
P HYSICA L RE VIEW 8 VOLUME 11, NUMBER 4 15 FEBRUARY

Density-functional theory of chemisorption on metal surfaces
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The density-functional theory of chemisorption is developed by means of a self-consistent
linear-response formalism. Any chemisorbed species which can be represented as an external charge
distribution perturbing the metallic surface can be studied with this approach. The formalism is applied
to hydrogen chemisorbed on a tungsten surface. Theoretical results for the ionic desorption energy,
adatom vibrational frequency, relative size of the dipole moment, resonance levels associated with the
adsorbate, and the question of dissociation agree well with experimental measurements. The calculated
level width is too large. Differential scattering cross sections for chemisorbed hydrogen are compared
with those of the isolated atom. The rather satisfactory over-all agreement of our theory with
experimental results suggests that the linear response formalism may have a wider usefulness.

I. INTRODUCTION

Chemisorption on metals has lately been receiv-
ing increasing attention both by experimentalists
and theorists. The reasons are the growing impor-
tance of such technological applications as cataly-
sis, corrosion, and adhesion; the rapid develop-
ment of new and improved methods for the experi-
mental study of surfaces; and helpful developments
in related areas of solid state theory.

Earlier theoretical work, following several dif-
ferent approaches, has been reviewed in a number
of recent articles, ' so that we shall be very brief
here. The molecular-orbital approach using the
Anderson (or sometimes Hubba. rd) Hamiltonian has
been developed by Newns, ' Grimley, ' Bennett and
Falicov, 4 Einstein and Schrieffer, and others.
These model theories, containing a small number
of adjustable parameters, such as transfer-matrix
elements and effective intra-atomic Coulomb repul. —

sion, have been useful in giving qualitative and
sometimes semiquantitative insights into the phe-
nomenon of chemisorption. Cyrot-Lackmann and
collaborators have used a moment method for eval-
uating single-particle densities of states in the
tight-binding version of the molecular-orbital mod-
el. Another approach has been explored by Schrief-
fer and Gomer, who start from a picture analogous
to the Heitler-London theory of covalent molecular
binding. Subsequent developments along this li:ne
have not yet appeared in the literature. Extended
Huckel theory, a semiempirical molecular-orbital
technique, has been applied (see, e.g. , Anders'
et al. ) to investigate structural effects. In all these
theories, electrostatic self-consistency has gen-

erally been disregarded; occasional efforts at en-
suring charge neutrality have been made.

We present here a. method which allows full elec-
trostatic self-consistency. This has been found to
be very important for both clean metal surfaces
and in the screening of charges in the surface re-
gion. Although a number of simplifying assump-
tions are made, no adjustable parameters are in-
troduced. The assumptions are the following: (i)
The substrate (e.g. , W) is represented by a jellium
model with appropriate positive-charge density.
(ii) The density functional G[n], appearing in the
expression for the electronic energy, is represented
by the first two terms of the gradient expansion,
valid for slow variation of the density n. (iii) The
perturbation due to the chemisorbed entity is treatec
in linear approximation. These assumptions are
discussed in the remaining sections and appendices
of thxs paper.

In Sec. II, the general linear screening formal-
ism in the density-functional formalism, which has
been presented in an earlier publication, is re-
viewed. In Sec. III, the explicit form of the re-
sponse function is obtained in the gradient-expan-
sion approximation of the energy functional. The
asymptotic behavior of the induced potential and the
derivation of the image potential and image plane
are presented in Sec. IV. In Sec. V the formalism
is applied to hydrogen chemisorption. ' Various
observable quantities such as the ionic desorption
energy, induced dipole moment, adatom vibrational
frequency, resonance level and width, and differen-
tial electron scattering cross sections are calcu-
lated. It will be shown that the theoretical values
on the whole compa, re favorably with available ex-
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perimental data. In addition, the calculated charge
densities and potentials allow visualization of the
chemisorption process.

II. REVIEW OF GENERAL LINEAR-RESPONSE FORMALISM

In this section we review the formalism of the
dielectric response in the density-functional ap-
proach. Consider first an unperturbed inhomo-
geneous electron gas at T = 0', in an external po-
tential Vp*(r) and with electron number density
np(r). Now introduce an additional small charge
density p',"(r) giving rise to a perturbing potential

(2. 1)

(we use atomic units unless stated otherwise).
What is the resulting change n, (r) of the electronic
density~

According to Hohenberg and Kohn ' there exists
a universal functional of the density G[n(r)] such
that the density n(r) corresponding to any given V'"(r)
is determined by the requirement that it minimizes
the energy functional

Z[r] = —I )"*(i)r(r)dr ~—,dr dr'r G)r],

subject to the condition that the total number of
electrons remains constant. Introducing the latter
condition through a Lagrange multiplier p, gives

V,(r) = t L(r, r~)p', "(r') dr' (2. 9)

and the density-density response function R(r, r')
by the equation

r, (r)= Jrr(r, i )d , ('r')'d"r'. (2. 10)

III. SCREENING IN A METALLIC SURFACE

The general formalism for dielectric screening
in an inhomogeneous gas is now applied to a metal-
lic surface. The unperturbed metal is described
by the jellium model:

L(r, r') and R(r, r') can be determined by finding
the induced potential V, (r) and electronic density
n, (r) due to an external perturbing charge of the
form p',"(r)=&(r —r'). This is described in Sec.
III. Once these response functions are determined
they can be used in Eqs. (2. 9) and (2. 10) to study
the response to a general external charge distribu-
tion corresponding to chemisorbed species.

Note that it follows immediately from the Hell-
mann-Feynman theorem and linearity that

L(r, r') =L(r', r); (2. 11)

that is, the density-potential response function
obeys reciprocity.

5G[n]—V(r)+
( )

——([(,

where V(r) is the total electrostatic potential

n(r )V(r) = V'"(r)—,dr '
Ir —r '

I

(2 3)

(2. 4)

pp*(r) = p.e (x),

where

1, @~0
8 (x)=

0, x &0.

