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A perturbation method has been developed in the modified-plane-wave formalism to calculate first-order

splitting and shifting of electronic energy levels for fcc crystals under hydrostatic, tetragonal, and trigonal
strains. Numerical results for Cu for the I', X, and I. symmetry points are given. The hydrostatic results

are compared with the difference calculation of Davis et al. The tetragonal and trigonal results are com-

pared with those of juras and Segall who performed both a perturbation and a difference calculation. Rea-

sonable agreement with these other calculations is obtained. For the shear cases the numerical ratios of
appropriate shifts are in excellent agreement with the ratios predicted from symmetry calculations alone.
A representative case involving a second-order correction due to mixing between close-lying levels is in-

cluded.

I ~ INTRODUCTION

A useful check on the crystal potential used in an
electronic band-structure calculation may be ob-
tained from a first-principles determination of de-
formation potentials if these can be checked against
experimentally determined values. Deformation
potentials are also pertinent to electron-phonon
calculations for long-wavelength phonons.

For transition elements, or compounds contain-
ing a transition element, a shear strain may change
the connectivity of energy bands near the Fermi en-
ergy, thus causing changes in the Fermi-surface
shape and associated physical properties.

In the present paper a perturbation approach has
been incorporated into a modified-plane-wave
(MPW) band-structure computer program' so that,
in addition to generating energy values at symmetry
points in the Brillouin zone, deformation potentials
at these points can be generated for hydrostatic,
tetragonal, or trigonal strains. Preliminary cal-
culations have been performed for copper because
tabulations of the crystal potential are readily
available. '4

The MPW formalism' is a variational procedure
in which the trial expansion functions Ithe Q, of
Eq. (I)j are symmetrized atomiclike functions
(ALF's) and symmetrized plane waves:

q„(r) =pc", y, (r) .

In the present calculation a muffin-tin potential is
used; like the orthogonalized-plane-wave (OPW)
formalism, this method is suitable for a more
general form of potential. In the MPW formalism
the perturbation calculation can be put in a quite

tractable form; ALF's of the unperturbed crystal
may be retained as expansion functions.

Under hydrostatic strain the energy shifts can
be expressed as a linear combination of two terms;
one due explicitly to the change in lattice parame-
ter, the other due to the change in crystal potential
within a unit cell. ' Since there is no change in
symmetry the degeneracies remain unchanged.

In the pure-shear case it is assumed that, to
first order, the perturbation does not change the
crystal potential within a unit cell '; i.e. , band-
structure shifts and splittings of degeneracies are
due solely to the changes in symmetry and lattice
parameters.

The strains under consideration are of the order
10,. producing band shifts of order 10 Ry, near
the precision limit of most current band-structure
calculations. A perturbation approach is pref er-
able in this range. Such an approach also saves
computer time by avoiding recalculation of the
band-structure with new lattice constants. The
algebraic expressions for the deformation poten-
tials may eventually furnish some physical insight
into the effects of strain deformation.

II. PERTURBATION PROCEDURE

In the present formulation the plane wave Q s
themselves change as stress is applied (due to
these terms containing the lattice constant explic-
itly). Thus, the usual perturbation expression

cE =(g ~H„„Ig').
is replaced by

AE„=(c ~"
~

4H —E„AS
~
c ' ")
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bH;, =H;) —H;~

H,.g
———(yo~ —Vs+ V (r) ~yea), So, =(y.

~

yo.),
H', , =Q,.

~

—v'+v'(r)+~v(r) ~y,.) .

(4)

(6)

(6)

In Eq. (6) integration is over the original unde-
formed crystal; in Eq. (6) integration is over the
deformed crystal. 4$,, is defined analagously to

AHO. Equation (3) is derived in Appendix A.
Three comments concerning these equations are

in order: (i) WHO (bS,.&) is obtained algebraically
by expanding H;, (S,', )in a .Taylor series (.ii) In
the present formulation both Ho, S,', and H, » 8;,
must be expressed in the lower (tetragonal or tri-
gonal) symmetry for these two cases which change
the crystal symmetry (i.ii) As discussed above,
&V(y) is zero for tetragonal and trigonal strains
which preserve the unit cell volume.

