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Magnetic susceptibility of dilute nonmagnetic alloys
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A simple and transparent formula is given for the magnetic susceptibility of nonmagnetic alloys, valid
for general Bloch bands and to all orders in the impurity potential. In the free-electron-band model the
expression for 4g per solute atom gives a firm theoretical foundation to the formula used by Henry
and Rogers, which accounts quite well for their experimental results. The derivation makes use of the
Weyl-Wigner formalism of the quantum theory of solids.

I. INTRODUCTION

The magnetic susceptibility of solids containing
magnetic and nonmagnetic impurities has been a
subject of continuing and vigorous interest among
theoretical and experimental physicists. Although
a large amount of experimental data' has been ac-
cumulated for the past two decades on the magnetic
susceptibility of nonmagnetic solids with nonmag-
netic impurities, very little understanding, if any,
exists in this particular field. Perhaps this situa-
tion is not surprising since it is quite well known
that even for pure nonmagnetic crystals the mag-
netic susceptibility is not yet fully understood. 3 In
most cases, it is in situations where the band-
structure effects dominate that efforts to quantita-
tively understand the experimental data become a
formjdable task even for the pure-crysta1 case.

A general expression for the magnetic suscepti-
bility X of Bloch electrons was first obtained by
Hebborn and Sondheimer and was later rederived
in simpler and more elegant fashion by other au-
thors. '6 Efforts toward giving a corresponding
general y for solids with nonmagnetic impurities
were initiated by Kohn and t,umingv by considering
an idealized model of a free-electron band. Until
now other attempts to give an expression of y for
general Bloch bands can at best proceed only as a
power-series expansion in the strength of the im-
purity potential. Recent experimental dataa clearly
indicate the urgent need for a better understanding
and a more complete theory, that explicitly incor-
porates the band-structure effects of the host lat-
tice, of the magnetic susceptibility of dilute non-
magnetic alloys.

The present work approaches the problem by the
use of the %eyl-Signer formalism of quantum the-
ory, not very widely known in solid-state physics,
although its embryonic and disguised form is al-
ready apparent in the operator method of Both and
Blount and in the formalism of the dynamics of
band electrons by Vfannier. The result for g is
given to order A~ valid for general nondegenerate

Bloch bands and to all orders in the impurity po-
tential. The effect of Bloch-electron interaction
can, in principle, be incorporated by the use of a
screened impurity potential. The expression for y
reduces to all well-known limiting cases. It is ap-
plied to the free-electron-band model of dilute al-
loys of copper and gives a firm theoretical founda-
tion to the theory of Henry and Rogers, which ac-
counts quite well for their experimental results.

The outline of the paper is as follows. Section II
descrj. bes the Acyl-%'igner formulation of the quan-
tum mechanics of Bloch electrons and generalizes
the method used by Wannier and Upadhyayae for
calculating the free energy to order h'. The result
is valj. d even for cases where spatial inhomogeneity
or def e cts exist in the pure- crystal host. Section
III derives an expression for X to order 5' valid for
general nondegenerate Bloch bands and to all orders
in the impurity potential. In Sec. IV it is shown how
the formula used by Henry and Rogers follows from
a general expression given for y.

II. KEYL-SIGNER FORMULATION OF THE DYNAMICS
OF BLOCH ELECTRONS. GENERALIZATION OF THE
METHOD OF CALCULATING THE FREE ENERGY TO

ORDER h2

The Acyl-signer formalism is an alternative
formulation of quantum mechanics expressed in
terms of the Weyl transform instead of quantum
operators and signer functions instead of state
vectors. ' The power of this quite rigorous for-
malism in discussing multiband quantum dynamics
and particles of higher spin is not very well appre-
ciated j.n solid-state physics although equivalent but
less rigorous methods exj.st in the literature.
Quite recently the author'~ ha. s rigorously shown
that an alternative formulation of the quantum me-
chanics of Bloch electrons in soljds is possible us-
ing a, complete set ot' functions nr~(r, q), labeled by
the band index A and lattice point q, and a complete
set of functions b~(r, p), labeled by band index A and
crystal momentum p, the two complete sets being
related by a unitary Fourier transformation.
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b, (r, p) =(Nh') ' 'pe"""'m (r q)

u) (r q) = (N5') ' 'Qe " ""'b (r p)

~(i/5 ) (y-y') ~ g ~@sgPal

where N is the total number of lattice points. For
convenience, we introduce the Dirac ket and bra
notation:

&,(r, p) =Ip, »=In),
zo,(r, q) =

~ q, X) =
~ q),

»=(Ne') '" -"'""'~
(p, A~p, X )=5», 5;;, ,

&q~&lq~ &)=&»&~~ ~

(5)

(6)

(7)

(8)

(9)

(10)

By using the closure relation, Eqs. (10) and (11),
the following identity holds for an arbitrary oper-
ator A.

pl pl I ~l ~ll

Introducing the notation
(12)

p =p+u, q =q+v,

and using Eq. (7), we obtain

W=(Ne')-' g a„,(p, q)~,„,(p, q),
y, q, A. ,X'

&-(p q) =Pc"*'""'&q-v,&l&lq+v, &'), (14)

Examples of these complete sets are the Wannier
function and Bloch function, both with and without a
magnetic field. The Weyl-Wigner formalism of the
quantum mechanics of solids unifies the Roth,
Blount, a.nd Wannier formalisms which often appear
heuristic and unrelated in the literature.

