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In this paper, we present a theoretical description of the scattering and absorption of electromagnetic
radiation induced by roughness on the surface of a semi-infinite medium. We approach the problem by
the use of scattering theory applied to the classical Maxwell equations. We obtain formulas for the
roughness-induced scattering from the surface of an isotropic dielectric for both s- and p-polarized
waves incident on the surface at a general angle of incidence. When the real part of the dielectric
constant of the material is negative and its imaginary part small (as in a simple nearly-free-electron

metal), we extract from the expressions for the total absorption rate that portion which describes
roughness-induced absorption by surface polaritons (surface plasmons). We compare our results with
those recently published by Ritchie and collaborators for the case of normal incidence, and we present
a series of numerical studies of the roughness-induced scattering and absorption rates in aluminum.

I. INTRODUCTION

Our purpose in the present paper is to present
a theoretical discussion of the effects of surface
roughness on the interaction of incident electro-
magnetic radiation with the surface of a semi-
infinite crystal. In the presence of roughness,
which will be present on even the most carefully
prepared sample, the incident radiation may be
scattered away from the specular direction, either
into the vacuum above the sample or into the mate-
rial, where it is absorbed, if the sample is thick.
Thus, the presence of roughness decreases the val-
ue of the measured reflection coefficient below the
value appropriate to the idealized semi-infinite
sample with a perfectly smooth surface. In a sim-
ple metal, for which the real part of the dielectric
constant is negative and its imaginary part small,
one physical process that makes an important con-
tribution to the absorption rate is the roughness-
induced coupling of the incident electromagnetic
wave to surface polaritons (surface plasmons), '
which exist in the frequency region below e~ /v 2,
where co~ is the bulk plasma frequency.

Over the past several years, several theoretical
investigations of these phenomena have appeared.
In these papers, attention is frequently confined
to the case of normal incidence, and many authors
have examined only the properties of the simple
free-electron metal, which is described by the
(real) dielectric constant & = 1 —+~2/&u'. We feel it
desirable to extend these discussions to focus on
the case of non-normal incidence, and to compare
the relative effect of surface roughness on incident
radiation of s and P polarization for situations of
current experimental interest. Furthermore, even
in simple metals such as aluminum, the dielectric
constant may have an appreciable imaginary part

in some frequency regions, and the real part of the
dielectric constant need not be negative always,
so it appears useful to present calculations which
use the full form of the complex dielectric con-
stant.

Also, if one examines the recent papers of
Ritchie and his collaborators, one sees that in
one of them, ' the expressions obtained for the sur-
face-roughness -induced scattering and absorption
of radiation normally incident on the sample differ
substantially from the results of the other two
papers. 4' The question of which set of results is
correct remains.

The remarks of the two preceding paragraphs
suggests that the theoretical description of the sur-
face -roughness -induced scattering and absorption
of electromagnetic radiation remains incomplete at
the present time. It is for this reason that we
have chosen to examine these questions.

In some of the papers cited earlier, the analysis
proceeds by the use of the formalism of second
quantization. The quanta associated with the inci-
dent and scattered waves, as well as those associ-
ated with the surface polaritons, are described by
introducing appropriate annihilation and creation
operators. This formalism, while elegant, is dif-
ficult in practice to generalize to the case where
all of the modes have a finite lifetime as a conse-
quence of the imaginary part of the dielectric- con-
stant.

%e view the problem as a problem in classical
electromagnetic theory, and we choose to work di-
rectly with Maxwell's equations. %e formally ex-
pand the dielectric constant in a Taylor series in
the amplitude r(x, y) of the surface roughness, and
use a method described earlier' to convert Max-
well's equations to integral form, with the term
proportional to t(x, y) treated by the methods of
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scattering theory. Within the first Born approxi-
mation, one obtains from this approach the contri-
bution to the roughness-induced scattering and

absorption rate proportional to 5~, where 6 is the
rms deviation of the rough surface from a perfect
plane.

In a recent set of papers, Kroger and Kretseh-
mann and Juranek have examined this problem
from the point of view of classical electromagnetic
theory. While their methods differ substantially
from ours, their final results appear similar in
structure.

When our results at normal incidence are com-
pa, red to the appropriate expressions in the recent
work of Ritchie and co-workers, 4 6 we find agree-
ment with the results of the first4 and final papers,
rather than with those of the second. 5 We also
believe that one assumption in Ref. 5 is not valid,
and as a ct.nsequence the results there are not
correct. A comment about this point may prove
useful.

In Ref. 5, which confines its attention to the
simple free-electron metal, the calculation pro-
ceeds by introducing a transformation to a curvi-
linear coordinate system within which the rough
surface is mapped into a smooth plane. By trans-
forming the field variables and coordinates, the
Hamiltonian H is broken up into a part Ho, inde-
pendent of the roughness amplitude g(x, y), and a
part H, , of first order in this parameter, with
higher-order terms ignored. The part H, is
treated via the Golden Rule of perturbation theory.
Since Ho has the form of a Hamiltonian of a semi-
infinite solid with a plane interface, it is presumed
that the eigenstates of H, are those associated with
the plane-surface problem in a flat space. How-
ever, the transformation from the initial flat space
to the curvilinear coordinate system is nonunitary
in nature. The commutation relations between the
field amplitudes and their canonically conjugate
momenta are not left invariant by this transforma-
tion. The commutation relations in the new space
contain contributions proportional to the roughness
amplitude f(x, y) (or more precisely, to certain of
its derivatives). Thus, while Ho has the appearance,
of a. Hamiltonian of a semi-infinite solid bounded by
a plane surface, the equations of motion generated
by it contain terms proportional to g(x, y), contrary
to the assumption made by Elson and Ritchie. Thus,
their calculation includes some terms proportional
to the derivatives of g(x, y), but not all of them.

In their second paper, Elson and Ritchie again
use the transformation to a curvilinear coordinate
system. However, as we do here, they work di-
rectly with the wave equation of electromagnetic
theory. In this second work, we presume the meth-
od generates all terms proportional to f(x, y).

The transformation to curvilinear coordinates,

while it yields correct results when all terms of
the same order in g(x, y) are retained in the theory,
has one cumbersome feature, in our view. When
applied to the slightly rough plane interface, it con-
verts a problem with a perturbation highly localized
in the z coordinate (normal to the surface) into one
which extends from z = -~ to z =+~. We use here
the very simple and straightforward approach de-
scribed earlier that allows us to work with a per-
turbation that is highly localized, and that also
generates in a formal sense all contributions to the
scattered fields that are of first order in f(x, y).

This paper is organized as follows. In Sec. II,
we derive expressions for the fraction of energy
scattered from the surface into the vacuum outside
the crystal by the roughness, for both s- and P-
polarized radiation at non-normal incidence. In
Sec. III, we use the same form of scattering theory
to obtain expressions for the fraction of energy
scattered into the solid (absorbed) by the rough-
ness. In Sec. IV, we examine the structure of the
expressions obtained in Sec. III, and we obtain from
them expressions for the contribution to absorption
by roughness-induced coupling to surface polari-
tons, when the real part of the dielectric constant
is negative and its imaginary part small. In Secs.
III and IV we find that at non-normal incidence the
Poynting vector has a nonzero time average paral-
lel as well as perpendicular to the surface. To
our knowledge, the properties of the component
parallel to the surface have not been considered
previously, and under circumstances described be-
low, it may play a significant role in the absorp-
tion process. In Sec. V, we present a series of
numerical calculations carried out for parame-
ters characteristic of aluminum. The purpose of
these calculations is to explore the predictions of
the theory at non-normal incidence, and to explore
to what extent the simple expressions derived in
Sec. IV describe the roughness-induced absorption.
Finally, in an Appendix, we derive the complete
set of electromagnetic Green's functions required
for the scattering theory presented in the text.
These Green's functions are also useful for a vari-
ety of other problems, and it is therefore useful
to present their full form.

