~)' ~[. [Condition (10) is still
satisfied since jbc/e~[ is small. ] We may then ex-
pand the Bessel functions in (12), dropping terms
quadratic and higher order in (ne/e~), as has been
done throughout. The dispersion relation then be-
comes, for sma. ll d,

)
4E capo —6gR d /c

1 -, 2dPo

In the limit of large k„, c~(&u~d /c ) «po d, and if
pod» 0. 5, Eq. (15) goes over to (13), to terms lin-
ear in b.e/e, . This enables us to determine how
large k„must be for (13) and (14) to be valid. Us-
ing the definition of Po, we find that the requirement
1S

(16)

For Kd= 0. 3 this leads to (13) and (14) being valid
if k, » 1.4 K, since the second term on the right-
hand side is of the order of unity.

The dispersion of surface plasmons in metals

with s varying according to (2) and [he/e„[ «1 has
been studied recenQy by Guidotti, Rice, and Lem-
berg for the case of very small d. In our terminol-
ogy this becomes the case of P = j(he/e, )' '[. Solv-
ing the wave equation, after a couple of substitu-
tions, by a series expansion which they cut off so
as to exclude terms higher than linear in in@/&& [,
they obtain a solution identical to that which can be
obtained from our solution (11) by expanding the
Bessel function keeping terms no higher than linear
in hc/e~. They also obtain a dispersion relation
similar to (15). The relation differs from (15) only
in having an additional factor [1+d(po+ e,p3)] on
the left-hand side. [It should be noted that they
claim their dispersion relation to be valid only for
small k„d, but examination of their solution shows
that this is an unnecessary restriction. The re-
strictions actually required for the validity of their
dispersion relation are just those required for the
validity of (15).] Since the coefficient of (n.c/e~) on
the right of (15) is 6 1, it is easily seen, either
from (15) or from their dispersion relation, that
d(po+ e,pz) is of order [ ne/e~ [. The additional fac-
tor in their expression then. makes little difference,
essentially adding a, term of order j(d&/t, ) [2. How-
ever, plotting their dispersion relation for small
g» ~»=7 ey=10. 6x 10' sec ', N, =1.1N» and
neglecting the imaginary part of 6, they find an ad-
ditional branch lying between the usual surface
plasmon branch and the photon branch. This addi-
tional branch, called branch II, is quite flat and ha, s
~'s lying between &u» and ~»= (1.I)'~2~». When
the data of their Fig. 4 are inserted into (3), it is
found that [Ae/e~j =1.4 for typical points on branch
II. The dispersion relations are, of course, not val-
id for such jb e/E~[ and one cannot conclude that
such a. branch exists. Indeed there appears no a
Priori reason why such a branch should exist for e
in the form (2), unless perhaps dropping the condi-
tion j b,e/e, j «1 leads to the occurrence of some
type of discontinuity. It is well known that the pres-
ence of a second interface sufficiently close to the
first that the charge fluctuations of the two surfaces
interact causes a new branch to arise. In the pres-
ent situation, with 4& assumed to decay exponen-
tially, the second interface is at infinite distance
from the one at z = 0, and the fields there are zero.
This in fact constitutes one of the computational ad-
vantages of using the form (2) for c rather than as-
suming a discontinuous & or thin layer on top of the
conductor.

In summary, we have obtained a generally valid
dispersion relation for surface plasmons or phonons
in sa,mples with e = e~+ &c e'~~, where l && I «[&, j

and [ (4d'~'/c'+ 2/e, ) he [» (n.e/e, )'. Although
little difference from the dispersion for the case
&c =0 is expected at small k„, there will be visible
effects at large k„. For the plasmon case, with d
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within the limits discussed, knowledge of the limit-
ing value of ~ at large k„will make it possible to
determine the carrier concentration at the surface.
With this and knowledge of the bulk carrier concen-

tration, the value of d can be determined from the
shape of the dispersion curve at large k„.

I am indebted to C. Duke and I . Brillson for use-
ful discussions.
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