Since tetragonal and trigonal strains break the
original cubic symmetry, the degeneracy of the un-
perturbed levels may be lifted by the perturbation.
This degeneracy presents no problem, however,
since the numerical calculation is formulated in
terms of the lower symmetry. Stated differently,
use of the irreducible representations of the lower
symmetry automatically selects the "correct linear
combination" of the original degenerate eigenfunc-
tions. Care is required, however, for nearly de-
generate levels which are associated with the same
irreducible representation of the lower symmetry.
For example, in Cu there are two X2 and X, levels
separated by only about 0.01 Ry; under trigonal
strain one of the two trigonal D representations
compatible with X, is also compatible with X~ so
that there can be "mixing" between the original X~
and X5 levels. To a good approximation' this mix-
ing adds an additional shift,

~ &'&E =+ (~Z„)a/(E„'- Z.'),
where

same section of the computer program where the
corresponding H;,. and S&& integrals are formed.
(Explicit AS;, and 6H;, expressions for hydrostatic,
tetragonal, and trigonal strains are given in Ap-
pendix C. ) These hH;; and bS;, integrals are
stored while the E„and c " are determined varia-
tionally. Equation (3) is then evaluated giving AE„.

IV. NUMERICAL RESULTS

Results of computer calculations for the symme-
try points I",X and L of copper for the hydrostatic,
tetragonal, and trigonal cases are given in Tables
I, II, and III, respectively. Energy shifts for X~
and X5 (under trigonal strain) including mixing be-
tween levels are listed in Table IV. Strain com-
ponents are as defined by Juras and Segall. This
corresponds to Kittel's" notation except for the
trigonal case where Kittel's —,'e is replaced by e.
The V (r) potential used in all calculations in the
present work is a slightly modified version of the
Chodorow' potential. (This modification causes
the E levels calculated here to differ slightly'3
from those calculated by Burdick. '

) The &V(x)
used for the hydrostatic case i.s taken from Davis
et al. ; they did not use the Chodorow potential but
generated strain-dependent potentials. The shifts
computed by Davis et al. are given in Table I for
comparison.

For the tetragonal case 4E has been computed
for I', X(z), X(x), and L(—,

'
—,
'

&). Since a tetragonal
strain which singles out the z axis was chosen,
X(x) =X(y) cX(s). For the trigonal case hE has
been computed for I', X, L(—,

'
—,
'

—,'), and L( ,' —,
'

—,'). Since-
the trigonal strain is chosen to be along the J111]
axis

&

TAPI E I. Shifts in energy for some high-symmetry
states of Cn for hydrostatic strain (e=6a/a0=-0. 005).
Shifts calculated by Davis et al. are given in column five
for comparison. All energies are in Ry.

(co, n jgH —E &S ~co,~)

E„=-(Z'„+ZQ/2, State EO Perturbation
by differences
(present work) by differencesb

and AH and hS are as defined in Eqs. (4)-(6).

III ~ NUMERICAL COMPUTATION

For hydrostatic strain, the irreducible repre-
sentations used are simply those of the cubic
group. For tetragonal/trigonal strains compati-
bility tables are used to determine which tetrago-
nal/trigonal representations are compatible with
the cubic representation for the level in question.
(Compatibility tables for the 1',X, and L points
are given in Appendix B.) The appropriate sym-
metrized plane waves and ALF's are then deter-
mined and an "E "band-structure calculation is
made. For computational convenience the appro-
priate &II;; and 4S,J integrals are evaluated in the

x4.

X6

gM
3

11

Ll

—0. 5621

—0.6233

—1.0497

—0. 2337

—0.5053

—0. 5207

—0. 0919

—0. 4289

—0.5150

—0.6270

—0.7654

—0. 0020

—0 ~ 0035

—0.0109

—0.0032

—O. 0010

—0.0013

0. 0045

—0.0058

—0. 0013

—0. 0037

—0. 0075

—0.0103

—0.0032

—0.0009

0. 0044

—0.0056

—0.0012

—0.0036

—0.0075

—0.0028

—0.0042

—0.0097

—0.0018

—O. OO16

—0, 0019

0.0046

—0. 0046

—0. 0019

—0. 0043

—O. 0071

BSW labels (Ref. 22). The superscripts u and l indi-
cate upper and lower levels, respectively.