II. SCATTERING OF ELECTROMAGNETIC RADIATION BY
A ROUGH SURFACE

In this section we formulate the problem of the
interaction of an incident electromagnetic wave with
a rough surface, and obtain the cross sections for
the scattering of s- and P-polarized incident radia-
tion caused by the surface roughness. In Sec. III
the general results obtained here will be applied to
the. determination of the fraction of the incident
radiation absorbed by the medium bounded by the
rough surface.
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Let the height of the surface above the xy plane
be specified by the equation

z=t(x, y) . (2. 1)

Above this surface is vacuum, while the medium
occupies the space below it, and is characterized
by a (complex) frequency-dependent dielectric
constant e((d) which we assume to be isotropic.
Thus, the dielectric constant of the system of
medium plus adjacent vacuum can be written

e(z; ~)=e(z-f(x, y))+&(~)e(&(x, y)-z), (2 2)

where e(z) is Heaviside's unit step function. We
now expand e(z; (d) in powers of g(x, y):

a(z; &u) = e (z; ~) + [e((d) —1]g(x, y) i5( )z+O(f'),
(2. 3)

E' (x; &u) =E,(x; ~) -E',o'(x; &u)

to first order in g(x, y), and we find that

(2. 12)

2

E(„''(x; (u) = ——
2 [&((u) —l]Q ' d'x'D„„(x, x'; u))

v

x g(x', y')5(z')E,(0'(x'; u&) . (2. 13)

2 82
f,(E, td) ~ t'„. — .6,V )Z. (x; td) = 0,Bg Bg„

(2. 11)
and describes specular reflection of the incident
electromagnetic field from a plane surface. Since
the right-hand side of Eq. (2. 10) is already of first
order in the surface-profile function g(x, y), the
first Born approximation suffices to yield the scat-
tered electric field

where

1, z&0
e((u), z& 0 . (2. 4)

To proceed farther it is convenient to introduce
the Fourier representations of D,„(x,x'; &u) and
g(x, y):

we substitute

E(x; t) =E(x; (u) e '"',
D(x; t)=D(x; v)e '"',

and use the relation

D(x; (d) = a(z; ~)E(x; &u),

(2. 6a)

(2. 6b)

(2. 7)

the equation for the Fourier coefficient of the elec-
tric field E(x; &u) can be written in the form

)) xVxE(x; (()) —60(z; (())((0 /c )E(x; (())

= ((d /c )[e(v) —1]g(x, y)5(z)E(x; ~) . (2. 8)

We now introduce the Green's function D„„(x,x'; (d)

as the solution of the equation

A surface, even a rough surface, represents a
static scatterer of electromagnetic radiation. Thus,
if in Maxwell's equation

82vxgxg= —~ ~D,c BE-

(2g)

where k
I

and x, are two-dimensional vectors whose
Cartesian components are (0„,k, , 0) and (x, y, 0),
respectively. The form of the representation
(2. 14) is dictated by the fact that the system of
medium plus vacuum characterized by the dielec-
tric constant eo(z; (d), Eq. (2. 4), is invariant
against an infinitesimal displacement parallel to
the plane z =0, but not perpendicular to it. If we
also write the field E,' (x; e) in the form

.-(o) .
E,"'(x; ~) = e'")( '"))E„"'(k"'&u

~
z), (2. 16)

where kII is the component of the wave vector of
the incident radiation parallel to the surface, we
can express the scattered field in the following
form

2 82

=4m&~„&(x -x') . (2. 9)

E' (x; ~) =—,, [e(~) —1]
~

d k„e'")('*))F(k„—k,IO')

dz'd, „(k„(di zz')5(z')E„' '(k, ',"(ui z') .
v

With the use of this function we can convert the
pa.rtial differential equation (2. 8) into an integral
equation

E„(x; co) = E'„0'(x; &u) —(ur'/47)c') [&((d) —1]

x P dsx' D,„(x,x', &u}f(x', y')
V

x5(z')E (x'; (()), (2. 10)

where E(~0'(x; &u) is a solution of the cor."esponding
homogeneous equation

(2. 17)
At this point, we pause in the mathematical de-

velopment to comment on the boundary conditions
satisfied by the incident and the scattered field
generated by our treatment. The incident field
in Eq. (2. 16) satisfies the electromagnetic bound-
ary conditions across the flat plane @ =0, by con-
struction. The Green's function d „(k„m Izz'), when
considered a function of z for fixed z', satisfies
the same boundary condition as the p, th Cartesian
component of the electric field. Thus, in our
theory, the approximate expression for the total
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field E,(x; 0&) provided by E(ls. (2. 12) and (2. 1V)

satisfies the boundary conditions across the plane
z = 0. The exact field, of course, will satisfy the
boundary conditions across the surface z= ((x, y)
rather than the plane z= 0. A similar feature is
shared by the Born approximation of quantum
mechanics, applied to a perturbed step potential.

It might be thought that the integration over z'
in this expression could be carried out directly
in view of the presence of the 6 function in the inte-
grand. However, as we will see explicitly below,
the functions d„„(k„0&lzz') and E(0&(kI0&0& lz') can be
discontinuous across the plane z'=0. In evaluat-
ing the integral over z' we therefore use the rule
that if E(z') is a function of z' that possesses a
(finite) jump discontinuity at z' =0, then

and the notation + and —denotes 0+ and 0-, re-
spectively.

It is shown in the Appendix that the function
d„„(k„(dlzz') can be expressed in terms of a sim-
pler function g,„(k„(d lzz') according to

dv (kii(t&I zz') = g 8(t'v(kii)sv'v(kii) gv'v'(ko~I zz') i
p' v'

(2. 21)
where the 3&(3 real orthogonal matrix 8(k„) is
given by

k, 0)
S(k„)=— -k, k„"" (o o k/l

(2. 22)

E(z )(&(z ) dz = z[F(0+) +E(0 -)] (2. 18)
(k„-k, 0)

8-'(k„)= „—~ k, k„O
o o

E(g)(x; (d) = — » [e((d) —1]
l~

d'k„e(2ii'"ii
16m e

&&&(k —k' ')A (k k' &0&I z) (2. IS)
where

&.(k„k,',"~
I z) = —, g [d..(k„~l z+)E."&(k,l"~ I+)

+d.,(k„~f z -)z,"'(k',"~
I -)], (2. 20)

1

a result which has its origin in the evenness of the
& function and its normalization to unity and which
clearly reduces to the usual one if F(z') is contin-
uous across z'=0. The result (2. 18) enables us to
represent the scattered field, E(I. (2. 17), as

In calculating both the scattering and absorption
of electromagnetic radiation by a rough surface,
we assume that the plane of incidence is the xz
plane. The vector kl',

' is then given by

k(0) (k(0) 0 0) (2. 23)

%e will consider only incident radiation which is
polarized either parallel to the plane of incidence
(P polarization) or perpendicular to it (s polariza-
tion). It is then a straightforward matter to find
the electric field E'0'(x; (0) e '"' in the vacuum and
in the medium. The results are for z &0:

E(0)(X. f) e(0& x ttt)-

E(0)(x. f) e(0t gent)

and for z& 0:

(
(2(o) k +e((0) k e(2 ) E(1)

(f) (0) (0
+ k(t& ~(~)k(0& x

& 0)g Q» + Qg ~~(0)g (1)( {0) (i)
+ y(0) y(k) e y

k' ' k"' —z(&0)k' '

(2. 24a)

(2. 24b)

(2. 24c)

o s. (&)
E(0&(X. f) et(2 Mt& xetag g 2~g E(1)

x x~ e e y(k) r & y(0) x
g

—Cy(d j

( ) 2~(o)
E(0&(». f) 1 0t etx) (2gt g g E(1)x; =8

y (0) y(&)

(2. 25a.)