Let w~(r, q) be any localized state labeled by a
band index X and lattice point q. Let b„(r, p) be its
"lattice Fourier transform. " Thus we write

following equivalent expressions for A», (p, q) and

&»(p, q):

A», (p, q) =Q 8'"~"""(p+u,X
~
A ~p —u, X'),

&».(p, q) =Q e' ''" "'
~
q+ v, X)(q - v, X'

~

. (17)

8 F
g= lim ——

g~p

V is the volume of the system, 8 is the magnetic
field strength, I' is given by

In Eq. (13) the operator nature of A is transferred
to h». (p, q). The reader who is familiar with the
alternative formulation of quantum mechanics in
terms of the Weyl transform and the Wigner func-
tion'o will recognize A», (p, q) and b», (p, q) as cor-
responding to the Weyl transform of the operator 4
and to the 4 function, respectively, in that formal-
ism. We will refer to A», (p, q) as the lattice Weyl
transform of the operator A. IOur definition of
A», (p, q) differs from that of the continuous (p, q)
formalism by a factor of 2 in the exponential and
the absence of 2 inside the ket and bra, , and, of
course, by the replacement of the i.ntegral with a
summation. ] Thus an alternative formulation of the
qua. ntum mechanics of solids is possible using the
two complete sets of functions m~(r, q) and b, (r, p).
Examples of these complete sets are the Wannier
functions And Bloch functions, both with and without
a magnetic field. Blount's "mixed representa-
tion" ' and Wannier's formulation of the dynamics
of Bloch electrons in a solid are both an embryonic
form of a discrete (p, q) version of the statistical
formulation of qua, ntum mechanics when considered
in terms of the Weyl transform instead of operators
and the Wigner function instead of state vectors.
The power of this method of doing quantum me-
chanics in solid-state theory is demonstrated by
the author'3 in calculating the magnetic susceptibil-
ity of bismuth, and more recently' in giving a rig-
orous qua, ntum-mechanical basis of the distribution-
function method in impurity screening, the Thomas-
Fermi in the absence of a magnetic field, and the
quasiclassical approximation for nonzero magnetic
field, applicable for nondegenerate Bloch bands and
quasiparticles of higher spin.

The virtue of the Weyl-Wigner formulation is that
it enables us to generalize'3 the method of Wannier
and Upadhyaya (WU) for calculating the free energy
to order 82, from which the magnetic susceptibility
y can be calculated. The magnetic susceptibility is
calculated from the free energy by the following re-
lation:

6)~,(pq q) =Q 8 ~p —u) A)(p+u) A.
~

. (15)
U

By applying Eqs. (1) and (2) it i.s easy to obtain the

E=Np+TrE(X),

F(K) = —ks Tin(1+ expI (p, —R)/k~ T]J,

(19)

(2o)
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P(s)e'" ds, (21)

=g —'x .
5 0

(22)

and by the use of the Laplace transform of E(K), we write
e't +1(o

The author' has recently generalized the method
used in WU for calculating Tr$C", using the tech-
nique of the Weyl transform' applied to solid-state
theory, as described above, which is valid even in
cases where spatial inhomogeneity or defects exist
in the pure crystal host. We have'2'3 (Appendix C)

Tr p [ ( )j„ 1 8 ~ n(n —1)
[ ( -)I„z B~H(p, q) B~H(p, q) B~H(p) q) B~H(p, q)

2! 2 6 '
Bp&p

'
Bq&q Bp&q Bq&p

(23)
and from Eq. (21)

BpBp BQBq „„BpBq BqBp
(24)

where [; j is a symmetrized tensor contraction,
l. e. )

8'H(p, q). 8'H(p, q)
BpBp

'
BqBq

8'H(P, q) 8'H(P, q) 8'H(p q) 8'«P q) .
BP; BP. Bq; Bq& Bq; Bq& BP; BP&

moreover, the p's as well as the q's must never
have identical indices where repeated indices are
summed over. N is the total number of lattice
points, Tr refers to taking the trace over band in-
dices, q and p refer to lattice coordinates and
crystal momentum hk (limited to the first Brillouin
zone), respectively. H{p, q) is a matrix given by
the formula (Appendix B)

H(p, q)», = p e ("~""'{A,(x, q - v)3CA, .(x, q+ v)),
V (»)

or by the equivalent expression

H(p, q)». =g e' '~"""{B),(x, p+u)XB), , (x, p —u)}.
(26}

2

I

The eigenstates A~(r, q) and B~(r, p) are the magnet-
ic Wannier function and magnetic Bloch function,
respectively, where A labels the energy band. We
thus have

