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The phase shifts associated with a muffin-tin approximation of the crystal potential were used as
parameters to represent the Fermi surface of the body-centered-cubic transition metals molybdenum and
tungsten. The band-structure formalism employed was the relativistic Korringa-Kohn-Rostoker method
and the phase-shift parameters were determined by a least-squares fit to extremal cross-sectional areas
obtained from de Haas-van Alphen data. Five-parameter fits which employed the s&/2, p &/&, p3/2 d 3/2,
and d „2phase shifts had root-mean-square errors which exceeded the estimated experimental error.
Inclusion of the f phase shifts did not significantly reduce the discrepancy. Therefore, a formalism was
developed and applied to include the nonspherical (inside-muAin-tin) corrections of the potential with
the fits truncated at d-wave scattering. With the additional two parameters thus introduced an rms
error consistent with the experimental error was obtained. As in the earlier work on noble metals, the
rms error was found to be quite insensitive to the value of the Fermi energy used.

I. INTRODUCTION

There exists a growing body of very precise ex-
perimental information, chiefly from de Haas-Van
Alphen (dHvA) experiments, on the Fermi surfa. ce
of transition metals. ' It is thus necessary to con-
dense such data into small parameter sets which,
hopefully, will yield some insight into the underly-
ing physics. An additional benefit can be obtained
if the parametrization technique is limited (by the
underlying physics) so that it cannot fit any arbitrary
Fermi surface; in this case attempts to construct a
surface from improperly interpreted data would
yield a poor representation and thus suggest a re-
examination. While pseudopotential methods have
been quite successful in the parametrization of the
Fermi surface (and band structure) of simple met-
als, a corresponding band-structure based formal-
ism for transition metals has not yet been demon-
strated. It has been suggested thai the phase shifts
associated with a muffin-tin approximation to the
periodic crystal potential are an excellent param-
eter set. This is credible since this approximate
form of the potential is regularly used in the aug-
mented-plane-wave (APW) and Korringa-Kohn-
Rostoker" (KKR) band-structure calculation
schemes with good success. In this paper we pre-
sent an application of this approach to Mo and W.
Finding it to be inadequate, me augment the param-
eter set by including the form of the nonspherical
muffin-tin corrections which are rigorously correct
only inside the muffin-tin spheres. The formalism
used is, however, a severe truncation of a more
general formulation which uses a sphere circum-
scribed on the unit cell with a step function limiting
the effects of the potential to the cell. The most

significant point, however, is that it introduces an
adequate and mell-defined representation of the non-
muffin-tin effects where the parameter fitting can
compensate for truncation errors.

In Sec. II, we review the application of the phase-
shift parametrization in the muffin-tin form and, in
Sec. III, we present the modifications necessary to
include a non-muffin-tin correction. The applica-
tion of these techniques to Mo and W are then pre-
sented and compared in Sec. IV. We conclude in
Sec. V by comparing these parametrizations to
others currently in use and speculating about the
effect of improved experimental data on the model.

II. PHASE-SHIFT PARAMETRIZATIONS

In the KKR method, the functions E„(k)where E,
k, and n are the energy, wave vector, and band in-
dex, respectively, are solutions of the secular equa-
tion

det(M ) = 0,

M= B,„,~. (k—, E)+Ev~6„.6„„,cot'q, (E). (lb)

B,„,.„(k,E) are the "structure constants" and E
is measured relative to the potential outside the
muffin-tin spheres. We require ( Q& I ——,'p which
are referred to as the reduced phase shifts. When
fitting Fermi surface data, a value of E is selected
(the Fermi energy parameter) and the phase shifts
p, are adjusted such that the constant energy sur-
faces are a best fit to experimental data.

Assume that we have available a set of experi-
mental areas A; whose associated orbits sample
the Fermi surface in some favorable manner (to
be discussed later). Let A, ('g) be the area (cor-
responding to A, ) calculated from the KKR formal-
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ism for the set of phase shifts g= f'g]. Also associ-
ated withe; are, of course, the parameters which
define the orbit (magnetic field direction, band in-
dex, and the coordinate of the orbit center). We
define the error function

BLP 2~A; (q) -A; BA; (q)

Expanding A; (q) through linear terms in a Taylor
series about 7lo (a point presumed to be near the
minimum), we obtain

T ~ 6'/+X= 0, (4a.)

where X is the total number of areas included in the
fit. Differentiation of Eq. (2) to determine a mini-
mum yields

The derivatives of the eigenvalue with respect to
'g, k, and E (which is required if Fermi velocities
are desired) are calculated by the Hellman-Feyn-
man theorem

y(n)' e~lfft y(Q
g rq 7' 7 (8a)

occurs when, on tracing an orbit around the surface,
the Fermi radius passes through a free-electron
singularity I; = (@+K„);K„is a reciprocal-lattice
vector. In that case the eigenvalue index will change
by one. Qur programs are designed to automatical-
ly change the eigenvalue index on crossing such free
electron singularities. ] From the chain rule for
partial derivatives we have

eu, BX(") - ez(")

where

2 ~A; (7i ) —A; BAc

(A;) Bvi ... (4b)

(-„) 91Vl )~
Bk

y(-.)* ~~gm
eE

y(n)I
y (ff)

7

&;=& (A;) Bn n n, Bn =a=~,

and
~'0= 0 —Uo.

(4c)

In performing the iterations one cannot always go
the "full step" in 5q resulting from the solution of
Eq. (4). For the initial iterations a step of —,

' or —,
'

of the predicted step was usually sufficient to en-
sure stability and convergence. A sign that one is
sufficiently close to the minimum of 4(g) as to per-
mit a full step is that the predicted rms error
&'('g+Bg) = 6'('g)+-,'X ~ 6 g of the succeeding iteration
not change on successive iterations.

