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Phonon viscosity and wide-angle phonon scattering in superfluid helium*
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Maris's numerical results for the viscosity of phonons with anomalous dispersion in superfluid He' are
obtained by a simplified method which involves variational calculation of the eigenvalues of the
completely continuous part of the collision integral operator in the phonon Boltzmann equation. We
also obtain an analytic expression relating a sequence of wide-angle relaxation times to the phonon
frequency anomaly.

I. INTRODUCTION

In superfluid helium 4 at saturated vapor pres-
sure, there is increasing evidence that the disper-
sion relation for the phonon excitation spectrum
is anomalous at long wavelengths; the phonon fre-
quency increases slightly faster than linearly in
the phonon wave vector. ' Such an anomalous dis-
persion influences the interactions between pho-
nons. In particular, the dominant phonon scatter-
ing process at low temperatures is the small-
angle three-phonon collision, and wide-angle scat-
tering is a slow process resulting from many back-
to-back small-angle collisions. A central pi oblem
in discussing the hydrodynamics of the phonon sys-
tern is to correctly identify and treat the long re-
laxation times characterizing wide-angle scattering.

In a recent series of papers, 2 Maris has calcu-
lated a number of transport properties of the pho-
nons in superfluid helium, under the assumption of
anomalous phonon dispersion. His results for the
viscosity and for the first-sound velocity and at-
tenuation are in striking agreement with experi-
ment. Fundamental to Maris's method is a purely
numerical solution of the phonon. Boltzmann equa-
tion. In this note we shall show that Maris's result
for the phonon viscosity may be obtained to within
10% by a very much simpler calculation, whose
central result is a formula explicitly relating a se-
quence of wide-angle relaxation times to the phonon
frequency anomaly.

We begin by consolidating in Sec. II some known
features of the structure of the collision integral
operator in the phonon Boltzmann equation, to ob-
tain a compact formal representation of the colli-
sion. integral and the phonon viscosity. In Sec. III
a variational estimate is made of the low-lying ei-
genvalues of the completely continuous part of the
collision integral. These eigenvalues form a se-
quence of wide-angle relaxation rates, whose tem-
perature dependence we explicitly relate to the
wave-vector dependence of the phonon-frequency
anomaly. The wide-angle relaxation rates are
measurable through several different experimental
quantities, including the phonon viscosity (Sec. IV)
and the velocity and attenuation of heat pulses.

II ~ FORMAL EXPRESSION FOR THE COLLISION
INTEGRAL

In this section we shall discuss the structure of
the linearized three-phonon collision integral in the
phonon Boltzmann equation. We rely heavily on the
work of Buot, Cercignani, and Maris, ~ whose no-
tation we follow. Our goal is to establish a basis
for a variational treatment of the eigenvalue spec-
trum of the collision integral, and certain formal
complications arise because this spectrum is con-
tinuous.

In the absence of superfluid motion, the Boltz-
mann equation describing the relaxation of a non-
equilibrium distribution of phonons i.s

N(q, rt) is the phonon distribution function, which
we write in terms of the equilibrium Bose distribu-
tion N (q) as

N(q, rt) = N (q) + [N (N + 1)j'+g(q, rt)

where P= (kaT) ', &u, is the phonon frequency, and

v;=V;+, . C(N) is the collision integral operator. a

For spatially uniform disturbances of the form
tt(q, t) =g(q)e 't', the Boltzmann equation (1) reduces
to the eigenvalue problem

where C is the symmetrized collision-integral op-
erator defined by~

C(g(q)) = 2 sinh( —,'Ph e, )C(N) .

The eigenvalue spectrum of —C thus gives the spec-
trum of relaxation rates 1/T of different distur-
bances from equilibrium. C is rotationally invari-
ant, and the solutions of (2) are of the form2

where T, is a spherical harmonic. Energy and mo-
mentum conservation in phonon collisions imply a
fourfold degenerate discrete eigenvalue 1/v = 0,
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with eigenfunctions

q„,= [~,/sinh(-, 'P@~,)]Y', (8, y)

0o. =[q/sinh(-'P~~, )]Y (8, @)

c(ii(j))= —r (q)q(q) +z'(4(q)) .

1"(q) is the single-phonon. relaxation rate due to
small-angle phonon scattering, and E;s a sym-
metric integral operator. Buot has shown that E
is relatively compact with respect to I", i. e. , E is
completely continuous in a Hilbert space where the
inner product contains a weight factor 1'(q). Thus
the eigenvalue equation

&(q „,.(q)) = (1 —&.&)r(q)q ...(i) (4)

possesses a purely point spectrum of eigenvalues
(which we write a, s 1 —X„,), and orthonormal eigen-
functions:

(rq„... q„,.)-=~dqr(q)q.*,.(q)q'. ..(q)

Otherwise the spectrum of —C is known~'4'6 to be
purely continuous, extending down to 1/r =0.