(2. 25b)

(0)i g& 5 (y (0)X'-f21 t ) Q» g E (1)

g ~4+) g
(2. 25c)

k(0) (~2/c2 k(0)2)1/2

k(t) (e(~) ~2/c2 k(0)2)1/2

(2. 26)

(2. 2V)

The quantities k' ' and k,"' appearing in these ex-
pressions are defined by

where the negative sign for the square root in Eq.
(2. 27), together with the fact that Ime((d) )0, leads
to the result that Imk,"'& 0. (We take the branch
cut for the square root along the negative real
axis. ) In each of E(ls. (2. 24) the first term on the
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right-hand side represents the incident electric
field, while the second represents the reflected
field. The vector E" gives the amplitude of the
incident field, and in writing Eqs. (2. 24) and (2. 25)
we have used the fact that

4mC2
g„(k„~l+)=

e(&o)k2

k, — e((d)k,

kl, k
g&&( II I ) (d2 k e(&o)k1

(2. 37b)

(2. 38a)

k (0)
(i) (1)—

k~p (2. 28a) k- ()k (2. 38b)

g (0)
(1) (1)

E& —
k (0) E&

z
(2. 28b)

The quantity k, appearing in these equations is
2 1/2

(2. 39)
for the incident and reflected fields, respectively.

It follows from Eqs. (2. 24) and (2. 25) and the
definitions (2. 6), (2. 16}, and (2. 23} that the ampli-
tudes E(o)(k(o)(d l a) are given by

E &o)(k&o)&
l
+} @&o)(k&o)z

l (2. 40)

and Imk, & 0.
Combining Eqs. (2. 20), (2. 21), and (2. 32), we

can express A„(k~, k(,"&d Ig) conveniently as

A, (k k ' '&o
l g) = e +& X,(k, k' )o))

2k~
k(i) e(~)k&0) x

E (0) (k &o )~
l ) E &o)(k (o)~

l )

2kg (1jk"' —k("
z 8

&0) &o)
—2c(R) k (0)

( it l ) k(i) g qk(o)

(2. 29)

(2. 30)

(2. 31a)

X,(k, k(o)&o) = p &,, (k k(o)&d)S...(k„),

with

~,(k„k,',o) ~) = —g [g,„(k„~l+)S&')(k„k,
,
o)~l+)

V

(2. 41)

~ y, (0)
(0) (0) (1)

{ (2. 31b)

+g„(k„&o
l

—) 8„"'(k„k,',"(o
l
-)] (2. 42)

The results obtained so far apply equally to the
scattering and absorption of light by a rough sur-
face. In the remainder of this section we confine
our attention to the scattering problem.

In the scattering problem the coordinate z in Eqs.
(2. 19}-(2.21}must be positive. The results of the
Appendix show us that for z &0 the function
g„(k„o)la+) has the form

g,„(k„&ols +) = e++g,„(k„&ol +), (2. 32)

h(o)(k kI"~l ~) = QS..(k„)Z„' (k,',"~l+) . (2. 4S)

2

E "'(x; (d) =, z [e((d} —1] ll
d'k„e' '"

&& )(k —k ) &(k k' (2. 44)

where k is the three-dimensional vector

The scattered field amplitude (2. 19) can now be
written

(&2/ o k2))/o

i(k' —uP/c') '~'
(d /c &ko

&d /c &ko
(2. ssa)
(2. 33b)

The function g,„(k„(d la+) clearly satisfies the out-
going wave condition at infinity for &oo/c2 &ka, and
describes exponentially decaying waves for uP/c'
& k„. The nonvanishing functions g, „(k„&o l a) are
given explicitly by

2

g..(k„~l+)=g.,(k„~l-)=- — 2--
k ',('„}k,

k=k, (+zkg . (2. 45)

It must be kept in mind that k, is a function of k„
given by Eq. (2. 33).

If we write the scattered magnetic field in the
form

H"'(x t) =H"'(x &o) e '"' (2. 46)

then from the Maxwell equation V )&E = -c '(BH/t)t)
we find directly that

(2. 34)2

g,.(k„~l+) =g..(k, , ~l -) =

(2. s5)

H (x. o)) —,[&(&o) 1] l, (f k„e' '"

)&5(k„—kI, ') k)&X(k k' )&o) (2. 4V)

g„(k„~I+) =g„(k„~l -) =
k 1

47(ic2 e(&o)k„k,
gran kii(dl+ —

2 k ( )k

(2. 36)

(2. 3Va)

We next turn our attention to the form of the
Poynting vector associated with the scattered
radiation, in the vacuum above the crystal. We
are concerned here with the energy radiated into
the vacuum above the surface, away from the crys-
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tal surface. Thus, in the formulas displayed in
the remainder of this section, we confine our
attention to the region k„«0/c, where k, is
real, and the fields propagate away from the
surface. When k„&&0/c, k is pure imaginary,
and the scattered fields associated with these
values of k„decay to zero exponentially as one
moves away from the crystal into the vacuum.
We shall return to discuss these exponentially

decaying fields in Sec. IV, where we will see they
have a real physical effect; they set up an energy
flux that is localized near the surface and flows
parallel to it. For the moment, we confine our
attention to the region k„«u/c, and we append the
symbol & to the integral sign where necessary to
remind the reader of this restriction in the expres-
sions that follow. The complex Poynting vector
for the scattered radiation is therefore given by

S= —E&"(x; t)*xH& &(x; f}
Bw

x f (k„k(0&)*f(k'„k &,
"})&(k„k(')&0)* x [k' xX (k' k&"'0&)] (2. 48)

In order that we can compare our results with
experimental data for a metal surface it is reason-
able to assume that the surface-profile function
f(x, y) is a stationary stochastic process, and that
our result (2. 48) for the Poynting vector should
be averaged over the probability distribution func-
tion for this process. In fact we have to average
the product f(kii)f (kii) The averaging restores
infinitesimal translational invariance parallel to
the plane a=0, and we have that

& &(k, )&(kl)& = [(»)'/&) 5(k I+ki'I) &I K(k, i) I & (2. 49)

where A is the area of the metal surface, and use
has been made of the reality condition f(-k„)
= E(k )* „F.ollowing Elson and Ritchie' we make
the replacement

~ '&
I f(k„)I'&=5'g(k„), (2. 50)

where 6 is the mean-square surface-height varia-
tion, and the surface scattering factor g(k„) is
assumed to depend only on the magnitude of k„,
but not on its direction. With the use of Eqs.
(2. 49) and (2. 50) the spatial average of the Poynting
vector (2.48) can be written

x k
I
)&(k„k(0)&0)

I

' (2. 53)

which is manifestly real. The magnitude of the
real part of the averaged Poynting vector describ-
ing radiation associated with wave vector compo-
nents parallel to the surface between k„and k„+dk„
is therefore

&&I)((k„k,', '&d)l'(f k„, (2. 54)

where we have used the result that k = (k„+k2)'~'
= &d/C.