The area and its phase shift derivative are given,
in a cylindrical coordinate system aligned with the
field, by

(5)

and

J. dg
Q 7/ »

O 8 Tj»

where k„measures the displacement of the orbit
center along the magnetic field from the origin and
k, is the radius, in the plane of the orbit, mea-
sured from the orbit center. The derivative re-
quired for Eq. (6) maybe calculated analytically.
Let X be the eigenvalue of the matrix M [see Eq.
(l)] a.ssociated with the band giving rise to the de-
sired sheet of the Fermi surface. [Although the
index n of this eigenvalue is not identical to theband
index, each sheet of the surface has an eigenvalue
index associated with it. An exception to this rule

where V'"' is the eigenvector associated with X'"'

of the secular matrix M. The derivatives of the
secular matrix M with respect to q, k, and E are
computed analytically. For maximum efficiency
the diagonalization rou:ines calculate only the de-
sired eigenvalue and eigenvector. To perform the
integrations of Eqs. (5) and (6) we must be able to
both locate the surface at a given angle and advance
to the next vector in the orbit. These two opera-
tions are accomplished using "return-to-surface"
.and "stepping" routines described elsewhere. '

For both Mo and %, it was necessary to add an im-
provement to the orbit tracing package which al-
lowed one to follow orbits where the orbit doubles
back on itself as a function of angle. This allows
us to treat the electron jack surface where the
Fermi radius is multivalued for some angles. This
was done by stepping with constant line segments
instead of constant angular increments. This, how-
ever, necessitated giving up Simpson's rule inte-
gration and using a trapezoidal rule instead. As a
result, the angular integration option was retained
and selected wherever possible.

Nonrelativistic calculations of this type with the
truncated parameter set involving only the s, p, and
d pha, se shifts have been very successful in param-
etrizing the noble-metal Fermi surfaces of Cu, Ag,
and Au. '' It is well known, however, that rela-
tivistic effects become increasingly important in
the heavier metals. The spin-independent effects
(mass-velocity, Darwin, etc. ) are actually included
by the parameter fitting into the nonrelativistic form.
Thus it is the spin-orbit interaction which is the
only new effect brought about by the inclusion of
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(K & 0),

j=I +-,', l = —(v+ I) (~&0),
(10)

with p = m;, the azimuthal quantum number. Thus
z= —1, 1, —2, 2, and —3 correspond to the s~a,
P g/ap P 3/2p 83/gp and d5/3, re spec tively . With this

PIG. 1. Perspective sketch of the Fermi surface of
W (after Girvan, Gold, and Phillips). The white lines
show the Brillouin-zone edges while the dark lines show
various extremal orbits. Only the ellipsoids associated
with the front faces of the zone are drawn.

relativistic effects. (This is true only when one is
parametrizing. If the phase shifts are to be cal-
culated from a potential, one must include the spin
independent effects or one will get an s-d shift. ")
The effect of the spin-orbit interaction becomes
particularly significant in the vicinity of degenera-
cies which are lifted relativistically. The noble
metal surface does not pass near such degenera-
cies (which accounts for the success in Ag and Au);
for the transition metals the inclusion of relativistic
effects is usually necessary to get the correct to-
pology.

The inclusion of relativistic effects leads to the
relativistic KKR (RKKR) secular matrix'~ '

M = &„„,„.„(k,E)+ (E)'~~6„„g„~.coty„(E), (9)

where B„~„,„,are sums over the nonrelativistic
structure factors B. .. ~ with appropriate Clebsch-
Gordan coefficients. The phase shifts 0„(E)c'har-
acterize the scattering of electrons by the muffin-
tin potential using the two-component Pauli Ham-
iltonian, ' with spin orbit included. . The quantum
numbers j and l are specified by w according to the
rules:

relatively minor modification, the relativistic pa-
rametrization is carried out in exactly the same
way as the nonrelativistic case.

We attempted an application to Mo of this proce-
dure based on the assumption of a muffin-tin-like
potential excluding the o and v orbits (Fig. 1). The
resulting rms error was -1.6% and the predicted
values of the o and m orbits differed from experi-
ment by several percent. The 0 and z orbits sam-
ple low symmetry regions of the zone where, due

to hybridization, nonspherical terms would make
the largest contribution. Calculations in which f-
wave scattering was added did not decrease the er-
ror substantially (one then has a total of seven pa-
rameters just as in the nonspherical-muffin-tin
case). Clearly, the inclusion of the nonspherical
terms is an important physical effect which is es-
sential to obtain a fit to the data within experimen-
tal error. This result points up one important ad-
ditional fact about the phase shift parametrization
method. Since the technique is limited by the un-

derlyingphysics in the Fermi surfaces that it can
parameterize, useful checks can be made on the
interpretation of the data as to assignment of dHvA

frequencies to specific extremal areas.
Application of the nonrelativistic muffin-tin for-

malism to W gave an rms error of -4% using s, p,
and d phase shifts. The inclusion of relativistic
effects using s,/z, Pz/z, P»~, d3/z, and dz/~ phase
shifts decreased the error by a factor of 8, clearly,
as expected, relativistic effects are very important
in the heavier transition metals. The application of
the non-muffin-tin relativistic formalism further
reduced the error by a factor 2.