(3.1)

(3 2)

and p. is the chemical potential. Equations (2. 3)
and (2. 4) determine n and V. Now linearizing (2. 3)
and (2. 4), i.e. , writing V'"= Vp" + V;", n=np+n„
etc. , gives the following results. The zeroth-
order density is determined by the equations

G[r]=[r(dr )
rr In r'(r)dr . (3 3)

In Ref. 9 the response functions were derived in
the simplest possible approximation for the func-
tional G[n], the Thomas-Fermi expression

6G[n]
Vp(r) +&

( )
= p. p

n (1 ):=nQ(p-)

I

V,(r)= V;"(r) — ', dr';
I r r'I- (2. 6)

(2. 6)

This is the crudest form of a more general gradient
expansion, ~'

G[r]= dr(i)di+ J dr(r)]rrrr(r)]~ dr+ ~ ~ ~ (S.d)

and the first-order screening density is given by

&'G[n]
V1(r) + nl(I ) Q6 ( r)

nano

n, (r )
V,(r) = V',"(r)—,dr'.

tr —r I

dr'= p. , (2. 7)

(2. 8)

A calculation of n, (r) then proceeds as follows:
The solution of (2. 5) and (2. 6) gives np and Vp;
these quantities are then used in (2. 7) and (2. 8)
to determine n~ and V~. We define the density-po-
tential response function L(r, r') by the equation

which incorporates approximately many-body and
inhomogeneity effects.

The simple, analytic Thomas-Fermi response
function is particularly useful in the high-density
limit. However, it does have the unsatisfactory
feature that the dipole moment is always zero:

n, (r)(x- x') dr = 0. (3.6)

To attain a better description for the screening
of external charges at metallic densities, we use
the more accurate energy functional:
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G[n]= —'(3e ) ~ f n ndr —,(d/e)'

2

x x dr + — dr. (3.6)

etc. , where

Q-=(0, Q„Q }, u=(0, y —y', z —z'),

—-'(3o')' 'n' '(r) —(3/m)' 'n' '(r)
5n(r )

+~o [vn(r)]' —
)
v'n(r) (3. 7)

2

, ( ), (,)
—

p 5(r-r') (3)T')'/'n-'/'(r)

(3/ )g/3z/o() I V'n(r')
12n'(r)

This choice of G[n] is known to work very well for
bare-surface properties, such as work-function
and density contours. ~ This form omits the cor-
relation contribution to go(r) and the exchange and
correlation contributions to gz(r). For densities
occurring in the present application the omitted
terms are believed to be small (see Ref. 13 and

Appendix 8). The last term in Eq. (3.6) describes
the inhomogeneity correction of the kinetic energy
for sufficiently slowly varying density. It is shown
in Appendix A that this condition is probably ade-
quately satisfied. This is the second approximation
listed in Sec. I.

The third approximation is that of linear re-
sponse. The applicability of linear-response theo-
ry to the screening of a finite point charge in a
metal surface has been investigated by Appelbaum
and Hamann' via a variational calculation. They
found excellent scaling as z for the interaction en-
ergy between the charge z and a (jellium) metal
surface. z values up to 2 and metal point-charge
separations as small as 1 a. u. were considered.
This supports the use of the linear approximation
in chemisorption. For further discussion see Ap-
pendix A.

With the G[n] of Eq. (3.6), we have

1 d n, (Q, x) dno(x) z dn&(q, x)

Q2X+, —P, =p 5

(3.11)
where

& = —(3o')' 'n ' '(x) —~(3/o)' 'n ' '(x)

[vnp(x) ]' v'np(x)
36no(x) 36nz(x)

' (3. 12}

It is convenient at this point to scale the charge
density in units of (e/ap)(+ ot', ) ' and distance in
units of ao(~»o7] )'/ox,' . With this scaling, Pois-
son's equation becomes

V", (Q, x) —Q'V, (q, x) =n, (q, x) —5(x-x').
(3. 13)

For x Q-'x', one can combine Eqs. (3. 13) and (3.11)
to yield

Vg'"(Q, x)-„' Vg"(Q, x)+(1'-2Q')V['(Q, x)
0

I

+ ' q'V', (q, x)+[/„n,(x)-q'V+q']V, (q, x)
np x

= &anp(x) V g~(Q),

where

n, (x) n, (x)

~ -1~4/3311/32-8/3
h s ~

Substituting (3. 7) and (3.8) into (2. 5) and (2. 7) and
Fourier transforming all quantities as indicated by
(3. 9) we arrive at the equations

ds
, V,(q, x) —q'V, (q, x) =4~[n, (q, x) —5(x V)]

(3.10)

—[v' 5(r' —r)] (3.8)

L(Q, x; x')=j due "L(n, x; x')' '(3.9)

n, (Q, x; x') = I due 'n'"n, (n, x; x');

As the unperturbed system is one dimensional,
it is convenient to introduce the two-dimensional
Fourier transform of various quantities parallel to
the surface in the form

V (Q duo) —0

n, (q, x', )=n, (q, x'),
n', {Q, x', }=n',(Q, x'),
V,(q, x,') = V~(q, x '),
V', (Q, x', ) —Vi(q, x') = —1.

{3.15}

To solve (3. 14) we note some general conditions

and primes denote differentiation with respect to x.
The solution to V, in the presence of the external

perturbation is obtained by imposing on the solu-
tions of (3. 14) the following boundary conditions:
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that must be satisfied by n, and V,: (a) Integration
of Poisson' s equations gives

proximately by finite polynomials of a new variable
t which is defined as

v ((q = 0, ) —'v', (O = 0, — ) = —1+ J o,(Q = 0, x) ch.

(3. 16)

t=e-~R" for x &0,

t=e~&" for x& 0. (3. 20)

Since V', (Q =0, ~) = V~(q = 0, —~) = 0,

n~ =0, x dx= 1 . (3. 17)

This is the charge-neutrality requirement. (b}
Again, multiplying the Poisson's equation by
(x- x'} and integrating by parts, we obtain

The parameters (8R and P~ are chosen to yield a
best fit. This is motivated by the fact that for
x, ~4 the solution n0 obtained by Lang and Kohn"
is very close to the simple variational solution em-
ployed by Smith, '

n()(x) = g8(x)e»" + p9(- x)(1 —e'") .