"Reference 4.
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TABLE II. Deformation potentials of some &, X, l.
states of Cu for tetragonal strain calculated by perturba-
tion theory. Shifts calculated by Juras and Segall are
given in column five for comparison. Ratios predicted
by the Wigner-Eckart theorem are given in column six.
All energy entries are in Ry.

TABLE III. Deformation potentials of some I', X, I.
states of Cu for trigonal strain calculated by perturba-
tion theory. Shifts calculated by Juras and Segall are
given in column five for comparison. Ratios predicted
by the Wigner-Eckart theorem are given in column six.
All energy entries are in By.

Unstrained Strained
state state Eo

Deformation potentials
in Ry per unit strain

This work Juras
and Segall'

Predicted
ratio

Uns trained Strained"
state state EO

Deformation potentials
in Ry per unit strain

This work Juras
and Segall'

Predicted
ratio

I'25'

—0.5621 —0.2716 -0.2740
l2 -0.5621 0.2716 0.2740

—0.6233 —0.3188 —0.3400
rg(Dfi) —0.6233 0.1594 0. 1700
rs(D22) —0.6233 0.1594 0.1700

—2b
b

b

r3(Df f} —0.5618 0.0000 0.0000
1 3 (D2P) —O. 5618 0.0000 0.0000

r, —0.6230 -0. 8394 —0.8262
r3(Dii) —O. 6230 0.4196 O. 4131
r3(D22) —0.6230 0.4196 0.4131

—2b

b

b

rf —l.0468 0.0000 —1.0461 0, 0000

X4. Z4t
X3.

—0.2339
—0.2339

—1.5901 —1.6533
0.7951

—2b

b

Di
D3

—O. 49GG O. 0050 O. OOOG

—0.4966 —0, 0050 —0.0006
b

—b

Z5(Dii)
Z5(D22)

X2

—0.5056
—0.5056
—0.5056
—0.5056

—0.0282 —0.0410
—0.0282 —0. 0410

O. 1981
—0.1699

-b
—b

I
sum

LM

D2

L,
Ai

—0.5128

0 0854
—0.0854

—2. 9930
0.9976

—3, 1355

0. 0000" 0.Oooo

Xi

Z2 —0.5180 0.0248 0.0110
Xi —0.5180 —0.0124

Z3 —0.7275 0.0728 0.0500
X3 —0.7275 —0.0364

Zi —0.7633 —0.0474 —0.0420
Xi —0.7633 0.0237

Ni —0.0854 0.0000 0.0000

N4 —0.4290 0.0000 0.0000

2b
—b

2b
-b
—2b

b

L2i

LQ
3

Ll

L~i

A~

L3 (Dii)
L3 (D22)

Ai
A3

L3(Dii)

Ai
A2

—0.4290
—0.4290

—O. 5O96
—0. 5096
—O. 5O96
—O. 5096

—O. 6221
—0.6221
—O. 6221
—0.6221

—2. 2808
O. 7602

—0 1580
—O. 1580

0 2558
0.3612

0.2S44
0, 2844

—O. 7342
0.544G

—2. 3434

—0.2550*
—0.2550*
—0.2901*

O. 4GO1*

0.2369~
0.2369*

—0.7488+
0.5930~

—3b

—gb
1

—~b
sum
tl'=- sb

kb

yb
sum

I = —stb

L"
3 Ni —0.5096 0.1032 0.1210*

N3 —0.5096 —0.1032 —0.1210~
LLi Li —O. 7G05 —0.1724

Ai —0.7605 0.0574

—0.1950 —3b
b

Ni —0.6221 —0.2547 —0.2678*
N2 —0.6221 0.2547 0.2678*

Ng —0.7605 0.0000 0.0000

88%' labels (Ref. 22).
Tetragonal I'; and Z;(001) equal X& of BSW. X(100)

and N are defined in Tables VI and VII, respectively.
'The values marked with an asterisk are from Ref. 9;

the rest are from Ref. 8.

of BSW. D and

marked with an
are from Ref. 8.
only.