III. NON-MUFFIN-TIN PARAMEIIZATION

Corrections to the muffin-tin model are of two
types: (a) nonspkerical contributions to the poten-
tial inside the muffin-tin radius, and (b) noriflat be-
havior in the remainder (interstitial region) of the
unit cell (there is, of course, some arbitrariness
in this separation). For the case of the APW meth-
od, techr5ques for treating both the nonspherical'
and nonflat' contributions have been developed. For
the KKR formalism the nonflat contribution destroys
the simple structure of the secular equations. '
However, John, Lehmann, and Ziesche' have shown
that the inclusion of nonspherical muffin-tin scatters
in the KKR technique can be accomplished with only
a, minor modification of Eq. (I) or (9). It was de-
sired to include non-muffin-tin effects with a mini-
mum of modification to our existing computer pro-
grams; therefore we have adopted the formalism
of John et al. ' Since we are fitting experimental
data, some of the nonflat contributions will pre-
sumably be adsorbed into our parameter set. As
mentioned in Sec. I this can alternatively be viewed
as a truncation of a general procedure in which there
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is no interstitial region. In any case, evidence in-dicatess

that for the bc c transition metals the non-
sphe ri cal terms inside the muff in- tin spheres are
the p rin cip al correction.

The p rocedure of John et al . is based on the
method of partial waves developed by De mkov and
Rudakov to treat nonspherical scatters. 2 ' The scat-
te ring from nonspheri cally symmetri c muff in- tin
potential s may be described in terms of gener aliz ed
phase shifts g) and corresponding partial-wave am-
plitudes AL)t associated with the eigenvalues and
eigenve cto rs of the angular momentum repres enta-
ti on of the scattering matrix S». through

where

i I' (r ) =i1 (E"'r) V-1(r"),
n1 (r) —= n, (E '~ r) Y'~(r). (12c)

The index X numbers the irreducible representations
as sociated with the symmetry group of the scatterer .

The g ene rali zed KKR secu lar eq uation derived by
John et a/ . ' for non spherical muff in- tin scatters
whi ch involves these generalized phase shifts and
amplitudes is given by

M = ~ A1,1 Bl,z, ,A~, 1. + (E) 2 511' cr,t 11,,Il2

LBLs

where, for simplicity, we have reverted to the non-
relativistic case . It is convenient to write the A.

matrix as the product

A= R ~ A', (14)

where R is a matrix which, when operating on the
sphe ri cal harmonic basis states, generates the ap-
prop riate linear combination of basis functions
which transform as irreducible representations
(ordered according to increasing I ). The A, matrix
then has the effect of coupling the equivalent ir-
reducible r ep res entati ons .

The example of interest here is the case of cubic
symmetry. The first two terms in the cubic har-
m oni c expansion of the crystal field may be written

V(r) = Vo(r) + V4(r) +. . . , (15a)
wher e

V4(r) ~4(r) ((24)
' fy44(r) +y44(r)1

where the notation L implies the pair l, I„both
and A.» depend only on the energy. Alternatively,

the phase shifts and amplitude may be defined in
terms of the scattered- state wave function outside
the muf fin- tin sphere

V.(r) =p l. stn 1ni(r) —cosa, i, (r)]ALQ
L

+ (12) y40( )]'

V4(r) transforms as I'„ofcourse. In the following
we will limit ourselves to l ~ = 2 and first discuss
the nonr elativistic problem. The s and p states of
the spherical rep re sentation are irreducible under
the cubi c group and corre spond to the I, and 1"».
representations, respectively. The d states are
reducible, however, and are split by the V4 term
into I"22.(T22) and 1',2(E~) states. Thus % is a unit
matrix exc ept in a portion of the d block where it
acts to generate the T2~ and E~ states; this matrix
is given in the Appendix. Sine e there are no equiv-
alent representations for l «2 the A ' matrix is the
unit matrix. A Fermi surface parametrization for
nonspheri cal potentials will then involve the four
phas e shifts ~r v ~r &5~ ~r .~ and pr @

as opposed toy5P gals
P

23g„g~, and 'g~ for the spheri cal case.
In the relativistic case, we again confine ou r-

selves to l ~ «2. Instead of the quantum number
1L™]in the previous equations we employ e and p, ,
or equivalently, j and m&. The spherical s &2, p &&2,

p 3/2 and d 3&2 states ar e irre due ibl e unde r the cubic
group and cor re spond to the 1 6, I'

6, I'8, and I"
8 rep-

resentations, respectively. The spherical d&~2
states are a mixture of the I"

8 and I", rep re senta-
ti ons . The R matrix is then a unit matrix except
for a 6 & 6 block operating on the d»2 states to pro-
duc e the unmixed I'~ and I'7 states . Contrary to the
nonr elativi sti c case, the A' matrix is no longer a
unit matrix in that there are now two equival ent F8
representations which are coup led by the spin- orbit
intera. ction or the V4 terms in the potential (since
[V„o~ L]4 0, a basis set which diagonalizes both
effects does not exist). If the 5 matrix is con-
structed such that the two I'8 representations are
identical (not just equivalent), then the A' matrix
is a real matrix constructed of blocks which are
diagonal. This fact plus unitarity leads to a single
parameter a, a rotationlike angle characteriz ing
the vectors A.». This repre sents the coupling be-
tween the two I'2 representations (which are spin-
orbit diagonal) by the V4 potential term. Along with
the phase shifts ~r6~ ~r~~ ~r s' "r~~ &r&& and ~r 8s as
sociated with the ir reducible representations, the
inclusion of this parameter n leads to a total of
seven quantities requir ed to relati vis tical ly param-
etriz e the Fermi surface with l = 2. The explicit

~pform of the matrices A and R is given in the Ap-
p endix.