To proceed farther, we require the X,(k„k(0)&0).
We first record the expressions for the quantities
h(~'(k„k, ', '&0 I+). Combining Eqs. (2. 22), (2. 29)—
(2. 31), and (2.43) we obtain

The first of these is a consequence of thetransverse
nature of the scattered electric field. Thus the
spatial average of the Poynting vector takes the
simple form

g&0)(k k(0)~l ~)

x [k ~ )((k„k(0)0&*)]f, (2. 51)
y(f) ( yy(0) Ex y(f) y(0) Ey

z —&ii ~ z z
(2. 55)

(2. 52a,)

(2. 52b)

where we have expanded the triple vector product.
With the aid of the definitions (2. 41)-(2.43), and
the results given by Eqs. (2.34}-(2.38), it is
straightforward to establish the two useful results

k ~ X(k k' '&0)* =0

l)((k k' &0)l =
I X(k„ki'I &0)l

&o&
-

&o&
—2~(o&) k (0)

» (kil II &I +) =
k& & ( }k&o& +» (2. 5Va)

s,(0)(k, k,(,"&0
I +)

k(i) ( )k(D)» k(i) k&0) Ii

(2. 58)
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(0)
(o) (()) )

—2k (i)~s (knko +I ) k(i) I xk(0) @x ~g/ (2. 5Vb)

Substitution of these results, together with Eqs.
(2. 34)-(2. 38}, into Eq. (2. 42) yields the results

X„(k„k&o'(d) = —(k, /k„) X,(k„k&o'(d), (2. 58)

~,(k„k&"~) =

(1) 2k& k» (1)
k(&) ( q k(0) x + kB) k(0) y

g &S) z z z
(2. 58)

(0) 4mic 1 1
(o' k —e(&o)k, k,'" —&((o)k' '

y t2k k k(i) k2 k(o)[~2(&o) ~ 1 j)E(1)

4wic k, 2k, k,' '
k, —e(~)k, k&'& —k,"'

(2.60)

When we substitute Eqs. (2. 58)-(2.60) into Eq.
(2. 54), the contribution from IX„I + IX, I corre-
sponds to scattered radiation that is P polarized;
the contribution from I &, I corresponds to scat-
tered radiation that is s polarized. Within each
category the contribution containing l E„'" I cor-

FIG. 1. Scattering geometry employed in this paper.

responds to incident radiation which is P polarized,
while the contribution containing IE,' '

I corre-
sponds to incident radiation which is s polarized.
We can therefore decompose the differential Poynt-
ing vector (2. 54) into contributions associated with
the scattering of incident radiation of a given po-
larization into radiation with prescribed polariza-
tion. Thus, in an obvious notation

(S(k„is- )) d k„=5, — g(ik„—k' 'i)

x — lkql' (@(q)(Pd~k
Ik( —e((u) k I

Ik'" —k' (2. 61)

( (kfil s s))d kn=5
8 3 3 Z(l tl II I ) ko lk k Iolk(() k(o)I28m c II g z z

tz„"'I'
(3(knlP s))d ko 5

8 3 3 +(lkll kll I } ko Iy k Iolk(() ( '(k(o)l& kn
7T C z z —&~& z

(2. 62)

(2. 63)

II

q(&d)k lo Ik(() g(&o)k(o) lo I x I n . (2. 64)

We can simplify these results somewhat. We
note first from Eqs. (2. 24) and the scattering geom-
etry depicted in Fig. 1, that the incident flux per
unit area of the surface is

S' ' = (c/8i() cos8o
~

E'"
~

(2. 65)

for s-polarized incident radiation, where 80 is the
angle of incidence, and

malize the expressions (2. 61)-(2.64) by dividing
Eqs. (2. 61}and (2. 62) by Eq. (2. 65) and Eqs.
(2. 63) and (2. 64) by Eq. (2.66). We also note that
Eqs. (2.61)-(2.64) give the energy crossing unit
area normal to the direction of k per unit time. We
normalize the scattered flux to unit surface area
by multiplying each of Eqs. (2. 61)-(2.64) by cos8, ,
where 8, is the polar scattering angle. We next
note that when k„& (o/c, we may write

3&o)
8m cos80

(2. 66)

for P-polarized incident radiation. We will nor- = ((o /c ) cos 8, dQ, , (2. 6V)
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k, = (&u/c) sin8, sing, ,

k, = (&u/c) cos8, ,

k"' = ((o/c) sine,

k,"'= ((o/c) cos8, (2. 68)

k, = —((o/c) [e((u) —sin'8, ] '~ ',

where dA, =sine, d&, dy, is the element of solid
angle about the scattering direction (8, , y, ). Final-
ly, we note the geometrical relations valid in the
radiation region k„& u&/c.

k„= (&u/c) sin8, cosy, , k = &o/c

k'" = —((u/c)[s((u) —sin'8, ] ' '

Again, we point out that the negative signs attached
to the square roots in the expressions for k1 and

k,'" lead to the results Imk1&0 and Imk, ' & 0, re-
quired by the boundary conditions at infinity.

Combining the normalizations described above
and the results given by Egs. (2. 67) and (2. 66),
with the results expressed by Egs. (2.61)-(2.64),
we obtain finally the cross sections for the scat-
tering of radiation into unit solid angle about
(8. , V.):

Q(k~~ I S p) p (d I t((d) —1 I I
~ ~&0& I 2

|& 4 g(I k kp I ) cos8, cos 8, sin y,
S 7l C

ls((u) —sin'8, I

le(&o) cos8, + [e(~) —sin~8, P~~ I~
I cos80+ [c(cu) —sin'80]'~

g(I k„-k' 'I ) cos8, cos'8, cos'y
S

1
X

I cos8, + [e(&u) —sin 8, ]& ~
I I cos8O+ [E(v) —sin 8o]&~

g( I kg kii I ) cos80 cos 8g sin Ip
S

I e((u) —sin'8, I

I cos8, + [e(&u) —sin 8,] I ! e(v) cos8, + [e((u) —sin 80]

d f(k„lP-P) 62 " I c(u') —l l

(I k k(0&I ) cos8 cos
S c

Icos(p, [e((u) —sin28, ]&~2[&((u) —sin~80]'~2 —2 sin8O sin8, [e'((u) +1] I

I e((u) cos8, + [E(u)) —sin~8, ]&~
I I e((o) cos80+[e((o) —sin 80]'~

(2. 69)

(2. 70)

(2. 71)

(2. 72)

III. ABSORPTION OF ELECTROMAGNETIC RADIATION BY
A ROUGH SURFACE

where the coefficient functions g,„(k„&u I +) are given
explicitly by

In Sec. II we have developed a formalism for
treating the interaction of an electromagnetic wave

with the rough surface of some medium, and ap-
plied it to the determination of the cross sections
for the scattering of the electromagnetic wave by
the surface roughness. In this section we apply
the same formalism to the determination of the
absorption of the electromagnetic wave by the
medium arising from the surface roughness.

Our starting point is the expression for the scat-
tered electric field given by Egs. (2. 19)—(2. 21).
In contrast with the scattering problem, in which
it is the values of g~„(k„~Izz') for z &0 that are
required, in the absorption problem it is their
values for z& 0, i.e. , in the medium, that are re-
quired. From the results of the Appendix we find
that for z& 0 we can write

g„(k„~I+) =g„(k„~I
-) = „1

4mc' k„k,
k '( ')k

1

4mic ~ k„k1
co~E(co) k& —6(M)kg

4vic2 k„
k —s(u&) k1

(3.4)

(3.6a)

(3. 6b)

(3.6a)

Zxx(ko +
I +) =&xx(ka ~

I ) =
2

(3.2)

4mic2i,(k„~l+)=g (k„~l -)=
(3.3)

g (k, ~I s+) =e~""g (k, ~I +), (3. 1)
4mic ~ k„

~«( " I ) ~2q(~) k g(~)k (3.6b)
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x g(k„- k(,0)) ) (k„k,(0)&), (3 8)

H(s)(x. f) &-i(R& [e((0) 1] I (f 2li eik x

16m'c

x j(k„k,',")[kxX(k„k,',"(0], (3.9)

where the three-dimensional wave vector k is now
given by

k =k„+zk (3.10)