Naris numerically solved the eigenvalue equation
(2) by replacing C by a matrix operator on a finite
mesh of points in q space. The matrix has of
course a purely point spectrum, but the integral
operator has a continuous spectrum, and to pre-
serve this feature we shall discuss a somewhat dif-
ferent eigenvalue problem than (2). C has the
structure~':

c(q„,„)= —z„,r(q)q'„,„(q).

Let the index g denote the number of radial nodes
of p„, . Two nodeless eigenfunctions are apparent
from energy and momentum conservation:

4 Oo, (j)= [(g,/sinh(-, 'Ph(u, )]Y,'(8&), zoo = 0,
yo,„(j)= [q/sinh(-, 'Ph~, )]YP(8$), Ao, = 0 .

All other A.„,'s are positive, as is apparent from (6)
and the fact that C is negative semidefinite. Equa-
tion (6) also shows that if X„,«1 the time scale of
relaxation of cp„, is slow. Maris's numerical work
shows the presence of such slowly relaxing distur-
bances, which he interpreted roughly as follows:
Consider a, disturbance whose (nodeless) radial dis-
tribution of surplus phonons is nearly conserved in
collisions, yo, (q) sinh(-,'Phw, ) =~, or q. The relax-
ation is then primarily an angular relaxation, in-
volving the scattering of surplus phonons from di-
rections where Y, (8$) is positive to directions
where it is negative. If / is small enough so that
Y, varies slowly over the small angles between
three interacting phonons, the angular relaxation
must couple phonons over wide angles via many
successive small-angle scatterings. Angular re-
laxation is then a slow diffusionlike process. Thus
for each small enough /, there is one nodeless ra-
dial eigenfunction yo, (q) with a small Xo, .

III. APPROXIMATE WIDE-ANGLE RELAXATION RATES

Since the eigenvalue problem for K, Eq. (4), has
a purely point spectrum, the simple variational
principle

& then has the spectral representation

&(t(~)) = r (q)g (1 —&„,)q ...(q)(rq'. .., (),

holds for the sma. liest X; 4„(q)is a radially node-
less trial function approximating the eigenfunction

Dropping the subscript 0 and rearranging,
using (3), we obtain

{4... —c(4,„))/(ry...y,.) .

and thus from Eq. (3)

C(P(q))=- r(q) 0-g (1 —~.i)q'.i.(r&.i. &)
num

(6)
In particular,

y,„(j)= [4,(q)/sinh(-, 'Pew, )]Y", (84 ), (6)

the numerator of (7) is found to be

We seek to minimize the right-hand side. Using
Maris's expression for the collision integral and
with

8Cp(Qp+ 1) I 2 t2 qq'q"
(@g,—C(Q( )) =

i dq dq q q
~

d(cos8) 5((d & 8 ') ~ h(z p@ ) h(x)@ )
. h(zp- )

& (4', (q) + 4', (q') + 4', (q") —24, (q)4, (q')P, (cos8)

—24, ( ) q(4q )P, (c s o) 82 +(4) q(4)q(Pc s o)8] .
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Here co, uo, and p are the zero-temperature sound
velocity, Gruneisen constant, and density of liquid
helium; q" =)q —q' ); 0, 0', and 8" are, respec-
tively, the angles between q and q', q and q —q',
and q' and q —q'; the P, 's are Legendre polynomi. —

als; we have assumed that the radial function C, (q)
is real. We simplify (9) as follows:

(a) Since energy conservation restricts 8, 8', a, nd
8" to small angles, we expand the three Legendre
polynomials in powers of 1 —cos to second order:

P, (cosH)~1 —I. (1 —cosH)+ ,'I. (I,-' —1)(l —cosH),

L —= —,'l(I+1),
and similarly for the other two.

(b) We write the phonon frequency a.s &, = cp[q
+h(q)]. h(q) is the anomalous part, and is small
and positive for small q. An explicit form for A(q)
need not yet be assumed. The energy conservation
condition e(q) = &u(q )+ e(l j—j' I) then gives, to
lowest order,

+, (q) = q (L'-- I)~(q)+ o(L'(L'-1)~') (10)

makes the curly bracket zero for l =0, 1 and of or-
der h for I & 2, while the denominator in (7) is of
zeroth order in h. To present results we rewrite
(7) as

~, .(1/, )/(1/ „),
I/~, -=(0, , —C(0( ))/(0(, 0( ),

With the geometrical approximations

1 —c os 8' ~ [q'2/(q —q') P] (1 —c os 8),
1 —cosH"= [q /(q —q') ](1—cosH),

the curly bracket in (9) can then be expressed en-
tirely in. terms of C, 's and 6's.