%hen non- muf fin- tin effec ts are included, the
least- squares -fit procedures discussed in the in-
troduction must be modified slightly. In addition
to derivatives of the areas with re spec t to the ir-
reducible rep res entati on phase shifts, one must
also calculate the derivative of the areas with re-
spect to the rotation angle n; i. e. , we require BM/
B'0 and BM/Bn The numb. er of matrix element de-
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rivatives which must be computed is smaller if we
rewrite Eg. (13) in the form

M=™R'~ B R+S'"A'. C ~ A" (16a)

C». = 6». cot&~.

This is the form actually implemented.

IV. APPLICATION TO MOLYBDENUM AND TUNGSTEN

The procedures discussed in Sec. III were ap-
plied to the body-centered-cubic transition metals,
molybdenum and tungsten. Studies of the dHvA ef-
fect have been carried out by a number of work-
ers, but the most complete data are those of
Hoekstra and Stanford 8 (HS) for Mo and Girvan,
Gold, and Phillips~ (GGP) for W. A great deal of
work has also been done on the band structure of

these materials. Lomer ~ was the first to propose
a model for the Fermi surface of the chromium
group metals based on the APW energy bands of
iron calculated by Wood. ' Nonrelativistic APW
band structure calculations have appeared for Mo
(Ref. 33) and W (Refs. 33 and 34); relativistic APW
calculations have been performed by Loucks ' for W
and by Koelling, Mueller, Ketterson, and Arko36 and
Christensen ~ for Mo. Iverson and Hodges " gener-
ated a band structure for Mo by fitting a nonrelativ-
istic APW calculation to the Slater-Koster interpo-
lation scheme; the effect of spin orbit coupling
was included as a parameter. Figure 1 shows the
Fermi surface of tungsten together with various
external areas and their designated Greek letters.
Cross sections of the surface, resulting from the
present work, in the (100) and (110) planes are
shown in Fig. 2 for Mo and Fig. 3 for W. The

FIG. 2. Cross sections
of the I ermi surface of Mo
in the (100) and (].1.0) planes
resulting from our non-
spherical-muf fin-tin phase-
shift fit to the dHvA data of
Hoekstra and Stanford.
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FIG. 3. Cross sections
of the Fermi surface of W
in the (100) and (110) planes
resulting from our non-
spherical-muffin-tin phase-
shift fit to the dHvA data of
Girvan, Gold, and Phillips.

large electron surface centered at 1" is referred to
as the jack. The large hole sheet at H is called
the octahedron. Finally, there is a small hole
ellipsoid at the point X. Since Mo and W have an
even atomic number the total volume of the hole
surfaces must equal that of the electron surfaces.

The least-squares -fit procedure outlined above
is a linearization of a basically nonlinear problem.
Thus we must have an initial set of phase shifts from
which to start our iterations. The initial phase
shifts were calculated from the logarithmic deriva-
tives computed by numerically integrating the radial
Schrodinger equation; an overlapping atomic charge
density model with full Slater exchange was used to
construct the potential. In units of (2p/a)~ the Fermi
energy used was 0. 67543 and 0. 77020 for Mo and W,

respectively. In Bohr radii (a. u. ), the lattice con-
stants used were 5. 9468 and 5. 9810 for Mo and W,

respectively; these are room-temperature values
used by Loucks but the correction on going to heli-
um temperatures is smaller than the estimated ex-
perimental accuracy of the dHvA data. The Fermi
energy in W was chosen to be the same as the rela-
tivistic APW calculations of Loucks '; the energy
in Mo was determined from the work of Koelling
et al. In any event the quality of fit has been
found to be very insensitive to the Fermi energy
parameter selected. This is consistent with the
observation that the only real effect of the variation
of the energy parameter is to find that energy for
which the I= Q + I =3 phase shift is zero (of course
all the phase shifts with l ~L,„readjust for each
value of the energy parameter ). ' In fact, for
those formalisms which would eliminate the inter-
stitial region, the Fermi energy parameter be-
comes little more than a convergence parameter
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TABLE I. Comparison of areas calculated using the parameters of Table II to the experimental values ob-
tained from de Haas-van Alphen data.

Surface, orbit, section
Field coordinate 0

(y =45')
Orbit center

(2r/g)

Molybdenum

Experimental
area

(2m/t2) 2

Calculated
area

(27r/g) 2

Error
(%)

jack
jack
jack
jack
jack
lense

octahedron
octahedron
octahedron

ellipsoid
ellipsoid
ellipsoid

p

V1

V2

V3

p1 1';C H

p2 NPH

p3 NPI'

0.0
54.7
90.0
0. 0
0.0

90.0
0. 0

54.7
90.0
0.0

90 ~ 0
90.0

0. 0
0. 0
0. 0
0.0
0. 0
0. 0
0. 0
0.0
0.0
0. 5
0. 5

—0. 5

0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0.0
o

0. 5
0. 5

0. 0
0. 0
0. 0
0 ~ 4403
0. 2896
0. 3
1.0
1.0
1.0
0.0
0. 0
0 ~ 0

0. 5531
0. 2028
0.3783
0. 07578
0.02808
O. 01225
0.3604
O. 2479
0. 2715
0.05435
0. 05297
0.08728

O. 5487
0.2048
0.3774
0.07713
0. 02836
0. 01216
0.3608
0.2516
0. 2734
0. 05426
0.06319
0.08695

0.80
—0.99

0. 24
—l.78
—1.00

0:73
-0.11
—l.49
-0.70

0.17
—0.35

0.38

Tungsten

jack
jack
jack
jack
jack

octahedron
octahedron
octahedron

ellipsoid
ellipsoid
ellipsoid

V1

V2

V3

p1 M'H

p2 NPH

p3 NPI'

0. 0
54.7
90.0
0.0
0. 0
0. 0

54.7
90.0
0.0

90.0
90.0

0. 0
0. 0
0. 0
0. 0
0 ~ 0

0. 0
0.0
0. 0
0. 5
o. 5

—0. 5

0. 0
0. 0
0.0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 5

0. 5
0. 5

0. 0
0.0
0. 0
0.4424
0. 2874
1.0
1.0
1.0
0 5

0. 0
0.0

0.4320
0 1545
0. 2916
0. 05283
0.01483
0.3476
0. 2393
0. 2589
0.01+36
0.01945
0. 02233

0.4327
0.1544
0.2912
0.05286
0. 01480
0.3460
0. 2402
0 2598
0.01437
0.01948
0. 02227

—0. 16
O. 06
0.14

—0.06
O. 20
0.46

—O. 38
—0.35
—0.06

0 15
0.27

TABLE II. Values of the nonspherical muffin-tin pa-

rameterss.