Vl(Q=0, —")—Vy(Q=0, )

n, (q = 0, x)(x —x ') dx. (3. 18)

Because n, (Q, x) is a continuous function of Q,
(3. 18) can also be written

Vg(q=o, —")—Vg(Q=O )

nq(q, x)(x —x') Cx. (3.19)= lim
Q 0

In contrast to the Thomas-Fermi approximation,
the dipole moment given by (3. 19) is in general
nonvanishing. It is important to note that
V,(Q=O, ) and V,(Q=0, —~) appearing in E(ls.
(3. 16), (3. 17), (3. 18), and (3. 19) should be under-
stood as lim„, „limo ~V, (q, x). The order in
which the limit is taken cannot be interchanged.

To obtain the response function, we shall first
solve for the independent solutions of (3.14) in the
absence of external perturbation by a procedure
similar to that which was used to obtain the
Thomas-Fermi solution. The various coefficients
in the differential equations are represented ap-

V&(x) = t'P a„(s)t",
n=0

(3.22)

where the a„(s) satisfy a recurrence relation

Thus, in this work the data of Lang and Kohn are
fitted to finite polynomials of the new variable t.
It is found that, when x, =l. 5, a two-term polyno-
mial on each side of x= 0 fits the function no '(x) to
within I%%uo of p+ for all values of x. The coefficients
of the differential equations can then be expressed
in the form

V,""(Q, x) -B[V,"'(Q, x) O'V, (Q, x)]

+ (C —2Q ) V
&
'(Q, x) + (k»D —Q C + Q )V&(q, x) = 0,

(3.21)
where

E0 Np Np

B = B„t", C = C„t", D= D„t".
tT= n= n=

With this change of variables from x to t the two
points at x= +~ are now regular singular points of
the differential e(luation (3.21), and a series solu-
tion of V, that converges for all values of t between
0 and 1 can be written in the form

—g,",[-p'(n —j+s)'B,. +C;p'(n- j+s) + pq (n- j+s)B~]a„,
p~(s+n)4 —Bop (s+n) +(Co —2Q )p (s+n) +Bopq (s+n)+Q —Q Co+k„DO

(3.23)

The condition that a0 & 0 determines s:
p's'- B,p's'+ (C, —2q') p's'

+BoPQ s+(Q —Q C()+k„D())=0. (3.24)

') = (I/P~)q'+ (3 k» '4) + (3 k»— 4)' —k»—,

s2-- (I/p~)q +(3 k„——,') —(3 k„—4) —k»

3= —&2~

For x &0, the four solutions are
'= -' [I+(I+4Q'/9P')'"],

s~ =Q/Ps,
(3.26)

s,'= —'[1—(1+4Q /9)8 ) ],
s4 = —qlps

leading to four solutions for V, (x), [n, (x), . . . , n4(x)]
and for x& 0, (3.24) has the solutions

$4 ——f'),

leading to four solutions for V~(x), [W&(x), .. . ,
W, (x)].

The response of the system in the presence of
the external perturbation now can be obtained by
linear combination of these solutions to satisfy the
boundary conditions. There are two different sit-
uations. For x' &0, i.e. , external charge situated
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outside the jellium surface, we have

Q 1Q1 + Q2Q2)

L (Q, x, x '
) —= Vi(q, x, x '

) = pi Wi+ p2wp, x& 0

y1Q1+y2Q2+y3Q3+y4Q4 0~ X~ X'.

The coefficients n, p, and y are obtained by solving the simultaneous equations

(n, -r, )u, (Q, x')+(n, -r2)u2(q, x') r3-u3(Q, x')-r4u4(Q, x')=o,

(n, —y, )u', (Q, x')+(n, —y, )u2(q, x') —y,u,'(Q, x') —y4u4(q, x') = —1,

(n&-r&)u&'(Q, x')+(n&-r&)u&'(Q, x') -r&u&'(Q, x') -r4u4'(Q, x') =o,

(n, —y, )u", '(Q, x')+(n, —y, }ua"(Q, x') —y, u', "(Q, x') —y4u4"(Q, x') = —Q,
y,u&(q, 0) +y2u2(Q, 0) —P, W, (Q, 0) —P2W2(Q, 0) = —y, u„. (Q, 0) —y4u4(Q, 0),

y&u&(q, 0)+y&u&(q, o) —P&w&(Q, o) —p2W2(Q, o) =-y&u&(q, o) -r4u4(Q, o),

r,u",(q, o)+y,u,"(q, o) —p, w,"(q, o) —p, w,"(q, o) =-r, ,"(q, o) -r4,"(q, o),

r&u&" (Q, o)+y,u', "(Q, o) —P,w,"'(Q, o) —P&w&"(Q, o) =-r u'"(Q, o) -r4u4"(Q, o).

For x' & 0, we obtain instead

Q 1Q1+ Q2Q2 ~

L(Q, x, x') = piwi+P2W2, X&X

- y, W, -y2+2- y3W3- y4W4, Xl & X& 0.

The n, p, and y are now determined by the simultaneous equations

(P&+r,)w, (q, x)+(P +3y) 2W(q2, x')+r3W4(q, x')+r4W4(Q, x') =o,

(P, +y, ) W', (Q, x')+(P~+y2)w~(q, x')+y3W', (Q, x')+y4W4(Q, x') =1,

(Pg +Yg)Wg (Q, x') + (P& +y2)w~'(Q, x') +r3W&'(Q, x ') +r4W4'(Q, x') = 0,

(P, +y, )w~"(Q, x')+(P~+yz)wz"(Q, x')+y W,"'(Q, x')+y W'"(Q, x') =Q,

n&uI(q, 0)+n~u2(q, 0)+r&W&(q, o)+raW2(Q, o)=-r3W3(Q, o)-r4W4(Q, o)

niug(q, 0)+n2u2(Q, 0)+rgwg(q, 0)+r2WR(Q, o)=-r3W3(Q, o)-r4W4(Q, o),

n,u,"(Q, 0)+n2u2 (Q, 0)+r, WI'(q, 0)+y, W,"(q, 0) =-r, W,"(Q, 0) -r4W,"(Q, 0),
ntu', "(Q, 0)+nqu2" (Q, 0)+yq Wg '(Q, o}+yqw2"(Q, o) =-ysWB"'(Q, o) -y4W4 (Q, o) .