V. SYMMETRY CONSIDERATIONS

aBSW labels (Ref. 22).
"Trigonal I' and I (~~~) equal L,

A(pyy) are defined in Table VII.
cReferences 8 and 9. The values

asterisk are from Ref. 9; the rest
"This includes first-order terms

From Tables II and III it can readily be seen that
the numerical calculations satisfy the predicted
ratios (see Sec. V) excellently. ' For comparison,
the 4E values obtained by Juras and Segall '9 using
a Green's function method are included in Tables
II-IV; agreement between the present values and
theirs is reasonably good. '5 For a discussion of
the limited experimental data available see Refs.
8 and 9.

It is well known that a number of predictions can
be made from symmetry considerations alone.
These predictions allow an "economy of computa-
tion" and/or may serve as a check on the numeri-
cal computation.

The simplest prediction that can be made from
symmetry alone concerns degeneracies. If a
three-dimensional cubic representation is com-
patible with both a one-dimensional and a two-di-
mensional tetragonal representation, for example,
and if there is any energy shift due to the perturba-
tion, then the associated threefold degenerate

TABLE IV. Energy shifts for the X2 and X5 representations of Cu for trigonal strain calculated
by perturbation theory. The values computed by Juras and Segall are included for comparison.
Columns four and six give the first-order shift; columns five and seven give the second-order
shift (due to mixing between levels). All energy entries are in Ry for e =0.001.

Unstrained
state

Strained
state EO

Present work
First order Second order

Juras and Segall
First order Second order

D2

D2

—0.4966
—0.5128

—5.0x10 6

0.0
3.9x10 6

—3.9 x10-'
—0.6 x10 6 10.3 x10 8

aReference 8.
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level will split into a nondegenerate level and a
twofold degenerate level.

The Wigner-Eckart matrix-element theorem'
can be used to predict the ratios of these splittings.
The theorem may be stated in the form'

(y, I oy, I p ~) = E(g, g, o, o', y) (g„,. Igy „Ig,),
(IO)

where n and p label representations and i,j, and
k label "rows" of representations; the g; are a
set of partner" functions, as are the g, . The
important point is that the numerical factor E is
independent of the row labels; thus, by using sim-
ple standard functions (like x, y, z or yz, xz, xy,
etc. ) for the g; and g, „, one may quickly calcu-
late ratios such as

(y. , Io„,Iy...)/(y zIO„, Iy

It is not necessary to know the tj; and 0, ~ explic-
itly; their transformation properties are sufficient.
The applicability of the Wigner-Eckart theorem to
the present perturbation formulation is shown in
Appendix D.

Once the symmetry of the equivalent operator"
has been established (Appendix D), standard tables
may be used (or readily constructed) to give the
various splitting ratios. It is found, for example,
that for the tetragonal case, the twofold degenerate
level X~(z) remains degenerate and has a shift
which is exactly balanced by the net shifts associ-
ated with the splitting of the equivalent levels on the
x and y axes of k space, i. e. , X~(x) and X,(y).

The previous example is part of a more general
result; from symmetry considerations alone the
net first-order level shift for a given type of k
point must be zero for strains that preserve cell
volume. The argument is as foHows: For a tetrag-
onal strain which singles out the z axis the
' equivalent" perturbing Hamiltonian has symmetry-
properties represented by the function 2z -x —y,
as shown in Appendix D. If the x axis were singled
out the corresponding function would be 2x -y —z;
for the y axis, 2y —z -x~. If all three strains
were applied the net shift would be associated with
an operator represented by the sum of the three
functions listed; since this sum is zero, the net
shift for allthree strains at any k point must be
zero, and thus the net shift for all k points of a
particular type must be zero. This implies that
the net shift for all k points of a. given type, for
any one of the three strains above, must be zero,

. since, due to the original cubic symmetry, the net
shift with z unique cannot differ from the net shift
with x or y unique. A similar argument holds for
trigonal strain.

For the I' point, or any point of k space such that

all independent points of the same "type" must be-
have identically due to symmetry (such as I- under
tetragonal strain, for example), one can use this
"center-of-gravity preservation, " in conjunction
with compatibility (Appendix B), to predict ratios
of energy shifts, thus dispensing with the matrix-
element theorem for these points.