H(p, q)„, = W, (p —(e/e)A(q);B)5„, + V(p, q; B)„,,
(27)

where the dependence of tV~ on B beyond the vector
potential can, in principle, be obtained as a series
expansion in powers of B:

W, (p —(eie)A(q); B)
= iV'(P —(e/e)A (q)) +B&'"(P —(e/e)A (q))

+ B'W("(p —(e/e)A(q))+. .. . (28)

Wl(p) is the energy-band function of a pure crystal
in the absence of B, W, (p; B) is given in WU for
spinless Bloch electrons and by Both"5 for Bloch
electrons in the presence of spin-orbit coupling.
W, (p; B) is often referred to as a renormalized en-
ergy-band function. V(p, q)», is given by Eqs. (25)
and (26) with X replaced by Vl(r) and can be ex-
plicitly written as (Appendix B)

V(p, q; B)» = V'(p q)» + BV'"(p, q)» + B'V"'(p, q)» + ~ ~

where

(29)

V (p q)22 =Q e $22 (p+u p —ll' 21~1

2'"(2, 2)„.=pe"'"""(8„',"(2, u)++2'!'(2 —ii)2'„,(2eu, 2 —u; 2u)eg 2,","(2+2)2'„„,(2eii, 2-u;2u)
U (31)

V"'(p, q).;=Z e"*'"""8," (P, u)+Z P",'(P-u)4.',(p+u, p- u; 2u)+Z P.",'*(p+u)4,', (p+u, p-u; 24
0 y y

eQ l),"„"(2 eu)2'„'„' (2 —ii)2' . (2 +ii, 2 - u; 2, u. )), (22)
yy'

Q ()(p+u, p —u; 2u) = e "'~"'"'go (F, p+u) V,(r)u8o(r, p —u) de .
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B2+ P(2) f 0(r p) (34)

and can easily be obtained from the work in WU.
V (p, q)», ca.n also be written as

V (p q)»

=p e'"'""'(a',(r —(q - v)) V,(r)(2,, (r —(q+ v))),
(35)

where a,(r —q) is the Wannier function in the ab-
sence of the magnetic field. Note that for a free-
electron-band model V (p, q)», = V, (q). All summa-

u (r, p) is the periodic part of a Bloch function.
O», (p, u) and 0,"„'(p,u) are defined by Eqs. (B18) and
(B19). The coefficients P"' and P"& come from the
expansion of the modified Bloch function in powers
of the magnetic field strength B (Appendix A)

f,(r, p) = f',(r, p)+ fl+P1,"b',(r, p)

tions over lattice points q, v and crystal momentum

p, u (limited to the first Brillouin zone) may be re-
placed by appropriate integrals.

III. EXPRESSION FOR X TO ORDER h VALID FOR
GENERAL NONDEGENERATE BLOCH BANDS AND

ARBITRARY STRENGTH OF THE IMPURITY
POTENTIAL

&X = &i~X —X0) (38)

where N& is the number of impurity centers, y0 is
the magnetic susceptibility of the pure crystal host,
and y is given by the following formula:

The calculation of y using Eqs. (18) and (24) i.s
straightforward and is based on the assumption that
H(p, q) is nearly dia.gonal in ba.nds (Appendix C) and
the final result for ~g, the change of the magnetic
susceptibility of the crystalline solid due to the
presence of impurity centers, may be written

2
~

t sf(g0)
. @2 sf(g0) 02'(2) s2VO s2g(1) s2V(1)

B2g0 B2g (2) B2g (2) B2 y0 B2g (1) B2g(1) B2 y0 Bgg (2) t

BpBp' BqBq „BpBq '
BqBp BpBq

'
BqBp BpBq' BqBp

S2f(g0) S2p0 S2 VO" S2 VO S2 VO S2f(g0) S2g0 S2 VO I S2VO S2 VO

s(z ) spsp sqsq spsq sqsp 8(z ) spsp' Bqt)q Bp&q' Bqsp

(1) s2f(g0) s2g(1) s2VO& s2g0 s2V(1& s2g(1) s2VO s2VO s2g(1&
~ 0 ~.(. , (:.;.; .;..-..;.; .;.-, '. —:.;; .;.; — .;.; .;,-:)I,

The various quantities entering in the above ex-
pression are defined as follows (for magnetic field
in the 2 direction using a symmetric gauge): f(x) is
the Fermi-Dirac distribution function,

~' = iV'(p)+ V'(p, q), (38)

~"' = (e/2c)(qx«, ),lV'(p)+ 1V'"(P)+ V'"(p, (l),
(39)

Z"' = (e/2c)'(qx V~), (qx V~), W0(p)

+ (e/c)(q x V,).1V"'(P)+»'"(p) + 2 V"'(p, (l) .
(40)

For simplicity" one may take V (p)q)», = V,(p, q)5». ,
making Z0 diagonal in bands.