(c) We write the radial function C, (q) as a series
in powers of h(q) and try to minimize the curly
bracket in (9). It may be verified that the choice

1 —cos8 = [(q —q')/qq'][A(q) —h(q') —h(q —q')]+0(h ) . Equations (8)-(10) then give (to order b,'):

1 15h(up+ 1)P 2k' T
7, 8~'p ec,

(i2)

The double integral is over the doma. in

q & q' & 0, b, (q) —a(q') —&(q —q') & 0,
which follows from the energy —conservation 5

function in (9).
The inner product (I'P,„,Q, ) is given by the

right-hand side of (9) but without the last three
terms involving Legendre polynomials in the curly
bracket. With (8) and (10), we then obtain an ex-
pression for 1/7, which (to zeroth order in h) is
identical to the right-hand side of (12) except for
the replacement

L'(L —1)-.[&(q) - &(q )

—a(q —q')]' - q'+ q" + (q —q')' .

pretation is suggested by Eq. (6), along with (11):
the continuous spectrum of —C has a high density
of eigenvalues not only near I/~„, the inverse life-
time of a, thermal phonon due to small-angle scat-
tering, but also near the smaller inverse lifetimes
1/v', . This is at least true for small enough l so
that the approximations following Eq. (9) are valid.

This interpretation is borne out by comparison
with Maris's numerical solution of the eigenvalue
equation for C. We have numerically evaluated the
double integral in (12), and the similar integral in
the expression for 1/w„, at 0.25 'K for the dj.sper-
sion relation

The domain of integration is the same as for (12).
The central result of this work is Eq. (12), re-

lating the phonon-frequency anomaly to a sequence
of inverse lifetimes I/v, . In Sec. IV we shall show
that ~~ is the viscosity lifetime. The lifetimes v,
characterize the relaxation, by wide-angle scatter-
ing of phonons, of disturbances whose radial distri-
butions of surplus phonons are nearly conserved in
collisions and whose angular distributions vary
slowly. Except for /=0, 1, 1/7, is not a, discrete
eigenvalue of the collision integral —C. Its inter-

with y= 1.11 A, q„=0. 5418 A ', q~ = 0. 3322 A '
(this is Maris's dispersion relation D) Other pa-.
rameters were chosen in agreement with Maris.
Results for I/v, are shown in Fig. 1, along with the
smallest eigenvalue for each I which Maris found
for a finite matrix approximation to C. I/r2 from
(12) is 15% larger than Maris's lowest l = 2 eigen-
value. For larger l, the sequence (12) increasingly
diverges from Maris's eigenvalues, due to the
gradual failure of the approximations following
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FIG. 1. Relaxation rates vs angular momentum.
denote wide- and small-angle relaxation rates 1/v& and

1/T'i~ as discussed in Sec. III; 1/w~~ is independent of l in
the approximations of Sec. III. x denotes the lowest
eigenvalues for each l found by Maris (Ref. 2). All cal-
culations are for Maris's dispersion relation D and

0. 25 K.

1/r2 given by (12) a.re not in principle the same
quantity, but we show in the Appendix that Eq. (14)
i.s also a valid approximation for the viscosity with

our ~3. Consequently, we have evaluated 7.
2 from

(12) as a function of temperature, and shall com-
pare with Maris's calculation and with Whitworth's
measurements' of the viscosity lifetime 15'/c„T.
Two different models for the anomalous dispersion
were investigated, Maris s dispersion relation D,
Eq. (13), and the polynomial dispersion relation

(u, = c,(q+ yq'- 5q') .
Figure 2 shows the results. Maris's dispersion
relation jg fits Whitworth's data well in his calcu-
lation, and it continues to give a good fit in our
evaluation of v~, which differs from Maris's value
by less than 10% over the entire temperature range
shown. The polynomial dispersion relation fits with
@=0.72 A2, 6=3.7 A4, as shown i.n Fig. 2, but

unique values for y and P are not very reliably de-
termined by a fit to Whitworth's data. In particu-
la.r, 5 enters the fit only in the combination (y/5)'~2,
which acts like a cutoff wave vector controlling the
temperature dependence of v2, and Whitworth's
data cover too limited a temperature range for an
unambiguous determination. Our parameters
y = 0.72 A2, (y/5)'~' = 0. 44 A ' may be compared to
y= 0. 62 A determined from an analysis of specific
heat data by Zasada and Pathriaa (who set 5 —= 0 in

the wave vector range of interest here), and the
value (y/5)'l'=0. 56 A ' estimated by J'ackle and
Kehr. '