IV. ASYMPTOTIC SOLUTIONS: BULK SCREENING AND
IMAGE POTENTIALS

8'2 Q Q4

W2I
I

Q2
I

Q4

From (3.23), (3. 25), (3.27}, and (3.28) it follows
after some tedious algebraic manipulation that in
the limit x» 1, x'» 1, L(Q, x, x') takes the simple
form

II
Q2

III
Q2

W2 Q1

Il I
4

L(q I
)

(Q) e-Q&x+x') 8-4I Ix-x'I

2Q 2Q

where

(4. 1)
W2I

w"
2

rrrt II I II
vv2 Q1

I
Q2

II
Q2

ll I
2
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A(Q) = —[1+Qd+ 0(Q')]. (4. 3)

This form also follows from charge neutrality
[limo, f, (Q, x; x') must be finite]. Thus at x=x',
the induced potential is given by

V,(Q, x=x') = —(1+Qd)e 'o" /2Q.

The potential in real space is given by

(4. 4)

)'i(»=»', «)=~ f )'i(Q, «=»')~~(Q»)QdQ.

with all arguments of the functions evaluated at
x=O. Inspection of E(I. (3. 13) shows that E(l. (4. 1)
follows whenever n, (Q, x)- 0 faster in x than does
V1(Q, x).

The second term in (4. 1) is just the contribution
to V& due to the bare perturbing charge. The term
proportional to A(Q) corresponds to the induced po-
tential. Closer examination of the recurrence rela-
tion (3. 23) and the various indices for the series
u, -u4 indicates that in the limit Q- 0, A(Q) has the
following expansion in powers of Q:

V, = a(r, ) e "12/'" " '+ [1 —a(r, )]
2Pr. r, ' 2Pi r2

X,e-rggL I x-x' I (4. 10)

As expected, the screening in this situation is
spherically symmetric, corresponding to bulk be-
havior, and depends only on the variable

r = [(x —x')'+ u']"' .

where r, , and r, are given by (3.26) and

)
[(k„—4 ) —9k„]' —(k„—~7)

4 )2[(k 27)2 k ]1/2

The three-dimensional potential is given by the
formula

Oo

U, (x, x', u) = — V, (Q, x, x') J()(Qu)QdQ . (4. 12)
7l ~p

Substitution of (4. 10) into (4. 12) yields the result

V, (r) = 1a(r,)e h1" + [I —a(r, )]e h2"j . (4. 13)
1

(4. 5)
Thus the induced potential at the position of the
point charge is given by

Here

~1 3kh 4 +[(3kh 4 ) kh] (4. 14)

1
V (x = x ', u = 0) = —— dQ (1+Qd)e 2" and

2= 3kh-4 - [(3kh-4 )'-khl' '
1 1 1

27/ 4(x' —x,) x' (4. 6)

where xh =d/2.
Asymptotically the induced potential indeed has

the classical image-potential form; the plane x= xp
acts as the effective position of the metallic sur-
face. To investigate further the significance of xp,
we study again equation (4. 1) in the limit x- ~,
Q-O, and Qx-Q. After a little algebra, one ob-
tains

lim lim V, (Q, x; x') =x' —xh.
g~eo Q~P

(4. 7)

It is also clear from the asymptotic properties of
W, (x) and li'2(x) that

V, (Q =Q, x- —~, x ) =0 . (4. 8)

Combining (4. 7), (4. 8), and (3. 19) we arrive at the
important result

x3= n, (Q=0, x, x =~)xdx . (4. 9)

Thus xp is exactly the center of mass of the induced
charge. This result has been obtained by Lang and
Kohn' on a more general basis. Our result (4. 6)
and (4. 9) is an explicit verification of this fact with-
in the present model of G[n].

Next we investigate another asymptotic region,
that corresponding to x'«0. After some tedious
algebra, one obtains from (3.29) and (3. 30) the fol-
lowing result:

In the limit r, -0; X,- and X~- —,', and we recover
the Thomas-Fermi solution as expected. The in-
duced density in n, (r) = V v, (r) +6(r) at r =0 is
given by

n, (r = 0)=1- X', a(r, ) —Xz [1 —a(r, )]]/477 . (4. 15)

We note that n, (r = 0) is finite for finite r, but
diverges as r,- 0, which corresponds to the mell-
known result that in the Thomas-Fermi approxi-
mation, the screening charge density at the posi-
tion of the perturbing charge is infinite, Our
solution at finite r, does not suffer from this defect.

V. APPLICATION TO HYDROGEN CHEMISORPTION

Hydrogen chemisorption on metal surfaces is well
studied experimentally (see, e.g. , Refs. 16-19).
Any theoretical description must be in accord with
experimental heats of adsorption, changes in work
function, adsorbate structure, desorption kinetics,
photoemission energy distributions, and vibrational
states of the adatom.

An important feature of our method is the require-
ment that Poisson's equation be satisfied point by
point. That is, there is complete self-consistency
between the electrostatic potential used and the
charge density obtained. Such self-consistency is
now established as essential in metal-surface cal-
culations. In this section we regard a chemisorbed
hydrogen atom as a proton dissolved in the inhomo-
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TABLE I. Hydrogen chemisorbed on tungsten.

Ion desorption. energy (eV)
Dipol, e moment
Resonance level (eV)

Theory

9
small
5. 6

Expt.

11.3~

smallb
5. 7'

Vibrational energy (me V)
Adsorbed species

200
dissociated

140"
clls sociatecP

~References 21 and 22.
"Reference 17.
OExperimental values for the peak location below the

Fermi level are taken from Ref. 10 (see also Ref. 11).
The 5. 7-eV value is for %(100), while the 6. 3-eV result
pertains to W(110).

"References 17 and 23.
'Reference 16.

geneous electron gas in the metallic-surface region
and apply the screening formalism developed in the
previous sections to study a considerable number
of observed quantities.