Various well-known limiting cases canbe obtained
from Eq. (3'7). Thus for the case V,(r)-0 one can
easily derive from Eq. (37) the result in WU and
that of Roth for Bloch electrons without and with
spin-orbit coupling, respectively. Other limiting
cases discussed by Hebborn and Scannes can also
easily be obtained from Eq. (37). For the general
Bloch bands and arbitrary strength of the impurity
potential, there are corrections to Eq. (37) that
ari. se from the fourth- and higher-order (even)

Poisson brackets" multiplied by 84 and (h')', re-
spectively, in the expansion for TrSC" in powers of
8'2. Equation (37) should provide a very reasonable
approximation in most cases; it has the novel fea-
tures of being transparent and of being valid to all
orders in the impurity potential for general nonde-
generate Bloch bands. Section IV discusses
an immediate success of the present theory as ap-
plied to dilute alloys of copper.

IV. APPLICATION TO A FREE-ELECTRON-BAND
MODEL OF DILUTE ALLOYS OF COPPER

For the case of the free-electron-band model and
arbitrary strength of the impurity potential, Eq.
(37) yields a result which is exact up to the second-
order derivative of V,(q), the corrections just men-
tioned above being of order h multiplied by an in-
tegral involving (V2/m)(V2/m) V&(q). We will show
that in the free-electron-band model Eq. (37) gives
a firm theoretical foundation of the theory of Henry
and Rogers which accounts quite well for their
experimental results for various solutes in copper.
This is in marked contrast to the theory of Kohn
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and Luming which fails to justify the formula for
aX per solute atom used by Henry and Rogers.

For free electrons, we have (see Appendix B)

82
&x = - '

2 d'q&p(q)
I
ql'+ x.,~(0)&gi/g6mc ~

+ X„,.„(0)ag,/g, (57)
Z =P /2m+ V~(q),

0Z'" = (e/2mc)(q&p), + pal

Z'" = (e/2c)'(1/m)(q'„+ q,'),
and Eq. (37) reduces to

X X1+Xp+ X3+ X4+ X5 r

where

(41)

(42)

(43)

(44)

where

&o(q) =- A f(z')+2'4 f"(z') ~~(q)

(58)

i

d'Pd'qf'(ZP) S., + p. ', ,V 2' C
(45)

2h
~

d'Pd'q, (q„'+q,')f(Z'), (45)

(47)

-3 8'v'A d'q f"'(Z') V.(q)

(48)

X.„(0)=—d'Pd'q f'
2

(50)

X„,„(0)=
l

d'Pd'q f' pe . (51)

In view of Eqs. (45), (47), and (48), and Eqs. (50)
and (51), we can write for an arbitrary strength of

V, (q)

&x.,b
= x.:(o)~gi/g

Xsntn Xsntn(0) g2/g ~

(52)

(53)

where

g= GPGtg (54)

&g, = d Pd q f'(ZP) —f'
V~

I
2m

&g2= &gg+ ——d'f d'q f '"(Z') Vi(q)

By writing (Is) = (q xp), = q„p~ —2q„q,p,p, + qpp„and
integrating with respect to p, the first terms of X,
and X4 can be combined with Xa and X5, resulting in
the expression for AX per solute atom as

p

d'pd'q f "(Z') V,(q), (q„'+ q,'),
(49)

where factors of 2 in front of integrals account for
the + spin band. M~e note that for Vz(q) =0, we have
X= Xp= X (0)+X (0) where

Equation (57), with hg, = Agp and a similar consis-
tent approximation for b,p(q), is exactly the expres-
sion used by Henry and Rogers, ' as pointed out by
Kohn and Luming, in analyzing their data on dilute
alloys of Zn, Ga, Ge, and As with Cu which ac-
counts quite well for their experimental results.

Thus the use of Eq. (57) by Henry and Rogers, as
pointed out by Kohn and Luming, ~ is given a firm
theoretical foundation. Here lies the essential dis-
crepancy between Eq. (57) and the theory of Kohn
and Luming. 7 We believe that the copper conduction
electron can be approximately described by a free-
electron-band model and Eq. (37) should provide a
good approximation for copper as used by Henry
and Rogers. On the other hand, the theory pre-
sented by Kohn and Luming does not contain the
entire expression for AX per solute atom used by
Henry and Rogers.