For symmetry points not satisfying the above
conditions (e. g. , X under tetragonal strain, t. un-
der trigonal strain) the matrix-element theorem
provides more inf ormation than one obtains from
the combination of compatibility and center-of-
gravity preservation. For example, under tetrag-
onal strain compatibility shows (see Table V and
accompanying text) that Xs(z) does not split and
that X5(x) and X5(y) each split into two levels. This
information, combined with the net zero shUt for
the set of three independent I points, cannot dis-
tinguish between case I, in which X, (z) does not
shift while X,(x) and X5(y) each split evenly, and
case II, in which X5(x) and X5(y) each split uneven-
ly while X5(z) shifts just enough to cancel the net
X, (x) and X5(y) shifts. The matrix-element theo-
rem does distinguish and predicts case II.

VI. SUMMARY AND CONCLUSIONS

First-order energy shifts and splittings for sev-
eral symmetry points in the Brillouin zone of cop-
per under hydrostatic, tetragonal, and trigonal
strain are listed in Tables I, II, and III, respec-
tively; the shear results are tabulated in the form
of deformation potentials. Second-order results
for a representative case are tabulated in Table
IV. The perturbation and difference calculations
for the hydrostatic case with e = —0.005 are in good
agreement. The I', level shows the largest shift of
those listed. Agreement with the difference calcu-
lations of Davis, Faulkner, and Joy4 (DFJ) seems
reasonable, considering that the two calculations
were performed with different crystal potentials,
only the change in potential being the same for both.
The largest discrepancy between the present re-
sults and the DFJ calculation is for the X4, shift.

The calculated shear shifts and splittings are
consistent with the ratios predicted from symmetry
considerations alone. Most of these results also
show good agreement with those of Juras and Se-
galle'; differences may be due in part to the slight
difference in potentials between the two calcula-
tions. '~ Under pure shear the I', level does not
shift. For tetragonal shear the X~, (z) level shows
the largest deformation potential (of those listed);
again, the largest discrepancy between the two sets
of calculations occurs for this level. For trigonal
shear the L", level has the largest deformation po-
tential (of those listed) and also shows the largest
discrepancy between the two sets of calculations.



BAND-STRUCTURE PERTURBATIONS IN STRAINED CRYSTALS 1479

Second-order effects for the X5-X~ interaction
differ from the Juras-Segall results. '
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APPENDIX A: DERIVATION OF EQ. (3) OF TEXT

As in the tetragonal case, compatibility tables
are constructed showing how various irreducible
representations of the point groups of 0„ transform
into those of D5M (Table VIII). The trigonal strain
used in this paper singles out the [111]axis; for
this case the irreducible trigonal representations
for L(—,

'
—,
'

—,') after deformation are identical to the

TABLE V. Compatibility relations for the representa-
tions of various point groups connecting the bct structure
(D4&) with the fcc structure (0&). See text for explanation.
of notation.

0„' D,„i7 0„ D4I
17

X3

In Table V the labeling of the representations listed
under 0„ is that of Bouckaert et al. ~2 (BSW); I', of
D4„equals X; of BSW; X; and N; of D4„are defined
in Tables VI and VII, respectively.

B. fcc-trigonal (Ref. 23)

In matrix form the Schrodinger equation may be
written

r2 X5
X2
X4

Mc =0,
with

For the strained crystal Eq. (A1) becomes

(Al)

(A2)

I'25

I'i
I'2

r4
r,

Xi, etc.

Li
L2

Xi,

Ni
N2

(M+~M)(c+~c) =-O . (AS)

Keeping first-order terms and multiplying by c,
one obtains X, (100)

etc.