'Ore

'Org

'Or
8

'Or 8(3/2)
Or 7(5/2)
Or 8+(s/2)

Q

xms error

Molybdenum

—0.74213
—0.31580
—0.30073
—l.1072
—l. 3184
—l.2791

0.42863
0.885%

Tungsten
-0.69715
—0.37692
—0.35301
-1.1929
—l.6835
—l.6962

0.16333
0.245%

or, at most, a parameter fixing the curvature (ki-
netic energy) of the basis functions in the interstitial
region. ~

In selecting the experimental areas to include in
a least-squares fit involving the phase shift param-
eters, one desires orbits which sample the surface
in some favorable way. It is not possible a priori
to define an optimal set, but we have selected orbits
which include the extremities of the various surfaces,
For these orbits and magnetic field usually lies
along a symmetry direction and the angular deriva-
tives of the frequency vanish thus making the data
less sensi'. lve to a crystal misalignment. After a
fit is completed, the phase shift derivatives give a
measure of the sensitivity of a given extremal area
to a change in a phase shift. Table I lists the ex-
perimental areas used in the fit together with the
calculated area resulting from the converged fit;

shown also are the polar coordinates of the magnet-
ic field directions and the coordinates of the orbit
centers. The computation of the nine fitted areas
associated with a given iteration for tungsten re-
quired approximately 1~ min on an IBM 360-195
computer. The steps along the orbits were approxi-
mately 2—,

" and the minimum amount of area re-
quired by symmetry was swept out. The W calcula-
tions were carried to a somewhat higher level of
convergence. As pointed out by GGP it is not pos-
sible to distinguish from dHvA cross-sectional-area
measurements whether the shortest semiaxis of the
ellipsoid is along NH or ~. Since the band-struc-
ture calculations yield the result that the NB axis
is smallest we assign our frequencies to conform
with this conclusion as did GGP. For both Mo and
W approximately five iterations were required to
obtain convergence. The values of the converged
phase shifts (in radians) are Iisted in Table II. The
root-mean-square error was 0. 89% for molybdenum
and 0. 24% for tungsten. In order to check how well
our model is working for areas which are not in-
cluded in the fit, we calculated, at 5' intervals, the
extremal areas of the hole octahedron in the (110)
plane. The rms deviation between the calculated
and experimental area was 0. 84% for W.

The orbit selection used for Mo and W introduced

an additional complication. The o and m orbits are
not centered on a point having inversion symmetry
and thus both the location and area of the extremal
orbit must be computed. The program computes
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both A(k„) and BA(k„)/Bk for a given orbit so if
these quantities are calculated for two orbits (la-
beled 1 and 2) in the vicinity of the extremum, the
location and the value of the extremal area can be
computed from

93~ BA.q 8A.~ BAq' eu ' eu eu eu '

~(k'"')=W + '(k'"'-k )

Bk
= Bk-- Bk

(k -k)
lj

(17c)

For a given iteration the position of the extremum
(k'„"')was computed; on the succeeding iteration the
computations for one of the orbits were made at the
value of k'~~ for the preceding iteration and these
results were included in the least-squares fit. As
the calculation converges the value of 4', ~"' stabilizes.
The calculations for the neighboring orbit were not
fitted. This procedure was necessary because the
position of the extremum was observed to shift
somewhat as the iterations proceeded; especially
for the o orbit.

In addition to using an optimal set of orbits, it
would be desirable to include the requirement of
volume compensation. This would be one additional
"datum point" obtained without further measure-
ments. This additional information, however, is
quite expensive both in terms of additional com-
putational time and of additional effort required to
design the integration technique. For this reason,
we have not included volume compensation in our
pre sent calculation.

The derivatives of the areas with respect to the
phase shifts and the rotation angle are shown in
Table III; listed also is the "structure constant
mass" (BA/BE)„". These quantities can be used to
invert cyclotron effective mass data to obtain Fermi
velocities (under the assumption that the electron
phonon mass enhancement can be lumped into the
energy dependence of the phase shifts). The cyclo-
tron mass is given by

where the g'= B&/BE are new set of pa, rameters.
The Fermi velocity is then given by

sz (s~'"') (sz'"')

mhere

(19a)

(19b)

For the nonrelativistic case, Coleridge has shown
how the area phase-shift derivatives may be usedto
invert the dHvA orbitally averaged scattering life-
times into local lifetimes by introducing a new set
of parameters; a relativistic nonspherical muffin-
tin generalization of this theory (which has yet to be
worked out) might also make use of the information
in Table III. The data in Tables II and GI are given
to five figures; these are not all significant (perhaps
three of them are) and the extra digits are carried
to enable a consistent comparison between these
and other calculations.

TABLE III. Area phase-shift derivatives.