The choice of the jellium model (r, = l. 5) for the
substrate is at once a strength and an apparent
weakness of the calculation. Its strength is that it
allows computation of all hydrogen chemisorption
characteristics of interest from first principles
with no adjustable parameters. It has an apparent
weakness when applied to a transition metal like
tungsten. However, over the last few years it has
been found that those surface properties which de-
pend primarily on the "tail" of the electron number
density distribution appear not to be extremely
sensitive to the details of the substrate model.
By the tail we mean that portion of n(r) representing
electrons which have tunneled part way into the vac-
uum region. Thus we conclude that we have a good

zeroth-order model for chemisorption for the low-
index planes of a refractory transition metal.

In the remainder of this section, results are given
for a number of observables. A partial summary is
contained in Table I.

A. Ion-metal interaction energy

The interaction energy between the hydrogen ion
and the metal substrate is to be determined as a
function of the coordinates of the proton (u'=O, x').
This is given, according to the Hellmann-Feynaman
theroem, by

W(x') = V, (x')+-', V, (x =x', zi =0),

where V, (x') is the electrostatic potential of the
"bare" surface and V, (x = x', u = 0) is the potential
of the screening charge evaluated at the proton lo-
cation. The latter can be obtained from V,(x, x';u),
since

V, (x, x';u) = V (x, x';u) —[(x-x')'+u~] '~'

The results are shown in Fig. 1. In Sec. IV, we
have established that for large x, W(x') tends to
the image potential, i.e. ,

W(x') = 1/[4(x' —x )]

where Xo = Jxn~(u, x;x' = ~) dr. As x' approaches the
surface region (x & 5 a. u. ), the interaction energy
begins to deviate significantly from the image po-
tential as shown in Fig. 1. Finally a minimum in
W(x ) is reached at x' =1.08 a.u. The minimum
results from a competition between the repulsive
term Vo(x') and the attractive term 2 V~(x =x', p, =O).
While the position of the minimum can be used to
locate the nucleus of chemisorbed hydrogen (at least
at low temperatures), the curve is rather broad
near the minimum. Thus we have included a rea-

TOTAL

AL ENERGY

ENTI AL

3

-.2

FJG. 1. Hydrogen. -ion-
metal interaction energy
versus separation dis-
tance. The nucleii of the
surface plane of the metal
are l.ocated at —d/2,
where d is the distance
between planes parallel to
the surface.

- -.6
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sonable error bar. The depth of the minimum gives
the ionic desorption energy, EI = 9 eV. The experi-
mental value ' for hydrogen on tungsten is El
=- ll. 3 eV. This gives one a measure of the accu-
racy of' the calculation. For a first-principles cal-
culation with no adjustable parameters, this sort of
agreement is encouraging. It should be added that
experimentaBy hydrogen is singular in that its ionic
desorption energy is much larger than that of other
chemisorbed species. This is borne out by our cal-
culation.

The atomic desorption energy of hydrogen is 3.0
eV while from our calculated ionic desorption ener-
gy one deduces (see Ref. 21) a value of 9. 0+ 5. 3
—13.6 =0.7 eV, too small by a factor of 4. Thus
the 20% error in the calculated ionic desorption en-
ergy becomes greatly magnified, and our method,
which, by its nature, yields the ionic desorption
energy as the primary result, does not have enough
precision for an accurate subsequent calculation of
the atomic desorption energy.

B. Vibrational frequency

The adsorbed hydrogen will exhibit vibrational
modes in the potential well of Fig. 1. The excita-
tion energy is given by

where x is the coordinate of the proton at its en-
ergy minimum, l. 08 a. u. ), and m is the proton
ma. ss. The theoretical value of 200 meV is to be
compared with the 3.40-meV experimental result. ~~' 3

This fair agreement between the single-adsorbate
theoretical result and experiment is consistent with
dissociative ad sorption.

C. Adatom interaction

One can investigate the question of molecular
versus atom adsorption also by determining the
short-range ( & 2 a. u. ) interaction energy between
hydrogen adatoms.

One can again use the Hellmann-Feynman theo-
rem to show that V, (x, x', u) is the interaction ener-
gy between adatoms whose nuclei are located at
(x, u) and at (x, 0), respectively. We found that for
representative x values, the short-range interac-
tion energy is repulsive. This is to be contrasted
with gaseous hydrogen, which has an interaction en-
ergy minimum ' at a separation of 1.4 a. u. Thus
we have further evidence of dissociative adsorption.
This supports the numerous experimental conten-
tions (see, e.g. , Ref. 16) that hydrogen dissociates
upon adsorption in the first adlayer on tungsten and
certain other metals.

1 cPW(x)
iAQP —8 dg )„ (5.3)

D. Dipole moment —comparison with Cs

The dipole moment of the chemisorbed hydrogen
is given by

0.008

0.004

P= ' (x' —x)n, (r) dr, (5.4)

shown in Fig. 2 as a function of x', the location of
the hydrogen nucleus. At large separations, since
the screening charge remains in the metal [see Eq.
(4. 9)],

=(x'-x, ) .

I—

C)

3.6—
-0.004

Dl STANCE (a.u. )

FIG. 2. Hydrogen-adatom dipole moment versus the
distance between the proton and the metal substrate.
The Cs experimental results were taken from those corn-
piled in. Hef. 20, while the H experimental results are
from ref. 17.

Equation (5. 5) is exhibited by the dashed line in
Fig. 2. The intercept of this line with the abscis-
sa gives the image-plane location xo. We believe
that our calculated distance xo of the image plane
from the jellium. surface is too large. This is dis-
cussed in detail in Appendix A. It is likely, how-
ever, that the image plane lies on the vacuum side
of the chemisorbed H, that is, xo & 1.QB a. u.

As the positive charge is moved from the outside
to smaller x', it "catches up" with its screening
charge. This leads to a decrease in P, as shown
in Fig. 2. In fact„our calculation gives a change
in. sign of P, as shown in the inset of Fig. 2. This
change in sign occurs in the vicinity of the energy
minimum of Fig. 1, i.e. , the equilibrium position
of the chemisorbed H. This may shed some light on
why the dipole moment of chemisorbed H on W (110)
is positive whereas it is negative on W(100) (see
Ref. 17 for a discussion of this). One would expect
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the equilibrium position on these two planes to be
diff erent.