It should be kept in mind that k& is a function of
k„ through Eq. (2. 39), and is complex,

k, = k,"' —ik~~~ k~' &0 . (3. 11)

The vector k, therefore, is also complex.
The complex Poynting vector obtained by sub-

stituting Eqs. (3. 8) and (3.9) into Eq. (2. 48), and
averaging the result with respect to the distribution

Thus we can write the function A, (k, k,', 0) I z) en-
tering Eq. (2. 19) in the form

A (k k' '(0I z) =e+&')(„(k„k,', '0)), (3. 7)

where X,(k k,',0)(0) is again defined by Eqs. (2. 41)-
(2. 43), with the only difference being that the func-
tions g„(k„(0I a) appearing in Eq. (2. 42) are now

those given by Eqs. (3.2)-(3.6).
The scattered electric and magnetic fields are

now given by

COE(R)(X t)=. —e '"' [&((0) —1] l (f k e'"'"
16~'c'

function for the surface profile function g(x, y),
now takes the form

(~( )) 5, (0' I (-((0) —1 I

512m'c'

x/kl )((k kl"0)) I' -)((k k™0))
x [k. .~(k„k,(,"~)*]].

&'&„e"I' ' g(l k„-k"'I )

(3. 12)

However, in the present case the scalar product
k )((k)) kI) 0))" does not vanish, and both terms in
braces contribute to (S(z)). It is therefore con-
venient to define two vectors A(k„k(0)&u) and

B(k„k,', )(0) by

A(k«k)I" &) = k
I &(k() kI)"0))

I

B(k„k,', )u)) =X(k„kI) (0)[k X(k„kI) 0))*] . (3. 14)

With the aid of Eqs. (2. 22) and (2. 41) we can re-
write these vectors in terms of the functions X„,
(k„k(0)u)) as

&.=~, l~l', (3.»)
B„=(1/k„)(k„X„—0 X,)(k„X„+k)X, ), (3. 16a)

B)):(1/u)) )(kR X + I) )(R)(k)) )(R + k))(R )

B.= )(.(~)) )(R + &()(R*) (3. 16c)

We now require explicit expressions for the func-
tions X (k„k,',0)&u) appearing in Eqs. (3.15) and
(3. 16). Combining Eqs. (2. 42), (2. 55)-(2. 57), and
(3.2)-(3.6), we find that

)(,(k„k'„"(0)= —~ )(,(k„k,', '0)),
II

(3.17)

~~0~ —47B 1 2k' kz &1) 2k& kz (1)
))( (l 0 ) l i l y(i) y(0) x + i(() y(0) R

z II z ~~~ z z z
(3. 18)

(0) 4n.ic 1 1
(0 k —E'((d)k k —f((0)k

2 k 2k k"'
(3. 19)

To obtain the power absorbed by the medium we need the real part of the complex Poynting vector (3.12).
If we combine Eqs. (3.17)-(3.19) with Eqs. (3.15) and (3.16) we find that the real part of (S(z)}depends
on the following quantities:

+Re h
'

& u")
R»(R„-R„)=)t„("+"'( ') I~ I'+I~ I'I-aa„' R»((~„i*.),

) '
k{r

k+Rek 0 k&»&
R»(&.-R.&=+.(

"' ' ' I~.l'+I~. l' 2~, -'- 'IR»(i~„~,'),
k Ik (~

R»(». -R.)=)I»(»+„"~)
I
~.

l
.I;I ) .

(3.20)

(3.21)

(3. 22)

With these results we can now write down the components of the real part of (S(z)) in the case that the
incident light is s polarized. We have that
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Re(S,(z)), = 0,

8 c
C4 C2

(3.23)

(3.24)

~'I & —1I' k' ")E"'l'
8m'CS

(3.25)

The vanishing of Re(S,(z)), is due to the fact that the integrand of the expression for it is an odd function
of k„ .

We can simplify E(ls. (3.23)-(3.25) by going to polar coordinates and setting

kx = kll Costs, ky = kll si

In this way we obtain

2
(d'

I e((o) —1I, IE,"'
I ( z,„(z&, ( (0)Re(S„(z)),=5 8~, cos 80 II (i& k(0) I2 I

d k e ) 'g(lk„-&„ l)k„cosq,
8-(i c

(3.26)

, co I e((d) —1I, I&,"'I " », (a&,Re (Sg(z))8 5 ~ p cos 8o
~ (i) (p) ( z8~(i c

c 2 (kj, + Ik)l )Ik, l &u cos y,xg(ll( -k l)k) ~ »n(( ~ lk ( )k l~+~ lk k I2 ~

g

cos ps
tk -k I2 (3.27)

(3.28)

In E(I. (3.27), k( ) = (k„- (d /c~))~2, and the term in which it appears contributes only when k„(d /c, as the
presence of the Heaviside unit step function indicates.

Turning now to the case of P-polarized incident light we find that

52
e'

I e(&o) —1 I IE„"'IRe(S (z)) 5
8p I

k(') )k(0& I2
d k e ) '

g(l k -k
I )8 c

4 C2

k I k k I

z Q
I-k'„+ Re(k()l k, l k. k.k!"--' k"'Kl.e(~) + ~ '(~)l

I

' + 2 '. ~ kI"
k'„ lk, —e (d k, l CO

gk(i) 1 & g k krak(i)w j. k(0) ~4 ~ +~ 1 ~ 4 + x N gk —e((d)k k kSik(') ~'
g k k x g g 2 II

g lk —kg f1

Re(S,(z)), = 0,

(3.29)

(3.30)

(S ( )) 52 QP I &(&d) —1l
g p- 8msc2

~ Ex t
I

2 20 ) (0)
(1) 2

I
k(i) I )k(0& I2 n e ) g(lkn—~(&j g

t kq —k, (

(3.31)

The function Re(S,(z))~ vanishes for this geometry also, because the integrand in the expression for it is an
odd function of k, .

We have recorded here the expression for Re(S„(z))~ associated with P-polarized incident radiation for
completeness. However, in what follows we will consider explicitly only the component Re(S,(z))& induced
by P-polarized incident radiation. With the use of E(ls. (3.26) we can write it as

c2
Re&S (z))n = 5 32' &2

I
k(i& "e(&)k(o) I2

4 &a I
k '

I II
d k e ) g(lkn ki 1)kI

c', (k„+ I k, lz) lk, Iz (d2 sin2((&,
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C2
+ —,sin'col e((o) +e '((o)I' d'k„e' I "g(lk —kIi 'I )

(d I k, —e (o k, lo

Ik, —e (o k, l' (3.32)

S(z) = (1/Po) Re(S(z)), (3.33)

where it should be kept in mind that in this section
s is negative.

The z component of the Poynting vector gives
the energy crossing unit area perpendicular to the
z axis per unit time. To obtain the portion of the
incident flux entering the medium we clearly re-
quire the z component of the Poynting vector
evaluated at z =0 —. If the incident beam strikes

Having obtained the real part of the complex
Poynting vector, averaged over the surface rough-
ness, inside the medium, forboth s- andP-polarized
incident radiation, we now turn to a discussion of
the physical significance of these quantities.