Molybdenum

A„ A„v3 Ap Ap Aa
3

BA/Bql. g

BA/Bx)z "

RA/B)) T „-

BA/BY[ +(3/2)

BA/ &))1-+

BA/ &fj 1+(3/2)

BA/Bn

0. 64650 0. 22606 0.40093 0. 1.2995

0. 38905 0. 1721.1, 0. 26189 0. 06129

0. 30891 0. 01539 0. 1.81.23 0. 1.1237

0. 04932 0.01962 0. 02866 0. 00612

l. 0500 0. 24809 0.59614 0.231,05

0. 01076 0. 00322 O. 00419 Q. 00190

0. 1,9470 0. 02157 0. 08021 0. 04738

0. 51293 0. OG699 0. 22231. 0. 07931. 0, 01905 0. 00507

0. 09549 0. 03600

Q. 04758 0. 03633

—0. ],4302 —0, 09925 —0, 11307 —0, 37118 —0.46190 —0. 61502

—0.40427 —0.20630 —0. 255 84 —0. 00594 —0. 02456 —0, 03336

—0. 04646 —0. 05235 —0. 04925 —0. 00040 —0. 01,055 —0. 015VV

0. 05334 Q. 04416 —0. Q].911. —0. 0].223 —0. 01601. —O. 04989 —0. 04362 —0 ~ 01582

0. 00357 0.00158 —0. 02916

0, 12333 0.07276 —0. 39701

Tungsten

—0, 01.557

—0, 25297

—0, 01.984

—0. 29840

0, 00508 0.00250 —0. 0011.9

—O. 28434 —0. 32026 —0.44449

O. 00053 Q. 00009 —Q. 00358 —Q. 03524 —0. 03759 —0. 04186 —0.00005 —0.06285

O. 006]5 0. 001.34 —0. 18498 —0. 07583 —0. 11033 —0. 18935 —0. 24133 —0.32092

BA/Bq, ;,

BA/&1--

BA/Bqz „-

BA/&r (3/2)

BA/@1

BA/Bq, +(5,»
BA/B().

BA/BE

0, 00546 Q. 00070 0, 00304 O. 002].8

0, 12501 0. 00850 0. 05907 0 03560

0. 251.62 0. 077800. 44519 0. 06769

0, 46189 0. 14524 0. 29252 Q Q8540

Q. 07337

0. 09968

0. 614].2 Q. 3].843 0. 44639

0. 189040.33438 0. 01960

0. 00011

0. 00052

0. 02491

0, 04871

0 ~ 097].1.

0.02292

0, 97360 Q. 24244 0. 58764 0, 18856 0, 09681.

0. 13250 0. 05009 0. 08333 0. 01971. —0, 01783

—0. 0311.3 —0. 05790 —0. 05604 —0, 00940 —0. 00024

—0. 281.85 —0. 121.87 —0. 1.6036 —0. 20574 —0, 2 8642

—0. 01.453

—0.32350

—0. 0821.8

—0.37348

—0. 01325

—0. 07G49

—0. 1.5772

—0.4].431

—0, 07699 —0. 08575 —0, 40274 —0. 55339 —0. 62798

—Q. 04758 —0. 05508 —Q. 00935 —0. 00995 —0. 00468

—0. 08416 —0. 1001.3 0. 00599 0. 00393 —0. 0001.1

—0.25877 —0.29964 —0. 26223 —0.35363 —0.4051.6

—Q. ].7911 —Q. 21458 —Q. 00546 —0, 00987 —0. 00956

—0. 02878 —0. 02866 —0. 00008 —0. 00378 —0. 00442
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Dimension

TABLE IV. Extremal dimensions of the Mo and W Fermi surface l2r/a).
PLesent

Surface work Inversion RFSE GR

jack

jack

jack
jack

jack

jack

Octahedron

Octahedron

Octahedron

Lense

Lense
Ellipsoid
Ellipsoid

Ellipsoid

I' toward H

I' toward P

I toward N
—,' neck calipers to
& in (100) plane
—.' neck caliper J. to
4 in (110) plane

2 ball caliper~ to
~ in. (100) plane
—.,' ball caliper & to
~ in (110) plane

H toward I

H toward P

H toward N

2 of caliper ~ to 6
in (110) plane

2 of caliper along 4
N toward P
N toward I"

N toward H

Molybdenum"

0.5733

0.2355

0.2602
0.0971

0.0930

0.1446

0.1695

0.3954

0.2524

0.3002

0.0818

0.0548
0.1808
0.1624

0.1084

0.407

0.244

0.304

0.183
0.163

0.108

0.58
0 55
0.235
0.22'
0.26
0 095

0.175
0 17
0 395
0.376
0.255
0.238'
0.30'
0.290
0.078
0.060

0.19
0.15
0 16
0.11
0.10

0.60

0.15d

0.17"

0.30

0.14

0.105f

Surface Dimension
Present
work

Tungsten'

GGP
Inversion RFSE GR'

3ack
jack
jack
jack

jack

jack

jack

Octahedron
Octahedron
Octahedron

Ellipsoid
Ellipsoid
Ellipsoid

I" toward H
I' toward P
I' toward N

~ neck caliper x to
4 in (100) plane

2 neck caliper & to
a in. (110) plane

~~ ball caliper &to
4 in (100) plane

2 ball caliper &to
6 in {110)plane

H toward I'
H toward P
H toward N
N toward P
N toward I"

N toward H

0. 5552
0.2063
0. 2243
0.0691

0.0682

0.1234

0.1363

0.3848
0.2450
0.2955
0.0627
0.0734
0.0982

0. 5527
0. 202
0.239
0.0738

0.0662

0.121

0.135

0.3826
0.2413
0.2937
0.0629
0.0723
0.0978

0. 559
0.209

0.39
0, 25

0.523

0. 121

0.126

0. 35

0. 297

Hoekstra and Stanford (Ref. 28).
"For molybdenum, to obtain data in A multiply the entries in this table by

l.9966.
'Boiko et al (Ref. 43).
Jones and Rayne (Ref. 47).