However, one should not take our results in the
inset too seriously. It is shown in Appendix C that
at x =0 the dipole moment is, in fact, exactly zero.
Thus our error there is = 5X10 3 a. u. This led us
to test the sensitivity of P to our various approxima-
tions. First, we tested the sensitivity to nc(x). The
results in Fig. 2 were obtained using the numerical
solution by%amer to the zero-order Euler equa-
tion [Eq. (2. 5)]. In Ref. 10, Fig. 2, P as obtained
using Lang and Kohn's n, (x) is plotted. A compari-
son shows that these two slightly different zero-or-
der solutions lead to a difference in the dipole mo-
ment of order 10 3 a. u. Thus small inaccuracies
in nc(x) are the likely source of the aforementioned
error at x'=0. This is contrary to the behavior of
the desorption energy, which was found to be rela-
tively insensitive to small changes in n, (x). Like-
wise the sensitivity of I' to the coefficient of the in-
homogeneity term in the energy functional [Eq.
(3. 6)] is much greater than that found for the de-
sorption energy (see Appendix A).

Thus the only conclusion we can draw from our
calculations is that the dipole moment of 8 is very
small, of order 10 a.u. This is consistent with
experiment. From Eqs. (5. 5) and (4. 9), one sees
that I' is equal to the shift of the center of mass of
the screening charge relative to the proton. Thus
for hydrogen, this shift is only of the order of 10 ~

of a Bohr radius.
By contrast, for Cs this shift is much larger, ap-

proximately 2. 9 to 3. 4 a.u. '" as shown in Fig. 2.
As a check of our P(x') plot and an illustration of
the use of our response function, we make an ap-
proximate calculation of the Cs dipole moment in
the limit of zero coverage. Following Lang, 30 we
represent the Cs adlayer very approximately by a
slab of jellium from x=0 to 8. 08 a. u. In general,
the dipole moment is given by

~~ P(x')p f"(r ') dr', (5. 6)

where P(x ) is shown in Fig. 2. For Lang's slab
model, the dipole moment is simply the average of
P(x') over the thickness of the slab. The resultant
dipole moment is 2. OV a.u. , about 30%%ug low. Note
that this result is two orders of magnitude larger
than the H dipole moment.

E. Charge distribution and differential scattering cross sections

The "shape" of the adsorbed hydrogen (proton
plus screening charge distribution) changes rapidly
as a function of proton position, as shown in Fig.
3 (see also Fig. 3 of Ref. 10). When the hydrogen
is located at the energy minimum [Fig. 3(a)], it is
nearly spherically symmetric (small dipole mo-
ment). However, when the proton has been moved
only l. 72 A in the direction of the vacuum [Fig.
3(b)], the adatom is quite asymmetric, resulting
in a large dipole moment (cf. Fig. 2). Further,
the screening charge spreads in the direction paral-
lel to the surface, that is, in the u direction. The
ratio of the peak n, values between Figs. 3(a) and
3(b) is =13.

- 1.2
— 1.0

0.8
C

0.6

0.4

0.2

- 1.0

- 0.8

0.6

0.4

0.2

2.0 2.0

2.0

(a} (bj

FIG. S. Screening charge density n~ for two proton positions: (a) at n =0, x=0. 571 A, the interaction energy mini-
0

mum, i.e. , the location for chemisorbed 8; (b) at u=o, x=2. 29 A, a small displacement in the vacuum direction from
the adsorption site. u is the cylindrical coordinate in the plane parallel to the surface measured from an axis through the
proton. Scaled units (Ref. 9) are used for n~ xand n ar. e given in A. The vertical line denotes the n& peak location.
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At the energy minimum, the screening charge
density at the proton in Fig. 3(a) is only 0. 36 of that
of an isolated hydrogen atom. Thus one expects
that chemisorbed hydrogen will scatter electrons
more strongly than does atomic hydrogen. We will
see that this is in fact the case.

When hydrogen is introduced onto a clean W(100)
surface, a e(2&& 2) low-energy-electron-diffraction
(LEED) pattern is observed which exhibits addi-
tional (half-order) beams. The intensity of these
extra beams is comparable to the other (integral
order) beams of the pattern. The result is made
more interesting by the fact that the back scattering
cross sections of an isolated hydrogen atom are an

order of magnitude smaller than those of the %
atom~7 in the 50-100-eV energy range. Analogous
data have been obtained for other light absorbates
on heavy substrates. The interpretation has been
somewhat controversial. Some authors~' feel these
data indicate reconstruction of the substrate, while
others~' feel that reconstruction is not a necessary
condition. More recently, Jennings and McHae
have shown that in this system interlayer multiple
scattering can lead to fractional-order beams of
intensity comparable to neighboring integral-order
beams, when isolated H-atom phase shifts are used.
In the following we shall show the effect of chemi-
sorption on the differential scattering cross sec-
tions (DCS) of hydrogen.

A DCS calculation directly involves the potential
well at the adsorbate. In Fig. 4 we' ve plotted
RVI(r), where A=i(x-x') +u ] . Note that this
electrostatic potential is nearly spherically sym-
metric. VI(r) is spherically symmetrized so that
standard atomic-physics methods can be applied to
the DCS calculation. This is analogous to the po-
tential (atomic units are used throughout unless

--0.4
RV)

-0.8
-1.0

1.0

PIG. 4. Screened electrostatic potential of the proton.
multiplied by R = [(x —x') +u j ~2. The proton is located

O

at x' = 0. 571 A. RV& is in a. u. , while x and u are in A.

0.6

0.5

50eV---- 100eV
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I—
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0.1

I
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SCATTER1NG ANGLE
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FIQ. 5. Differential scattering cross sections for
chemisorbed and isolated hydrogen atoms. The chemi-
sorbed atom is located at the energy minimum of Fig. l.

noted otherwise)

(5. S)

used for the isolated H atom. Exchange between
the incident and atomic electron and polarization
effects have been shown' (see also Hef. 32) to be
relatively unimportant (& 20%) to the scattering
cross section of atomic H for incident energies
& 50 eV. These effects are ignored in our calcula-
tion for both atomic and chemisorbed hydrogen.
The scattering phase shifts were determined by nu-
merical integration of the Schrodinger equations
formed from the potentials (VI(r)) and V„(r), re-
spectively. Eleven phase shifts were included in
our DCS calculation for boih the isolated and chemi-
sorbed particle.