Let us denote by I'0 the energy incident per unit
time on unit area of the surface. Explicit expres-
sions for this quantity are given by Eqs. (2. 65)
and (2. 68), for s- and P-polarized incident radia-
tion, respectively. We then define the vector S(z)
by

a rectangular area of the surface of linear di-
mensions L„and L„ then the total energy carried
into the medium per unit time by the scattered
waves is

dE,
df' ——S, (0 -)E(&, (3.34)

where

E,p =L.L.I 0 (3. 35)

is the energy per unit time that strikes the area
L„L,. Thus if we denote by f, the fraction of the
energy carried off by the scattered waves in the
direction of the normal to the surface and into the
crystal, we have

f.'=S.(o -) . (3.36)

Combining Eqs. (3.28) and (2. 65) and Eqs. (3.32)
and (2. 66) according to Eqs. (3.33) and (3.36), we
find that this fraction f~ is given by

Z

c' . , (k'„+ lk, I ) Ik, l' &d' cos'(o,
(3. 37)

2
&d' Ie((o) —l lo

47('c'
cos00

I

k(i& e(&)k(o&c', (k'„+ lk, I') lk, I'

, (k'„+ lk, I')k'„k&'&

for s-polarized incident radiation, and

2

d'k„g(l k„-k"'I )k("

r

k I2 + ~ sin col e(+)+e ((o)l d kas(l ~ k
I )

&o& & (ko + lk( I )kii kl

~
—fy(dj

xRe jk. k& & [e(o&)+z ((o)]J (3.38)

for P -polarized incident radiation.
Turning now to the x component of the Poynting vector, and consequently of the vector S(z), we see that

Re(S„(z)) gives the energy traveling parallel to the surface which crosses unit area at a, depth z per unit
time. The total energy per unit time carried by the wave is therefore

dz„ r 0
dz Re(S„(z))=L,Po II dz S,(z) .

w oo w QQ

(3.39)

We divide this expression by Eo to obtain the fraction f„of the incident energy absorbed by the medium and
carried off in the x direction,



SCATTERING AND ABSORPTION OF ELECTROMAGNETIC. . . 1403

t 0
dz 8„(z}.L„.„ (3.4o)

Thus the quantity S„(a}itself has no direct physical meaning. The physically meaningful quantity is f„,
which is obtained from 3„(a). Combining Eqs. (3.27) and (2. 65) with Eq. (3.40), we find for f„ the result

«& le(&o) —ll cos80," 2, ~

- &o&~, k„cos&p,
I. » c Ik'" —k'

I

" " " 2k'x g Z 1

2 2

Ik, —cur k, l Nky k~l
(3.41)

for s-polarized incident radiation.
The numerical evaluation of the results of this and Sec. II will be carried out in Secs. IV and V.

IV. CONTRIBUTION TO THE ROUGHNESS-INDUCED
ABSORPTION FROM COUPLING TO SURFACE

POLARITONS

Many of the earlier theoretical studies' 6 of the
roughness-induced absorption confine their atten--
tion to the simple free-electron metal, which is
described by the dielectric constant e(&u) = 1 —~~2/
&u~. In the frequency region where e(&o) ~ —1, sur-
face polaritons may propagate along the interface
between the crystal and the vacuum. ' The waves
are described by the dispersion relation

c2k'„s(v}
(d 6(&d) + 1

(4. 1)

Note that for the surface polariton ck„&v, a con-
dition that must be satisfied if the surface wave is
not to radiate its energy into the vacuum. Then in
some of the earlier papers, the roughness-induced
absorption is presumed to arise from the rough-
ness-induced coupling of the incident wave to the
surf ace polariton.

The purpose of the present section is to examine
the general results of Sec. III when the real part
e"&(&d) of e(&d) is negative and the imaginary
part a+&(&0) is small. In this case, we find con-
tributions to the absorption rate that may be identi-I
fied with roughness-induced coupling to surface
polaritons. For small @&2&(&u), we extract from the
general expressions simple expressions for the
contribution described above. We do this for the
cases of s and P polarization at non-normal inci-
dence. In Sec. V we shall make a quantitative corn.
parison between the results obtained in the present
section and numerical computations of the total ab-
sorption rate calculated from the general expres-
sions given above. We do this for the case of
aluminum metal, the material for which the ap-
proximate results should hold best. In their most
recent paper, Elson and Ritchie carried out an
analysis similar to the one presentedhere, although

they confined their attention to the case of normal
incidence, and they have not carried out numerical
studies of the sort reported in Sec. V.

We begin with the general expression for the
quantity f,&'~&, the fraction of the energy of an in-
cident wave with s polarization absorbed by the
roughness-induced energy flow in the direction
normal to the surface. We saw earlier that this
quantity is given by

f""= Re (s,(0 -)},/P, ,

where

Po=c~E«&~ cos80/87& .
We have the explicit form from Eq. (3.37):

&,(&
8'&u'

I e((u) —1 I' cos8,
Hc' Ik"& - k&'& I'

(4. 2a)

(4. 2b)

X d2k„g k„-k«&

Thus, when the left-hand side of Eq. (4. 4) is
considered as a function of kg when e& &(co) is
small and e' '(e) negative, a strong resonance at
the surface plasmon wave vector [Eq. (4. 1)] ap-

(4. 3)
The first term in the large parentheses arises

from scattering processes which transform the in-
cident wave of s polarization to a scattered wave
with P polarization, while the second term de-
scribes scattering of the initial wave into a scat-
tered wave of s polarization. It is the first term
which contains a description of the roughness-
induced absorption by surface polaritons. This
may be seen by noting that

1 I k, + e(&u)k, I'

Ik, —e(&u)k, l2 Ik', —e (&d)k', I

or after some small rearrangements,

1 Ik, + e((o)k, I'

Ik, —a(«&)k, l~
I e'((o} —1 I'
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I k, —E((d)k, I c [I e{ '((d) I
—1] [ IE")((d)1+1]

(d' 6((d)
c e((d) + 1

Note also that when 2' '((d) is small and e"'((d) & 0,

(4. 6)

E((d')
1 2 2 (k2 ( 2/ 2) I

(1)( ) I)1/2 (4. 7)

i.e. , the quantity k,"' is proportional to &"'((d) in
this limit. '

When the approximations described above are
carried out for all the facors in the appropriate
term of Eq. (4. 8), the results may be arranged to
read [for small e{ )((d)]

f (,() 2&' cos60 (d I e'"((d) I' (2)
c [I e")((0) I

—1]2/2

2ff

d(/), sin %,8(l „k —k,', 'l)
+o

X ' dk„k(I
+o

(4. 8)
To obtain this result, it is useful to note the identity

pears. We may obtain the contribution to f,"'" from
roughness-induced coupling to surface polaritons
by considering only the part that arises from this
resonance. We proceed to obtain this portion in
the limit e' ((d)-0, by replacing k„everywhere in
slowly varying factors by the value

~2 ~{1)(~) ~2 I ~(1)(~) I

k c' e"'((d)+1 c I e"'((d) I
—1

4. 5)

where, as the last step indicates, we confine our
attention to frequency regions where e"'((d) & 0.
With such an approximation applied to Eq. (4. 4),
one obtains

[as c' ((d)-0 and with e'"((d) & 0]

l
k"'-k"'l'=1

As e' '({d)-0, the integral over k, is readily
evaluated to give the simple result

I e ' "((d) I

'
e c 0 [I &(1)(~)I2 1]5/2

(4. 9)

( p

/i "= (1,, i

deRe(S, (e))) L Po,

where Pp is given in Eq (4. 2b).. Thus, we have

2s

»n (() g'(lk)) k~ k)) l) (4. 10)
ao

At normal incidence, this result becomes equiv-
alent to the result of Crowell and Ritchie, 4 who
derived it through the use of quantum-mechanical
perturbation theory, and also with the recent re-
sults of Elson and Ritchie. It is interesting to note
that in the classical theory, this contribution comes
from a small "leak" of energy out of the surface
polariton into the crystalline interior, owing to the
(assumed small) value of 2{')((d). This is evident
from Eq. (4. 7), where one sees that for each k„,
the contribution to the time average of the Poynting
vector in the direction normal to the crystal sur-
face vanishes identically as c{')((d)-0. As we have
seen, the integrated strength of all contributions
to f,"&' remains . finite as e' '((d)-0.