'Cleveland and Stanford (Ref. 44).
Bezuglyi et al. (Ref. 48).

~Girvan, Gold, and Phillips (Ref. 30).
"Nalsh and Grimes (Ref. 46).
~Jones and Rayne (Ref. 47).
For tungsten, to obtain data in A ~ multiply the entries in this table by

AR RA
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Table IV contains the Fermi radii along symmetry
directions for the jack, octahedron, and ellipsoid.
Some of these have been observed directly in Gant-
makher radio-frequency size effect 3 (RFSE)and
magnetoacoustic geometric-resonance ~' 8 (GR) ex-
periments; the measured values are also included
in Table IV. In both of these types of experiments
one measures caliper dimension of the Fermi sur-
face in a direction mutually perpendicular to the
field direction II and a second direction q; q is the
propagation direction for the magnetoacoustic mea-
surements while it is the direction of the normal to
the parallel sample faces in the Gantmaker experi-
ments. Table IV contains additional caliper radii
on the jack which one would observe for Hll [100] and
qll[010] and [011];for each of these q directions the
caliper radii are associated with the ball and the
neck of the jack. Two lens dimensions in Mo are
also listed.

V. DISCUSSION AND CONCLUSIONS

Various algebraic models have beenused to rep-
resent the sheets of the Mo and W Fermi Surface
and to invert the dHvA data. GGP used an implicit
equation for the octahedron; this has the disadvan-
tage that it requires an iterative solution but the
advantage that a very good representation was
a.chieved with three parameters. The Mueller in-
version scheme ' has been applied to the hole
octahedron by HS; more parameters (11) were re-
quired with this technique but the calculations are
much more straightforward. A problem which
occurs in the application of the Mueller scheme
to highly nonspherical surfaces (like the octahe-
dron) is that spurious "oscillations" tend to occur
in the resulting radii. If data are collected in
additional nonsymmetry planes these oscillations
can be suppressed"; the inversions of HS do show
some signs of these oscillations although the re-
sults are, on the whole, reasonable. It has been
shown' that the Mueller inversion scheme can be
used to fit the differences between the areas de-
duced from an analytical model and the data; it is
our opinion that using this procedure with the GGP
model would result in a more accurate inversion
than either technique separately could achieve.
GGP constructed an eleven parameter algebraic
model for the jack that gave a quite satisfactory
representation of their data. The spherical map-
ping procedure of Ketterson and Windmiller was
used by HS to invert the data on the ellipsoids.
The results of these various inversions have also
been included in Table IV.

The data of Table IV show quite convincingly
that the dimensions resulting from our band struc-
ture based inversion of the dHvA data of Mo and
W a,re quite consistent with other dHvA inversions
as well as the more direct RFSE and GR measure-

ments. Using the nonspherical RKKR technique
this has been accomplished for all sheets of
the Fermi surface with only seven parameters.
The near degeneracy of the I'7 (—,') and I"8 (—',)
phase shifts suggests that nearly as good a fit
could be accomplished by requiring these two

quantities to be identical which would reduce the
total number of parameters by one. The inversion
by GGP, which was on the whole rather economical
in its use of adjustable constants, required a, total
of 17 parameters to accomplish the same goa, l
(three each for the ellipsoid and octahedron and
eleven for the jack). The principal advantage be-
ing suggested here for the phase shiftparameriza-
tion technique is not just that it uses a minimum
number of parameters but that it places constraints
on the data and so provides checks on the inter-
pretation of that data and the adequacy of the fitting
procedure. This feature is nicely illustrated by
the failure of the muffin-tin model. Otherwise,
the simple mathematical representations are
easier to code and faster to generate but place no
bounds on the data to be represented other than
the inventiveness of the fitter. Such conveniences
would easily repay the necessity of using the extra
parameters. Because the mathematical represen-
tations place no restrictions, one only has as much
information in the fit as was available initially. On
the other hand, the RKKR fits should be capable
of extrapolations to other experiments. Thus, in
addition to the extremal areas and calipers ob-
served in dHvA and RFSE or GR m easurem ents
used in the fitting, the inflection and limiting point
resonances which occur in the magnetomorphic
size effect and Doppler-shifted-cylcotron-reso-
nance experiments' would be interesting to calcu-
late; this will be the subject of a future investiga-
tion.

The over-all rms error we have achieved iscon-
sistent with the estimated error of the experiments.
It would be very desirable to obtain more accurate
measurements of the principal dHvA frequencies
along symmetry directions using in situ NMR cali-
bra, tion and precise sampl. e orientation as have
been done in noble metals"; such data would pro-
vide a more challenging test of the RKKR inver-
sion technique described here. Indeed in our pre-
vious work on noble metals the rms error was
quite sensitive to the quality of the data, the better
NMR calibrated data allowing the superior fit.

As mentioned above, one would expect the non-
muffin-tin correction to be most significant in
those regions of the Brillouin zone far from sym-
metry points, lines, and planes. This is because
there is no symmetry selection operating in these
regions. At the high-symmetry points, the trans-
formation properties of the wave functions often
dictate that a state will have a pure l character or



PARAMETRIZATION OF TRANSITION-METAL. . . 1457

very limited mixture. (1", is pure d in our model,
for example. ) Then the only effect of the non-
muffin-tin correction is to spread slightly the
eigenvalues (the two I"

8 states, for example).
However, when one is investigating a generalpoint
away from a symmetry point, these limitations
no longer exist and one will in general get hybrid-
izing s, p, and d components. Then as one shifts
the different d-components relative to each other
(the only direct effect of the additional potential
interaction), their interaction with the s and P
components will change dramatically. It is through
this indirect effect on hybridization that the major
changes occur. Thus, those orbits passing through
the center of the ~4, th wedge where the most hy-
bridization occurs will be the most sensitive
to the non-muffin-tin corrections. The m orbit on
the jack is a prime example. Thus all informa-
tion about the knobs of the electron jack is partic-
ularly useful.