The results are shown in Fig. 5. The backscat-
tering (large scattering angle) DCS at either 50 or
100 ev are imperceptibly changed by chemisorp-
tion, and thus remain very small. However, as
the scattering angle decreases, chemisorption
substantially increases the DCS. 33 Our results
appear to support the picture of Jennings and

McRae, but one would have to do a multiple scat-
tering calculation using our DCS (or, equivalently,
our phase shifts) to be certain. Figure 5 exhibits,
for the first time to our knowledge, the effect of
chemisorption on a DCS. We expect that such
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considerations may be useful in LEED adsorbate
crystallography.

F. Resonance level

v(~) = vp(x) +vt(r),

where

v(r) = —V(r) —(3/7r)t Pn (r),

vp(x) = Vp(x) —(3/p)tlsno~ (x)

(5.8)

(5.e)

and V and n stand, respectively, for electrostatic
potentials and electron densities. The potential
v(r) is plotted in Fig. 6. There the proton is lo-
cated at x = o.571 A, u = 0, the interaction energy
minimum. For negative x, one can notice a
"lip" which is an indication that the potential is
dropping down to its bulk value inside the metal.

In keeping with the small dipole moment it is
found that 6&(r) is nearly spherically symmetric
and may be replaced by its spherical average.
The center of the resonance level can now be found
quite simply. First, the bound-state spectrum of
a spherically symmetrized et(~) is obtained nu-
merically. It turns out that there is only one
bound state. This s level is then shifted downward
by vp(x„), where x is the coordinate of the proton
at its energy minimum (Fig. 1). The result is
that the resonance level c~ lies 5.6 below the Fer-
mi level.

Recent photoemission data ' has shown a change
in the surface density of states of W(100) upon
hydrogen chemisorption. It is interesting then to
look for possible resonance levels associated with
a hydrogen adatom. We write the total effective
potential v(~) of the system (W+H) as the potential
t(p(x) of bare W plus a remainder:

Plummer and Waclawski' show a peak in their
difference spectra for hydrogen adsorption at 5.7
and 6.3 eV below the Fermi level for W(100) and
W(110), respectively (see also Ref. 35). The
agreement between theory and experiment indicates
that these low-lying states are localized primarily
on the adsorbate (compare with Ref. 8).

We have also calculated the width of this reso-
nance level in the Hartree-Fock approximation to
the Andersons Hamiltonian. In this model, the
width of the resonance level 1" is given by

r=~p(s, )(i V„i'&,, (5.10)

where p(st) is the substrate density of states,

&I &i&I'&., =(II &a(")~,(8&,( (& I').,
is the mean-square coupling matrix element of
the spherically symmetrized perturbing potential
vt(r) between substrate (unperturbed) wave func-
tions 4(-, (r) and bound-state wave function 4'~(r).
We find a half-width I' equal to 2.7 eV which is to
be compared with an experimental value of & 1 eV.
The discrepancy may reflect the limitations of our
model, or inherent inaccuracies in applying the
result in E(l. (5.10) to the chemisorption system. s~

It is often remarked in the literature that a con-
dition for validity of a molecular-orbital approach
to chemisorption is el" ~ U, where U is the effec-
tive intra-atomic interaction energy on the hydro-
gen atom, whose value is generally estimated to
be 5-10 eV. Using the experimental level width,
one finds that this inequality is seriously violated.
However, the fairly good over-all agreement with
experiment which we obtained suggests this in-
equality may be too strong a condition for the va-
lidity of the density-functional formalism. This
is also suggested by theoretical considerations of
the separated-atom limit, ' for which the density-
functional formalism gives the correct energy.

VI. SUMMARY

- -O.T

--0.2 ~
~g

--0.3 gw
CI--0.4 o-

- -O.S

1.0

FIG. 6. Total electronic potential in the vicinity of the
chemisorbed hydrogen, v(r), Eqs. (5. 8) and (5.9). The
potential is in n. n. , while s s.nd x are in A.

In this paper we have used the density functional
formalism for a first, exploratory theoretical
study of chemisorption. The system to which the
theory was applied is hydrogen on tungsten, which
has been well investigated experimentally. In our
calculation three types of approximations have
been made: (i) representation of the substrate by
a jellium model, (ii) a simple form of the density
functional, and (iii) treatment of the effects of the
adatom by linear-response theory. Qualitative
considerations suggest that none of these approxi-
mations is unreasonable for the problem at hand.
It is noteworthy that agreement between our theory
and experiment, as summarized in Table I for
several physical properties of this system, is
quite good.



1494 S. C. YING, J. R. SMI T H, AND D. KG HN

If linear-response theory is indeed at least semi-
quantitatively useful for certain chemisorption
systems, our formalism may have a rather wide
usefulness. For example, the effect of the actual
crystal ions can be easily included in the theory,
provided they are regarded as a small perturba-
tion susceptible to linear-response theory. Simi-
larly the adsorption of other atoms, such as the
alkalis, can be studied by this theory. Such cal-
culations are currently in progress.

At the same time we consider it very important
that improvements on all our approximations be
carried out so that the theory can be put on a
firmer and more quantitative basis.
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APPENDIX A

This appendix is devoted to further discussion
of the linear approximation and an investigation of
the validity of keeping a single inhomogeneity term
of the form (Vn) /n in the energy functional (3. 6).