V, DISCUSSION

We would like to summarize the approximation
used in deriving Eq. (37). The final expression for
x rests on the assumption that H(p, q) is a, matrix
which i.s nearly diagonal in bands and the noncom-
mutivity of H(p, q) with its derivatives gives cor-
rection of higher order than 82 in Eq. (24). How-
ever, all the results are exact if a. diagonal H(p, q)
is used, which in principle can always be found by
the method of successive unitary transformations
in the manner used by Blount ' and Suttorp and
de Groot. 'P The nondiagonality of H(p, q) as used
here occurs only in the Weyl transform of the im-
purity potential V», (p, q) since the basis states used
are the magnetic Wannier function and magnetic
Bloch function. Their use allows us to express all
features of the theory in terms of the field-free
quantities in a fairly straightforward manner. The
result based on the approximate diagonality of
V», (p, q) is a, reasonable approximation in most
cases; for example, in the absence of the magnetic
field the assumption that matrix elements of the
impurity potential between two Wannier functions
are diagonal in band is not uncommon. 6 For a
one-electron-band model such as discussed in
Sec. IV, this approximation is irrelevant. ,
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We conclude that the present theory has all the
important elements of an exact theory, and higher-
order corrections can possibly be handled by pa-
rametrization in actual calculation for y. It would
be very interesting to see if the Weyl-Wigner for-
mulation as used here can be employed to unify the
treatment of the magnetic susceptibility of magnetic
and nonmagnetic alloys. No work has been started
in this direction.
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APPENDIX A: MAGNETIC WANNIER FUNCTION
AND MAGNETIC BLOCH FUNCTION

In this Appendix we will give the derivation of the
Wannier function and Bloch function in a uniform
magnetic field as a series expansion in powers of
the magnetic field strength B. The result is given
up to second order in B. This allows us to express
all the features of the theory in terms of field-free
quantities and could serve as a basis for a real and
detailed calculation of the magnetic susceptibility
of dilute alloys. We choose the symmetric gauge
for the vector potential, A = —,'B&r.

We will consider nondegenerate bands, as spin

degeneracy with and without spin-orbit coupling
does not present any new difficulties since these
problems can be treated formally, exactly as in the
spinless case. " Following Wannier the periodic
part u,(r, p) of the modified Bloch function b~(r& p)
[we reserve the name magnetic Bloch function for
B,(r, p) defined below] satisfies the following equa-
tion:

u, (r, p) =uo(r, p)+Bu,"'(r, p)+Bzu,'z&(r, p)+. . . ,

W, (q) = W~(q)+BW"'(q)+Bzw&z&(q)+. . . ,
(A4)
(A5)

u, (r, p+ (e/2c)5x q) = exp Bxq ~ ~ luz(r", p),2 bc skj

substituting in Eq. (Al) and equating coefficient of
powers of 8 on both sides, we obtain the following
equation:

[3C+ V(r)]u (r, p) =P 8" ""'W (q)

&& u, (r, p+ (e/2c)H x q), (Al)

where

1 ith 1 eX= —
I

—.V+8k- ——Bx g,
—

2nz ii 2 c

The magnetic Bloch function B,(r, p) is then related
to the modified Bloch function b~(r, p) by the relation

B~(r, p) = e'"'u, (r, p ——,'(e/c)Bxr) . (A2)

Indeed, for B=O, Eq. (Al) is the equation for the
periodic part of a Bloch function. From Eq. (Al)
a. power-series expansion in B for u~(r, p) and W, (q)
can be obtained. Writing

Z=3C +BR' '+8 X (A3)

&'u', (r, I&) =Z e"""'W.(q)u~(» p) (A7)

l
zo-g e"~"»'"w~o(q) lu~«&(r, p) = —R'"u~(r, p)+ g e" ""'w&(q)

2@
zxq ~

——ku&(r, p)&l
a

+ g z"""'W'"(q)u'(r p) (Aa)

«~»& ~wo(q)lu&»(r p) =-+«&u&'&(r, p) z&'&u', (r, p)+Q e" ""'w'(q) zxq. =u,'"(r, p)
a

2Ac

2 2

a

+
l

zx q ~ ~u,'(r, p) + Z e'*~""'wp& (q)u', (r, p) . (A 9)

We are here only interested in u,"'(r, p) and u,"'(r, p). W,"'(p) and W&z&(p) have been given in WU. We have
for 5WX

(A 10)
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2 2 0) 2 0 0

(u2 W., u. )+8 2 u2 1-—„a b2)~2! + 1-q~ —
„2 & +2@2 b „«u.04 (2) o* (1) (1) e o* ~ &~)2 ~~&) 2 ~ ») o

Smc

(A 11)

where A, (r, q) = exp[- —,'(ie/hc)B r x q]a~(r —q), (A12)

(2) (f2 — - I BW2
W,

' ' = z ~

i
—.v+ 8k+— xi

Bk 8k '9, 8

Bb ' ~ Ba '
X

w~ '(p) = (u2w' 'u )

a,(r- q) =(&@') 'Z e"""'b.(r, p),

b,(r, p) = e"'u, (r, p) .
The orthonormality condition is expressed by

(Als)

(A14)

For 6 = X, (uo lu,"') and (u, * lu', 2') are determined by
the requirement that the magnetic Wannier function
A, (r, q) be orthonormal. We write explicitly

~ ~exp ——Bxr. q' —q p,* r-q' p, r —q d ~ 5qq. .
(A76)

Expanding all quantities in powers of B, we obtain
the following relation:

(a',*(r —q') a,'(r —q)) = 5;;, ,
(ao*(r —q')a,'"(r —q) + a,"'*(r—q')a, (r —q))+-,'(ie/hc)((ax r) (q' —q)a, *(r —q')a, (r —q)) = 0,