Xi L il

Ni
N2

(c
I
~MI c& =o (A4)

Xi L2. N4

since g, c, M;, = 0 from the Hermiticity of M. From
Eq. (A2),

L3. N3
N

4M=&H —E bS-S &E (A5)

Substituting Eg. (A5) into (A4) and using (c IS' Ic)
=1, one obtains Eg. (S) of the main text,

APPENDIX B: COMPATIBILITY RELATIONS

A. fcc-bct

Considering the body-centered tetragonal (bct)
structure (D47) as a deformation~ of the fcc struc-
ture (0„), compatibility tables are constructed, in
the sense of Parmenter, ' showing how various ir-
reducible representations of the point groups of 0„
transform into those of D4„' (Table V). The tetrag-
onal strain used in this paper singles out the z

axis; for this case the irreducible bct representa-
tions for Z(001) after deformation are identical to
the corresponding fcc representations for X(001)
before deformation. (The x, y, and z axes used in
this Appendix are those of the original fcc lattice. )

E C4 (x) C4 (y ) C4 (z) J JC4 (x) JC4 (y) JC4 (z)

x
X) 1 —1 1 —1 1 —1

Xs 1 1 —1 —1 1 1

X4 1 —1 —1 1 1 —1

1
1

—1
—1

1
—1
—1

1

TABLE VII. Character table for N of D4&. (This table
is also valid for A and D of DM. )

Ni
N2

N3

N4

C2 JC2

1
—1
—1

1

TABLE VI. Character table for X(100)of D4&. For
Xi, -X4, the character for R equals that of the correspond-
ing unprimed representation; the character for JR is the
negative of that for the corresponding R.
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0 D3~
5 0

TABLE VIII. Compatibility relations for the represen-
tations of various point groups connecting the trigonal
structure (D&) with the fcc structure (0&). See text for
explanation of notation. The sum on R runs over all operations of the group.

Symmetrized plane waves have the form

etc.

X(.

X2,

X3,

X4~

X)i

L2

D3

D3

A(
A2

A)
A2

—P D»(R) exp(iAk, . ~ r)
g z

where

k,. -=k+K)

The Kz are reciprocal-lattice vectors.

C. ALF-ALF elements

AS)~ =0
S~a„=~„u„,(r) ~V(r) u„, , (r) dr,

0

where

(cl)

(c2)

X2
X3
X4

X5

D2
D(
D2

Di
D2

L&,

L2I
A3
A4

A3
A4

A~q = Yq D$f g q ~

D. ALF-plane-wave elements

~S,, =- D„(ft) ~e„,f, Y, —'I k, k,

(c3)
corresponding fcc representations before deforma-
tion. In Table VIII the labeling of the representa-
tions listed under 0„ is that of BSW; I"; of D3$
equals I, of BSW; D, and A, are identical to ¹ of
Table VII.

APPENDIX C' EXPLICIT FIRST ORDER Mij AND ~ij
EXPRESSIONS FOR HYDROSTATIC, TETRAGONAL,

AND TRIGONAL STRAINS

A. Definitions

S

J„,=- u„, (r )j,(k,r)r dr.
0

S

u„,(r) Sj,(k,r)r dr
0

hj, (k~r) = (1/k~&) (k& ~ dk&) [lj, (k,.r) —kpj...(k~r)], '

AY —= Ak~„+ ' 4k) + 4k~

The Y, are cubic harmonics (Y, =1, Y~ =z/r,
etc. ). Q is the volume of the primitive cell and &&~

its change under strain; s is the radius of the muf-
fin-tin sphere. b V(r) is the change in the muffin-
tin potential; &V is the change in potential in the
"interstitial" region. For pure shear it is assumed
that EV(r) =XV=0. For symmetrization, g is the
number of elements in the group of k, h is the di-
mensionality of the representation, and the D»'s
are irreducible representation matrix elements.

B. Basis functions in the MPW method

The trial wave function used in the variational
procedure is given by Eq. (1) of the main text.
An unsymmetrized ALP has the form

i'[u„,( )/rr] Y,(r/r),
where u„,(r)/r is the radial part of the atomic func-
tion adjusted to approach zero with zero slope at
x ~s. The symrnetrized ALF takes on the form

(For the hydrostatic case &Y, =O. )

biiu =2(k) ~ hkj) S(q+k; ESO +G

where

g =—g D»(B)(~B„,Z„Y,+B„,S,~Y,),
with

B„,=— u„,(r)j, (k~r) V'(r)r dr
0

S

AB„,= u„,(r) bj, (k~r) V (r)rdr
0

S

+ u„&(r)j &(k;r) AV(r)rdr
0

E. Plane-wave-plane-wave elements

ISA = (bQ/A) 8))

with

(c4)