We next examine the behavior of f {'&), the frac-
tion of the energy of the incident wave absorbed by
the energy flow parallel to the surface. We shall
find for f {'&' a behavior that differs qualitatively
from that of f/&), in the limit a' ((d)-0. As ex-
plained earlier, if the incident beam illuminates a
rectangular area of the surface with length L, for
the side paral. lel to the x axis and L, for the side
parallel to the y axis, then

( () i5 (d I $((d) —1 I cos&p
I

(f kp ) (0)
3I Ik{() k(0) I2

~
k(2) g(l n ~)) I ) )) sP))

x z z ~ 1

(4. 11)

As in the case of f,"&), the term proportional to
I k, —&((d)k, I

' contains the contribution to the ab-
sorption that arises from the coupling of the inci-
dent wave to surface polaritons. We may proceed
with the evaluation of f {'&) exactly as before. We
shall simply state the result as a consequence.
However, before we do this, we make two general
observations.

First, note that f„" is proportional to I.„'. The
reason for this is that the incident wave illuminates

a rectangular area of the surface with area L„L,,
while the energy absorbed from the incident wave
which flows parallel to the surface is carried in a
small channel of dimensions I.,&{(the skin depth).
This is evident from the factor of 1jk({ ) in the inte-
grand of Eq. (4. 11). Because f„"&) is inversely
proportional to L, it will not appear in any cal-
culation which assumes the incident wave to il-
luminate the whole surface, and then takes the limit
as the surface area becomes infinite. Most of the
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52&d3
I q(1)(&d) I

5l2 cosg 1
I, c3[le&'&(&d) I pl][le&»(&d)I 1]2 e&2)(&d)

f+ 2'If ' cosy, sin'y, g(~ k„k~ —k,', '~) .

(4. 12)
+0

At first glance, Eq. (4. 12) seems curious, be-
cause of the explicit minus sign. This means that
f„"&'will be negative for any surface described by
a roughness structure function g(Q„) which falls
off monotonically as a function of its argument.
(as for either a Lorentzian or a Gaussian). Thus,
the energy flow described by f„('&& is in the medium,
and opposed in direction to the 2 component of the
incident wave Poynting vector. The reason for this
is that the surface polariton responsible for the
energy absorption occurs in a- frequency region
where the dielectric constant is negative, and one
readily sees that in the medium, the Poynting vec-
tor is antiparallel to the wave vector k„of the sur-
face polariton.

Actually, from the remarks of the preceding
paragraph, we can appreciate that there is also an

quantum field theoretic treatments discussed in
Sec. I fall into this class.

It is apparent also that in the limit as e' '(&d)- 0,
the quantity f„"&&will diverge as &( &(&d) '. This is
apparent at once because k coscp, appears in Eq.
(4. 11) in place of the factor k,"' in Eq. (4. 3). As
we see from Eq. (4. 7), as &"&(&d)-0 [in a frequency
region where c'"(&d) & 0], the factor k1"' introduces
a factor of e' '(&d) into f,"&', and as e"&(&d)-0 this
cancels the factor of [e(2&(&d)] ' that arises from
integration over the surface polariton resonance.
We shall discuss the physical origin of the diver-
gence below.

As remarked above, when & "&(&d) & 0, and in the
limit e( )(&d) 0, one may evaluate the surface po-
lariton contribution to f„('&& exactly as before. Upon
carrying out the calculation, we find

fe"=(LdeRe. &,S„)) L, L,Pe.
R&0

(4. 13)

It is a short exercise to obtain the general ex-
pression for f„"», with the methods outlined in
Secs. II and III. We find

energy flow parallel to the surface which resides
in the vacuum just above the surface. The electro-
magnetic field of the surface polariton excited by
the incident wave extends into the vacuum outside
the crystal, as well as into the crystal itself. To
calculate the total energy flow parallel to the sur-
face induced by the surface roughness, one needs
to supplement the quantity f„"&' by the part f„""
which resides in the vacuum outside the crystal.
When we do this, we shall see that f„('&' is positive
and always larger in magnitude than f ('&& in the
region &'"(&d) & —1, where the surface polaritons
may be excited by the incident wave. Thus, when
the two are combined, the total rate of energy flow
f„( s&&+f„""is parallel to the x component of the
Poynting vector of the incident wave, as one would
expect intuitively.

To calculate the contribution f„""to the rate of
energy flow parallel to the surface, in the vacuum
just above the surface, we require the time aver-
age (S„(2))of the poynting vector of the scattered
fields outside the crystal suface, for z &0. In Sec.
II, we display expressions for the Poynting vector
associated with the scattered fields for z &0. How-
ever, as remarked just after Eq. (2. 47), we con-
fined our attention there to the contributions to the
Poynting vector from the scattered radiation which
propagates off to infinity, i.e. , the integral in Eq.
(2. 53) is confined to the region k„«d/c, where k,
is real. For the present purposes, we require the
contribution to (S„(z))from the region k„&&d/c,
since these contributions describe fields localized
near the surface, with k, =i(k„—&d /c2)'f2. Given
this portion of (S„(z)), we then compute f„"&' from
the relation

(s&) 5 (d I e(&d) —1 I eos~o &f k))
s 2g 31 Ik(&) k(0) I2 I k(2) g(l )) k I) k)) ys

x Z Z ~)

s 1 Z

(4. 14)

The symbol & appended to the integral sign re-
minds the reader that the integral covers the re-
gion k„&&d/c, where the scattered fields are lo-
calized near the surface. (The contribution from
the region k))«d/c has been included in the cross
sections defined in Sec. III. )

In the limit of small e( &(&d), we may extract
from Eq. (4. 14) the contribution from the surface

I

polaritons. The method for doing this is precisely
the same as that outlined earlier in this section.
After carrying out this calculation we find

f (s»
~

&(&&(&)i 2f (s&& (4. 15)
so that the total rate of energy flow parallel to the
surface generated by the driving field is

f (s) f (s&) f &s&)
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cosgo I E ( (R) I
~~

7(c' I
e("(~) I —1

1
f (2)(Q)

2 ff

x II (/p, cosy, sin'y, g(~ k„kgb k,
~ ~) .

~o

(4. 16)
The physical meaning of this result becomes

more apparent if we introduce the mean free path
/~(e) of the surface polariton. The mean free
path is defined by

(4. 1V)

where Im(k„) is the imaginary part of k„, cal, cu
lated by inserting the complex dielectric constant
in the right-hand side of Eq. (4. 1). As c' '(&u)-0,
and with &("(~) negative one has

g (2)(~)

/„(~) 2c Ic"'((d)l'~'[I&'"(v)l —I]'~'
(4. 18)

so that we have

vP

2'f d ' cosy, sin y, g(~ k„k~ —k,(o'~) .

(4. 19)

At normal incidence, kII = 0, and the angular in-
tegral on the right-hand side of Eq. (4. 19) vanishes,
as symmetry dictates.

The physical interpretation of the result in Eq.
(4. 18) is the following. The incident wave has fre-
quency ~ that matches that of a surface polariton
[when s"'(u&) & 0 as assumed here], but its wave-
vector component k,',

' in the plane of the surface
does not, since necessarily ck,', '& co, while for
surface polaritons ck,', ' &co, as remarked above.
The effect of the surface roughness is to mix into
the incident wave a broad spectrum of spatial
Fourier components k„, and the electric field at
each k„oscillates with frequency e. There is thus
in the scattered field a component which matches
both the frequency of the surface polariton and its
wave vector, the latter computed from Eq. (4. 1),
with &((d) replaced by e"'(~). Thus, in the lan-
guage of nonlinear optics, the surface-roughness-
induced interaction between the incident wave and
the surface polariton is phase matched. For the
incident wave, k„ is purely real, while the surface
polariton has the finite mean free path /~(e) paral-

lel to the surface. Thus, the surface polariton
mean free path / (&u) plays the role of the coherence
length of the phase-matched interaction, and the
energy stored in the driven surface polariton is
proportional to the coherence length.