(A16)

(A17)

(ao+(r —q')azz'(r —q) + a&2'*(r —q')a2 '(r —q) + a~ '*(r —q )a~(r —q)) + ~z(ie/hc)(z x r ~ (q —q)

x [ao*(r —q')a,'2'(r —q)+ a~"'*(r —q')ao(r —q)]) —(1/2! )(e/2!2c) ([zx r (q' —q)] a,*(r —q')a~(r —q)) = 0. (A18)

(uo*lu"') is determined from Eq. (A17) and this was already obtained in WU. Their result is

(u'*~ u"') =——
i (A 19)

where X, and Y, are the diagonal elements of the Adams operator. We will show here in more detail the
derivat ion of (u, * l uP').

We multiply Eq. (A18) by e"~""'""and sum over q and q'. We obtain

(b *b' '+ b"'*b'" + b22'*b~)+ ——g e' "'"'""(zx r ~ (q' —q)[a,*(r —q')a,"'(r —q) + a"'*(r —q')a, (r —q)])
nfl'

~ ~

2 e"~""""([zxr'~ (q' —q)] a~*(r —q')a~(r —q)) = 0 .
aa

(A20)

Writing zxr (q' —q) =z [(r —q')x(r —q) —q'xq] and using Eqs. (A16) and (A17), the last two terms in Eq.
(A20) can be combined to give

(b'*b"' b"'*b') = —(b" '*b'") ———p e"~"""' '(z ~ (r —q ) x (r —q) [ao*(r —q') a"'(r —q) + a'"*(r —q')
2 @&c aq'

2

xao(r —q)]) +—,
~

e"~""'"' '([z (r —q') x(r —q)] a„*(r—q')a~(r —q)) .
atl

(A21)

Changing the multiplier operators r —q' and r —q to the Adams operators r —i(B/Bk) and r+ i(B/Bk), respec-
tively, carrying the summation over q and q', and using the relation r+ i(B/Bk)e"'u, (r, p) = e"'i(B/Bk)u, (r,p),
we obtain the following:

(A22)

04 (2) (2)e Oi / (1)4 (1)X 1i &~
i

~ 0 ~ (1) - ~ oq ~ 0 8 (1)g ~ 0(uz uz u2 u2)= —(u2 uz ) ——
!
—

! 2 u2 2 u~ 2 u2 2 uy + 2 u2 '2 u~
X' 3C &k~

og ~ o 8 „0+ 8 o
2 2 2 2

ey2 )t ey2 A, gp gy
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The left-hand side can easily be cast into an obviously real expression, and Eq. (A22) can be written as

Denoting P,",) = &u,
*

I uI) '& and P(~6) = &u~ l uP) & and substituting the expression for u~(~) in Eq. (A23),

(1) V (1) 0
uq =~ P()) u(),

6

we finally obtain the expression for u,' ' in terms of field-free quantities

(a) M (a) 0u, =~P„u, ,
6

where for f) q-'X, P(~) is given by Eq. (All) and

ply'=-, -E I().,l'-, q, „I
Z()ll'&xl pl»e4"&e I»)) e,q, ,', (2 ()ll'&xlxl»e()ll'"«Ixl»)

(A24)

(A25)

(A26)

where X and Y are the Adams coordinate operator.

APPENDIX B: WEYL TRANSFORM OF THE HAMILTONIAN

FOR BLOCH ELECTRONS AND IMPURITY POTENTIAL IN A

UNIFORM MAGNETIC FIELD

Let us write the total Hamiltonian as

R=3C + V/(r),

we end up with
r I

p (p, q)„=Keep q p--, q(q), l-p' qpI
VgP

1
K~ = —, V ——A(r)

~
+ V, (r) .

2m i c )
V~(r) is the periodic crystal potential and V/(r) is
the impurity potential. Using the magnetic Wan-
nier function A~(r, q) the following relation holds
for K~

3C„X (r, q)=+exp(——Bxq q') W(q —q')X (r, q').
foal (B2)

The Weyl transform of X„ is

Hu(p q)qy =Q e &Aq(r q —v)XuA), (r q+v)&

(»)
Using Eq. (B2) and by virtue of the relation (q+v)
x(q —v) = —2q&v, we obtai, n

ffu(»q)» =Zexp p- Bxq ' » IV, (»)6»2c
(B4)

Using the relation

=g~ p ——Aqc (B6)

V» (p, q) =Z e"'"""&B*,(r, p+u) V/(r)fl, (r, p —u)&.
(BS)

Usmg the relation (A2) we obtain

V-(p q)=Re 0»(p u fl)

where

W, , (g is referred to as the renormalized energy-
band function by Wannier. In the presence of spin-
orbit coupling 8',, (K) is a 2 &&2 matrix and it is given
by Roth.