It was noted in the text just prior to Eq. (3. 7)
that the surface calculation of Appelbaum" and
Hamann indicated that the linear approximation is
rather good for interaction-energy calculations in
the case of chemisorption. Sjolander3 and Stott
considered the bulk screening of a positron, and
found the linear approximation to be inadequate for
determining the positron-electron static pair cor-
relation function near the positron. Of course the
conclusions of these two papers are not necessarily
in disagreement, because of the different quantities
considered —binding energies versus correlation
functions. More importantly, perhaps, a surface
calculation was done in Ref. 14 while only bulk
screening was considered in Ref. 39. One of the
main results of our work is that surface screening
depends rather sensitively on the location of the
proton in the surface. This is consistent with the
fact that the unperturbed electron density n, (x) in
the vicinity of the proton is decreasing in the vac-
uum direction.

Another approximation was the keeping of a single
inhomogeneity term in Eq. (3.6). Again it is im-
portant to investigate this approximation in a sur-
face calculation rather than a bulk (homogeneous)
calculation.

This approximation has been analyzed for other
systems by a number of authors. 0 A recent work
by Jones and Young is particularly relevant for
our purpose. These authors evaluated the linear-

response function for a bulk metal in both the ran-
dom-phase approximation and the density-function-
al theory with an inhomogeneity term of the form
—,
' X(Vn)~/n. The response function for a uniform
electron gas is defined as F(q) =n, (q)/V, (q), where
F(q) is given as

F(q) = —Q — 1+ — ln
I n-' 1+ n

m 2 2'g 1 —'g

in random-phase approximation (RPA), and

kF(q)=- ~~-
m' 1+3&'g~

(Al )

(A2)

( ) j - ~q, &g(q, )~dq,
j .i., (q„)idq„

(AS)

(no) = n, (x)n, (q =O, x)dx, (A4)

(kf) =(Sm')'~'(~, )'~' and (q) =(q)/2(k~),
(A5)

where

e 'o."~,(q =o-, x)dx . (A6)

For the adsorbed hydrogen at the equilibrium posi-
tion it is found that (no) = 9. 52&& 10 ', which corre-
sponds to a local r, of 2. 9, and (q) = 0. 72.

Referring back to (Al) and (A2), we see that the
choice of X =0. 16 would make the response function
in the density-functional theory agree with the cor-
responding value in HPA. This is much closer to
X =9 than it is to X = 1. When we carried out the
calculation in the text for X = 0. 16, the result for
the binding energy was changed by only a few per-

in the density-functional approach; here q = q/2 k& .
For small g, the choice of X = 9 corresponding to

the leading gradient expansion in the energy func-
tional [as in Ec(. (3. 6)] gives the correct leading
terms for F(q) in powers of 7l, whereas for large
g the value of X=1, known as the von Weizacker
term (obtained from variational consideration) gives
the correct leading terms in powers of I/g . Thus
if one were to use X = —,', one would expect the
screening charge density to be relatively inac-
curate near the proton (large q) and relatively ac-
curate far from the proton (small q). For quanti-
ties which are determined by an integration of a
density functional over all of configuration space,
the accuracy would depend on the average p.

Examples of such quantities are those computed
in this paper: ionic desorption energy, resonance
level, dipole moment, etc. One can find an aver-
age p and estimate the applicability of gradient ex-
pansion to surface response theory. To accom-
plish this, an effective X was determined for the
charge cloud around the proton at equilibrium posi-
tion in the surface, by evaluating
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cent, showing that the effect of the higher-order
gradient corrections in the kinetic-energy func-
tional is small. The location of the image plane
xp, however, is quite sensitive to the choice of X,
varying between 3.2 and 1.9 a. u. for X between

9 and 3. Since the image plane is determined by
asymptoptic quantities when the proton is far out
in the tail region, we expect the effective X for this
quantity determined via (AS) and (A4) is larger
than 0. 16, thus locating the image plane closer
to 1.9 a.u. from the jellium surface, as found by
Lang and Kohn, ' who treated the kinetic-energy
functional exactly.

APPENDIX 8

We examine here the consequences of including
the correlation energy contributions ingo(n) and

gz(n). First, the terms ingz(n) due to exchange
and correlation are '

g z = —0.0016'7n

g& = 0.00424~

which is much smaller than the kinetic-energy con-
tributions ~~~ (Vn)z/n at an electronic density cor-
responding to x, =1.5. Further, Hedin-et al. 3

have found that the local-density approximation in
exchange and correlation gives very good agree-
ment with the dielectric functions of Singwi et al.
and Geldardt and Taylor. ' Thus the neglect of the
gradient terms appears to be a good approximation.
As to the correlation contribution togo(n), a form
that has been frequently employed is the Wigner
interpolation formula

0.056m'~'
go(n) =

~ 0 '079 ' 113

Inclusion of this term in go(n) is straightforward
with the present formalism. The only change is
that in the basic equation (3. 14) in the text, the
quantity Y is now changed to the form

APPENDIX C

It was stated in the text that the hydrogen dipole
moment is exactly zero when x =0 (proton at the
jellium surface). This is a general result of
linear-response theory, independent of the ap-
proximation to G[n]. This conclusion is derived
in the following.

From Eq. (5.4), only the Q = 0 Fourier com-
ponent of ny contributes to P. Thus one need only
deal with the Q = 0 Fourier component of the per-
turbing point charge p',"'(r ), which is a charged
sheet, z6(x —x ). Since we deal in linear response,
we compute the dipole moment for lim(z)-0. Such
a charged sheet can be formed from a slab of den-
sity p. (jellium density) filling the space between
0 «x ~ Ax'q, by taking limbx, —0. Then the dipole
moment per unit perturbing charge is given by

lim(P/z) = lim ~le
Z~P 4p, hx, (C1)

where bP, is the change in electron work function
due to the introduction of the slab.

Now a slab of density p, added contiguously to the
surface of a jellium of the same density merely
thickens the metal, without changing the shape of
the electronic charge distribution. Thus &Q, is
zero for all &x„and so

lim (P/z) = 0,

which is the desired result.

g 2. Il
Y' = ( — + —n' (x) ——' k„n (z)

~n, ( ) n, (x)

0 014 0.4lno (z)+0. 16no~ (z)
[0.079+ 0. 41no~ (x)]

The resultant potential energy curve for the
chemisorbed hydrogen is not appreciably changed
from the one given in Fig. 1. The ionic desorption
energy is changed by only about 2% while the posi-
tion of the image plane is shifted outward by 8%. 46
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