Eq. (9). The 15% difference between 1/r2's at 0. 25
'K seems to be about the uorst possible case; one
can show that (12) is asymptotically exact as T-0
'K, and in Sec. IV we shall find that the agreement
between our 1/~, and Maris's is also better at tem-
peratures above 0. 25 'K. This latter circumstance
is probably due to the fact that 1/72 is less strongly
temperature dependent at higher temperatures, so
that slight differences in temperature dependence
between 1/va's affect their magnitudes less. How-
ever, our 1/rz and Maris's lowest i = 2 eigenvalue
are not defined by the same eigenvalue problem,
and it is an open question whether they should &z

principle be equal, even if our variational calcula-
tion could be done exactly.
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IV. EVALUATION OF THE VISCOSITY LIFETIME
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According to Maris, the normal-fluid viscosity

g of liquid helium in the temperature range below
about 0. 6 K, where the phonon contribution domi-
nates, is given approximately by

1
g $5ctl TT2

with c„the specific heat per unit volume. As dis-
cussed above, Maris's lowest eigenvalue and our

TEMPERATURE ('Kj

FIG. 2. Viscosity lifetime vs temperature. Points
are the measurements of Whitworth (Ref. 7). Upper and
lower solid curves are, respectively, Maris's calcula-
tion (Ref. 2) and the result of Eq. (12), both for Maris's
dispersion relation D. Dashed curve is the result of Eq.
(12) for the polynomial dispersion relation with parame-
ters as in Sec. IV.
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Finally, we wish to emphasize Maris's observa-
tion that the temperate. e dependence of the viscosi-
ty lifetime T~ probes the suave vector dependence of
the frequency anomaly h(q). Equation (12) provides
an explicit connection between the two, and is sim-
ple to evaluate numerically. Thus new measure-
ments of the viscosity over a wider temperature
range could readily be used to determine the form
of the anomaly more precisely.

Note added in proof. A variational calculation
of the phonon viscosity has been reported by
Jackie and Kehr (see footnote 10 of Ref. 9), who
obtained parameters in close agreement with ours
for the polynomial-dispersion-relation case. I
apologize for having overlooked the previous work
of Jackie and Kehr.

APPENDIX

The phonon contribution to the normal-fluid first
viscosity tensor may be found by solving the in-
homogeneous equation

X (q) = —C(7(q)) . (A 1 )

Here y is a traceless symmetric second-rank ten-
sor with Cartesian components

j. 2Sq ~ vq e~e~ —3& &e

4k' T sinh(-'Ph~ ) q

The viscosity tensor p,.», and the bulk viscosity p
are then given by

m=1

]. . 4p SQ ~ vg
X&

— ~2(X«+ X~~) —
18 4y T h(1 p@ )

o( 0) ~

(AS)

Equation (Al) then becomes

X =-C(0 );
with (5) above for C the solution is

I ~ 1
m PXm M 1

X
9«2m(9 2«mr Xm)

n2
(A4)

n-(») '44T
~
(X1, V'oag)~'/&oo . (Ao)

We evaluate this expression using (AS) for X~ and
the variational results (11) for Xo2 and

/(14» 4 )
1/a

with Po, given by (8) and (10). If we take +,~coq
and keep only terms of lowest (zeroth) order in the
frequency anomaly in the inner products, (A6) gives

A short calculation shows that (A2) is equivalent to

n = (») '4&.T(Xi, yi)

=(2w)-'4~. T' (-,'x„x~)-2 (r
——,

'
)~l (x„..«)~l

(A5)
using (A4) for g~. Equation (A5) is an exact formal
expression for the phonon viscosity. If Xoa«1, as
discussed in Sec. II above, one term in the sum
dominates the expression, and

„,= (2.o) '4k' (TX~, q„),
4ZXZ ~P Zg Z

(A2)

'g —
g5 cvT7P q

where c„is the specific heat per unit volume,

We define l= 2 spherical tensors whose components
X„andg„arelinear combinations of the five inde-
pendent components of X and g; in particular for

c„=(2m)
'

~

dq (S(u,)'/4k' T' sinh'(-,'Ph&, ),
and 7'2 is given by Eq. (12) above.
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