We are left with the Weyl transform of the im-
purity potential V,(r). Denoting this by V», (p, q),
we have

V„,(p, q) =Q e' '/""'&A*, (r, q —v) V/(r)A„, (r, q+ v)& .
V (BV)

It is convenient to derive the expression for V», (p,
q) using magnetic Bloch function B~(r, p)

gr (2v) Q IV (p~P)e-(q/)))P''2P

p

(B5) e.;(P, ») =
&

"'"'"'"e.;(K+ K- )&, (Blo)
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(t)». (K+u, K —u, r) =u), (r, K+u) Vz(r)u~, (r) K —u),

K =p —(e//c)A(r) .

(811)

(812)

Substituting the expression for u~(r, p) given by Eq. (A24) in Eq. (Bll), we have

(t)»(K+u, K —u, r) = $0», (K+u, K —u, r)+B'I PP~(&&(K —u)$~»(K+u, K —u, r)+ P(6,",&*(K+u)(t)o„,(K+u, K —u, r) ~

+ B2 g p(~&(K —u)Q ~(K+u, K —u, r) +p p(~2&*(K+u)Q„, (K+u, K —u, r)
5 6

+ QP,",' (K+2)2'!„'(i7-2)P,'„(K+2, K-2, r))+O(P') .
6yy

Expanding all quantities in powers of B up to second order and denoting V», (p, q) by

V» (p, q) = V» (p, q) + BVP''(p, q)+ B'V,",'(p, q) +
". !

we have from Eq. (89)

(813)

(814)

V'„(p, q)=Z "'"""4,', (p+, p —,2 ), (816)

V(1)(p q) g e(2(/2)!2 u 0(l)(p u) +P
U 6

V&2&(p q) Q e (2i/h) q u
~

Q(2) (p u) +g
6

2,",'(p —u)p„(p+", p —", pu)++ 2„",'"(p+u)p,'„.(p+u, p —u, 22)),
(816)

p', , (I(p-u)&t)„(p+up p —ul 2u)+g pz, '*(p+u)(t', z. (p+up p —ul 2u)
6

where

++ 2„",'"(p+2)P'!'(p -u)P', „(0+u, 2 -u, pu)),
5~y

(81V)

8"'(p, u) =
I e "'/"'"'8"&(p u, r)d'r, (Bls)

O(R&(p u) l~

&2 /))) -O(2)(p'u r) ds
~P

(819)

g z(p+u, p —u, 2u) = ~ e &2'/")"'(t)0&(p+u, p —u, r) d~~, (820)

(t)', (p +u, p —u, r) = u'*(r, p)V, (r)u,'(r, p),
lu ~ u

p ~ p 2 Pr Pr P'()& Pp

!)2 s2 s2 s2 sR sR s2 s2
+ g+ i+ g p2! 2l! ' 2P, !P,I!P„' 2P„' ' 2P,&P, !P,!P„' 2P, !P,' 2P,'HP„')

2 2 2

+
S 2+2S S !+6 la ~p ~u. (P+up P —up r)++1 I. (I(Ppr)(t')6(P+"2 P —up r)

(821)

+Q pI, I)(p —u)8'&)'(P, u, r)++I','()'*(P, r)y„,(P+u, P —u, r)+Q pI„'*(0+u)O'I.'(0, u, r), (823)
5

1',"„'(P,r) =2 r, — ~„~ p"„'(P+u) . (824)c Pr Py )
For the one-electron-band model

Equation (825) can easily be seen by writing

V»(p q)

V2'(P q) = Vz(q)6»

VI,)'(p, q) =0,
V&l'(p, q) = o .

(826)

(826)

(82')

e '2'/" &P '(a,*(r —(q —v)) Vz(r) a,.(r —(q +v))),
(82s)

and noting that for the free-electron case a~(r —q)
is essentially a Dirac 5 function.
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APPENDIX C: DERIVATION OF THE SUSCEPTIBILITY X

The expression for Tr~" given in Eq. (23) was obtained from an exact expression recently derived by the
author which reads'2

8(j) 8(k) B(j) 8 (0)
TrK" = (Nh') 'Tr cos

„2 & 1 Bp Bg Bq Bp
j&tf i,I «i. ,

x l[H"'(P, q)H'"(P, q) H'"'(P q)+H'"'(P, q)H'" "(P q) "H'"(p q)j . (cl)
The combinatorics employed in evaluating TrR" to order 82 is very similar to the one used in Ref. 13. This
procedure almost wholly neglects the noncommutivity of the H(p, q) matrix (whose elements are labeled by
band indices) with its derivatives; however in the present formalism using the magnetic Wannier function
and the magnetic Bloch function, H(p, q) is nearly diagonal in bands for most purposes, the nondiagonality
occurring only in the Weyl transform of V,(r) which is V», (p, q). The noncommutivity is estimated to give
small corrections to the final results. This has been discussed in Sec. V. The final results are Eqs. (23)
and (24) for TrK and Trf (R), respectively. The magnetic susceptibility y is obtained from Eq. (18), again
neglecting the noncommutivity of H(p, q) and aH(p, q)/aB for the same reason mentioned above, and the re-
sult is

where

(c2)