(c5)
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S;J = Q Dqq(R)5(k;, R ki) .4' „
bH;; = (&V+2k; ~ Eked) S;)+(V+ka) AS'

+—g D, s(R) [Qi+Qa]

where

and

(c6)

tations) .
The set of basis functions for the representation

chosen consists of unsymmetrized plane waves, all
having the same reduced wave vector k, as well as
Bloch sums of ALP's with the same wave vector.
In addition to these functions the set includes simi-
lar functions with wave vectors corresponding to the
remaining members of the "star of k" in the un-
strained crystal. ~4 The basis functions for the un-
strained crystal clearly transform into one another
under the point operations of the cubic group 0„.
It is thus possible to express an arbitrary oper-
ator, PR of 0„, in this representation; this is des-
ignated as the matrix P~. Designating an arbitrary
basis function as P, (r), one finds

&z 0& =Z 4~[PR]~i

Note that

k,. ~ hk = —ep&3, hydrostatic case

where [Ps]&, is the jith, element of the matrix Ps.
In this representation wave functions" (i.e. , col-
umn vectors) transform according to the rule

= —e(2k~, —k;„—k»), tetragonal case

= —2e(k&„k» + kz, kz, + k» k&,), trigonal case.

Similar expressions hold for K ~ 4K.

APPENDIX D: APPLICABILITY OF SIGNER-ECKART
THEOREM

In the usual formulation of perturbation theory,
in which the perturbation operator transforms as
a basis function for an irreducible representation
of the symmetry group, there is an established
procedure for determining how degeneracies are
removed by the perturbation. Application of the
Wigner-Eckart theorem'6 yields information as to
the number of split-off levels and the ratios of the
splittings. In the present formulation both the
crystalline potential and the expansion functions
are changed by the strain. The operators and ei-
genfunctions are first expressed in a representa-
tion which depends on the state of strain. In this
representation the Schrodinger equation is ex-
pressed as the matrix eigenvalue equation

Hc =ESc

which, in a truncated representation, is finite di-
mensional. The "operators" (i.e.-, matrices) H

and S for the strained crystal can be written as

H=H +4H

S =S'+4S
(O2a)

(D2b)

where H and S apply to the unstrained crystal and
4H, 4S are proportional to the strain. To estab-
lish the applicability of the Wigner-Eckart theorem
one first has to examine what is meant by the trans-
formation properties of H, S, and the eigenfunctions
c" under point operations (proper and improper ro-

c- P~e (O4a)

while operators" (i.e. , matrices) transform like

(D4b)

AE„=(co'"~b,H —E'„ES~c'") .

Q- PsQPs-i .
The operators H and S' are clearly invariant under
the operations of the cubic group, whereas the op-
erators H, S, 4H, and 4S are invariant under the
subgroup of point operations corresponding to the
tetragonal (trigonal) group. To examine how these
latter operators transform under 0„, one first
takes positive strain as corresponding to elongation
of the crystal along z with contraction along x and

y sufficient to conserve volume (tetragonal case).
One then imagines a similar strain in which the x
axis is unique, and a third strain in which the y
axis is unique. Since the perturbation is linear in
the strain and since the operations of O„merely
permute x, y, and z with possible sign changes,
the set of three operators above must transform
among themselves under the operations of 0„.
Moreover, since the superposition of equal strain
parameters for each of x, y, and z corresponds to
zero strain (due to the volume-preservation condi-
tion), one can easily deduce that the three strains
correspond to a two-dimensional irreducible rep-
resentation of O„(i.e. , only two of the three strains
are independent). One then readily deduces that the
operators 4Hand ~S transform as the basis func-
tion 2z —x —g of I'» of 0„. For the trigonal case
similar arguments show that 4H and ~S transform
like yz+xe+xy, the sum of the three (standard)
basis functions of I'~5, of 0„.

In Dirac notation the perturbation theoretic re-
sult is, to first order, ~5
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The c '" are eigenvectors of the unperturbed Ham-
iltonian; those which are degenerate with one
another will be different partners of a given
irreducible representation of 0„. Since the

operator in Eq. (D5) is also a basis function
for a representation of 0„, all the conditions
for the applicability of the Wigner-Eckart theo-
rem are fulfilled.
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