The importance of the relativistic effects is
most apparent from examining the dimensions of
the lens and the jack neck; these two surfaces
actually make contact in a nonrelativistic for-
malism. For tungsten, where relativistic effects
are most important, the lens surface is nonexis-
tent. For molybdenum the splitting between the
semicalipers perpendicular to b, is approximately
0. 011 2m/a units.

The accuracy which can be achieved with dHvA
measurements, in general, exceeds that of other
Fermi surface probing techniques such as the
RFSE or GH. . The drawback of the dHvA effect
has been that it measures extremal areas rather
than dimensions. It is our opinion that with the
availability of accurate inversion techniques of the
type discussed in this paper, the dHvA effect should
continue to be the favored experimental technique
for future Fermi-surface investigations.

1/+5 F2)

l g, &&=
~2O

l2, -y&=
20

»0

&2O

0 0 1 0 0 Y„
0 0 0 1 0

0 0 0
v2 W2

Y2i

1 1 0 0 0
Tz gp

0 0 0 0 1 Yqo

TABLE V. d states in the angular-momentum repre-
sentation.

j= 2(ff:=-3)~ 5
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APPENDIX

For the nonrelativistic case with /
'" =2 the g

matrix is a unit matrix except in the d block where
it acts to construct the E and T2, states from the
spherical harmonics. The state Y20 is a member
of the E, set; also, Y» Y,—,belong to the T2, set.
The remaining E~ and Ta~ states are (1/v 2) (Y22
+ Y2~) and (1/V 2) (Y» —7~2 ), respectively. Thus
the 5 matrix in the d block has the form

The relativistic secular equation for the spherical
muffin-tin case is usually written in the angular
momentum representation; Table V lists the d
states in the angular momentum representation.
The d»~ states transform as I"8 and thus require no

modification . The d„2states are a mixture of
I"~ and I"8. We require a similarity transformation
which acts on the d», states to produce the sep-
arated I",' and I"8 states; we further require that
the resulting I"8 representation be identical to the
I"8 representation of d»~ states.

Parada has used a set of wave functions for
the T„stateswhich are diagonal in the V4 terms
in the potential (the crystal field representation);
these states are listed in Table VI. Using Tables
V and VI we easily verify that the I"', states of
Parada are given by

~

1", 1) = (1/%6)
I

-'„-',) -Pl -', , --,'),
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TABLE VI. d states in the crystal-field representation. for all four values of i. From unitarity we derive
the E, states of the crystal-field representation
listed in Table VI,

/ &8'a1) =—

) r,'a2) =

0

Y2O 0
I
I'8'b2)=

Il"', a, i&=v'-.'Il", !,i&-VlI!, i&.

Thus our & matrix is a unit matrix except in the

j= —', block where, from Eqs. (AS) and (AS), it has
the form

1'n+ 1'2i
(L8a4) =—

0

—Yg
I
I'8' b3) =

Y —Y)"|I,+b4) 1 22 22

~3 ~5 o 0 1

o o -~5

O 1 -&5 O

0 —g5 —1 0
(A 5)

Y22 Y22
I I", 1)=—

1 -2Y21
~ g,'2)=—

In addition, one must make the sign change im-
plied by Eq. (A3d). The P matrix differs from
a unit matrix only in those blocks which can couple
the states of the two I"8 representations

cos Q slrl&

(A2b)

From the condition of unitarity we obtain two of
the states of a I"8 representation; the remaining
two 18 states are formed from the I-,', —,') and I

—'„
——,'& states. We write the states of our 1"8 repre-
sentation in the form

(ASa)

(ASb)

(ASd)

The particular choice of sign in Eqs. (ASa) and
(ASd) was selected so that the states of this repre-
sentation transform identically like the states of the

j= ~ angular momentum &8 representation. This
was verified by observing that the states of the

1 8 representation of Parada can be written as
a linear combination states I I"8, —', , i) and I 2, z&;

a. e. ,

I
1"85,i)=v'5

(
1'8,', i&+45 I ~, i&

—8 lnQ

(Each entry in this matrix should be multiplied by
a 4 x 4 unit matrix and there should be a number of
unit and null matrix blocks. These have been sup-
pressed. )

From the previous discussion it is clear that if
sino. =g 5 (n = 0. 8861 rad) our representation is
diagonal in the crystal-field representation; for
a =0 it is, of course, diagonal in the angular mo-
mentum representations. For lighter elements,
where spin-orbit coupling is smaller, we would
expect larger values of ~ since the V4 terms in
the potential would then be the most significant
perturbation; indeed we observe that n is much
larger in Mo than it is in %. In the limi. ts when
the spin-orbit coupling or crystal-field effects
vanish, the g~s&5i2& and 'fr+&&]a) phase shifts should
be identical. This implies that the splitting of
these quantities is a measure of the product of spin-
orbit coupling and crystal-fieM effects and should
thus be small for all values of ~; this conclusion
is born out by the results of our fits to the Mo and
W data. We could probably constrain this phase
shift splitting to vanish with no significant increase
in the rms error; this would result in only six
parameters for an E =2 fit.

~Work performed under the auspices of the U. S. Atomic
Energy Commission.
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