—
v ~@ 2 f'(H(p, q))(n'")'+f(H(p, q))n"' —

2, 2 8
f'(H(p, q))

p V%A 2& 2 6 BpBp BqBq

pp(1)P+1182H(~~)p2+12)pR+|S)plH(pq)sp(1)eptl p2H(p~)pR+(2))
~ ~ ~

BpBp BqBq BpBp BqBq BpBq BqBp Bp&q BqBp BpBq BqBp

( (;;))~
a' »q). 'H(p q) "H(p q). .

a' (p q) (, »)f („(;;))~ a'H(p q), "H(p q)
apap ' aqaq apaq '

aqap '
i, apaq ' aqaq

a'H(p, q) a'H(p, q) „, „( ( -)) an'" a II(p, q) a'H(p, q) a' n'"
apaq ' aqap apap aqaq ' apap aqaq

a' n"' a'H( ) a'H( ) a' n'"
BpBq

'
BqBp I Bp8q ' BqBp

g(1) iP) q i + ~(1) + 2g ~(2) + y(1) + 2P y(2)dH& ~ e BR'
) (c3)

2 82

K=p- ( /c)A(q) .

Taking the indicated limit B- 0 gives Eq. (O'I) for the zero-field susceptibi]ity X.

(c4)

(c5)

*Present address: Eaton. Electronics Research Laboratory
McGi&1 University, P. O. Box 6070, Montreal 101, Que-
bec, Canada.

W. G. Henry and J. L. Rogers, Philos. Mag. 1, 237
(1956); Can. J. Phys. 38, 908 (1960).

C. P. Fl.ynn and J. A. Rigert, Phys. Rev. B 7, 3656
{1973).

For progress in this direction see J. W. McClure and
J. Martyniuk, Phys. Rev. Lett. 29, 1095 (1972); F. A.
Buot and J. W. McClure, Phys. Rev. B 6, 4525 (1972);
P. K. Misra, S. P. Mohanty, and L. M. Both, Phys.
Rev. B 6, 1794 (1971); F. A. Buot, J. Phys. Chem.
Solids Suppl. 32 (1) 99 (1971); H. Fukuyama and R.
Kubo, J. Phys. Soc. Jpn. 28, 570 (1970); J. Ruvalds,
J. Phys. Chem. Solids 30, 305 (1969); J. W. McClure,
Phys. Rev. 119, 606 (1960); R. Bowers and Y. Yafet,
Phys. Rev. 115, 1165 (1959).

4J. E. Hebborn and E. H. Sondheimer, J. Phys. Chem.

Solids 13, 105 (1960).
L. M. Roth, J. Phys. Chem. Solids 23, 433 (1961); E.
I. Blount, Phys. Rev. 126, 1636 (1962); H. Fukuyama,
Prog. Theor. Phys. (Kyoto) 45, 704 (1971); P. K. Mis-
ra and L. M. Roth, Phys. Rev. 177, 1089 (1969).

6G. H. Wannier and U. N. Upadhyaya, Phys. Rev. 136,
A803 (1964) (to be referred to as WU).

W. Kohn and M. Luming, J. Phys. Chem. Solids 24,
851 (1963).

BJ. E. Hebborn and P. S. Scannes, J. Phys. F 1, 480
(1971); J. E. Hebborn and N. H. March, Proc. R. Soc.
Lond. A 280, 85 (1964); T. B. Smith, J. Phys. C 3,
398 (1970); and for a review in this field see P. D.
Graham and N. H. March, Cryst. Lattice Defects 1,
12 (1970).

SG. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).
B. Leaf, J. Math. Phys. 9, 65 (1968). For a more
comprehensiveaccountof Leaf'swork, see S. R. de Groot



1436 F. A. BQQT 11

and L. G. Suttorp, Foundation of E/ectxodynamics (North-
Holland, Amsterdam, 1972), pp. 341-364. Other works
using the Weyl transform: R. Kubo, J. Phys. Soc. Jpn.
19, 2127 (1964); P. N. Argyres, Phys. (N. Y. ) 2, 131
(1965); W. R. Theis, Z. Phys. 142, 503 (1955). These
other works do not treat multiband quantum dynamics.
E. I. Blount, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1961), Vol. 13,
p. 365.

' F. A. Buot, Phys. Rev. B (to be published).

'3F. A. Buot, Phys. Rev. A 8, 1570 (1973).
F. A. Buot, Phys. Rev. A (to be published).
F. A. Buot, Ph. D. thesis (University of Oregon, 1970)
(unpublished) (No. 71-1299, University Microfilm Corp-
oration, Ann Arbor, Mich. ).

6A. Seeger, Comments Solid State Phys. 11, 82 (1969).
~E. I. Blount, Phys. Rev. 128, 2454 (1962).
L. G. Suttorp and S. R. de Groot, Nuovo Cimento A 65,
245 (1970).