We can see from the discussion of the preceding
paragraph that the result displayed in Eq. (4. 18)
is valid only in one limit (which in many circum-
stances is the one relevant to experimental situa-
tions). If e( ~(co) is so small, or the incident beam
so well focused, that /~((d) &L„, then quite clearly
the coherence length of the phase-matched inter-
action becomes L„rather than /~((d). In our dis-
cussions, we have implicitly assumed L„and I.,
are both very large, and integrations over spatial
coordinates parallel to the surface have been freely
extended to +~. Had they been kept finite, . then we
would have found Eq. (4. 15) valid only when l ~(&o)
& L„, and when /~((d) &I,„, the factor /„((d)/L„
would have been replaced by unity. Throughout
the visible range of frequencies and into the ultra-
violet, e' '((d) is la.rge enough that the condition
/, ~(e) & L„should be satisfied, unless the bea.m is
focused very sharply. However, in the infrared,
it has been demonstrated that /„(v) can become
very large and the limit /„(&u) &L„may be ap-
propriate most commonly here.

Note that when /~(v) &L„, I f„"'I and f (" become
comparable in magnitude, so both components of the
Poynting vector must be considered when the total
surface-roughness -induced absorption is calculated.
When /„(u)) «L„, then I fp' I is small in magnitude.
However, the energy density stored in the surface
polariton can be very large when e' '(v) is small
and this may lead to a number of physical effects,
such as the diffuse scattering of the incident radia-
tion through the surface polariton as an inter-
mediate state, a phenomenon observed in a number
of experiments. " This question, along with related
problems, is currently under investigation.

The discussion presented above is confined en-
tirely to the case of s-polarized incident radia-
tion. We conclude this section by stating the ex-
pression for the contribution from surface polari-
tons to f,(~~, the fraction of the energy absorbed
from the incident wave due to surface roughness
that comes about because of the presence of (S,).
When /~(&u) «L„, this is the dominant contribu-
tion to the roughness-induced absorption, as in the
case of s polarization,

We find, after a series of manipulations very
similar to those above, that the surface polariton
contribution to f,~' is

(p&, &d
' It'"(40) I cos60 1

c [I~"'((o) Icos'e, +sin'8, ] [Ie "'((d)
I

—1]' '
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2ll ' a(l &„&. -k"'I) (cos~.II""(~)I'+I~"'(~)l»"&2l'" —2ll+I""(~)l'1»ni 7
0 7/

(4. 20)

In this section, we explore the predictions of the
results derived in Secs. II-IV. The purpose of the
calculations is to explore the dependence of the
roughness-induced scattering on the polarization
of the incident wave, on polarization at normal
incidence, and to test the accuracy of the simple
results given by Eqs. (4. 10) and (4. 16) against the
predictions for aluminum, both because it is the
material which most closely approximates the
nearly-free-electron metal for which one would ex-
pect Eqs. (4. 10) and (4. 16) to be valid, and be-
cause one can prepare films of this material with
well characterized surface roughness. We refer
the reader to the very complete study of aluminum
films carried out by Endriz and Spicer as an ex-
ample of such studies. '4

In the numerical calculations reported below,
we have presumed a Gaussian distribution function
for the surface -roughness correlation function.
More specifically, the correlation function (g(x„)
&&)(0)) is related to the quantity g(Q„) introduced in
Sec. IV in the following manner:

&&(x )&(o)&=~' ' "a(Q„)e'"'*", (5 1)

where if g(Q„) is normalized so that

l d2@„ (5. 2)

then (f'(0))=(r„)=&', so the parameter 5 is then
the rms height of the surface roughness. In the
calculations reported below, we have used a Gaus-
sian for g(Q„):

2 2

g(Q ) 7/g2 e(-a /4) Qll (5. 3)

where a is a transverse correlation length. With
this form of g(Q„), one finds

(g(x„)g(0)) = & e " /' (5.4)

The Gaussian form for g(Q„) has the virtue that
all the integrations over cp, may be performed
analytically, and expressed in terms of the modi-
fied Bessel functions f„(x). Thus, the numerical
calculations involve only a single integration over
8, in the case of the scattering calculation, or k,

Of course, there is also an energy flow f„~~
parallel to the surface for p-polarized incident
radiation as well as for s-polarized incident radia-
tion. We do not display f„~' explicitly here, since
[for finite 4.

" ~(ld)] it is proportional to I (e)/L„,
and is negligible for our purposes.

V. NUMERICAL STUDIES OF ROUGHNESS-INDUCED
SCATTERING AND ABSORPTION

for the case of the absorption calculations. In our
numerical calculations, we have chosen 500 A as
the value of the transverse correlation length a
which enters g(Q„). The real and imaginary parts
of e(&u} have been extracted from the analysis of
the optical properties of aluminum by Ehrenreich,
Phillipp, and Segall. "

We first consider the behavior of the roughness-
induced scattering of light from aluminum. If we
let f(s) and f(P) denote the fraction of the energy
scattered away from an incident wave of s and p
polarization, respectively, then we write

f(s) =f(s -s)+f(s- p) (5. 5a)

f(P) =f(P- s)+fV -P), (5. 5b)

where f(i-j) denotes the fraction of the energy of
the incident wave of polarization i scattered into
the final state of polarization j. Of course,

f(
. .

)
~"

d df(i -j )
dQ,

(5.6a)

f(2-i) = 5's'(~/c}'R(i-i) . (5. 6b)

In Fig. 2, we show the variation with angle of
incidence of the two functions R(s-s) and R(s-P),
for a photon of energy 7 e7 incident on aluminum.
The two functions are comparable in magnitude,
and they both fall off smoothly and monotonically
with angle of incidence.

In Fig. 3, we show the behavior of R(p- s) and
R(P-P) again for k~ = V eV on aluminum. The be-
havior of R(P -P} is quite striking, since it ex-
hibits the pronounced broad maximum centered
about 80= 50'.

In Fig. 4, we illustrate the variation with angle
of incidence of the total reduced scattering ef-
ficiences R(s) and R(P), defined by

R(s) =R(s- s)+R(s-P)
and

R(P}=R(P-s)+R(P-P) .
The broad shoulder in R(P) reflects the off-center
maximum in R(P-P) illustrated in Fig. 3.

In Fig. 5, we show the variation of R(s) with fre-

where the integration is over solid angle with
0~ 8, ~ —,m, and the df(i-j}/dQ, are the differential
scattering cross sections presented in Eqs. (2. 69)—
(2. V2).

To present the results, it is useful to introduce
dimensionless quantities R(i- j) related to the
f(i- j) of Eq. (5. 5) as follows:
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FIG. 2. Variation of the scattering functions R(g g)
and R(g p) with angle of incidence, for a 7-eV photon
incident on alaluminum. The transverse correlation length
a has been chosen equal to 500 A.

FIG. 4. Variation of the scattering functions R(g) and
R(p) with angle of incidence for a 7- V h t-e p oton incident
on aluminum. The transverse correlation length a has
been chosen equa] to 500 A.

quency, for three angles of incidence. The fact
that A&s) decreases substantially as ~ increases
means that the total scattering efficiency varies
with frequency considerably more slowly than A&4.

Of course, this comes about because e(e) is strong-

ly dependent on frequency in this region. Note
that at normal incidence, R(s) displays a feature
at the bulk plasma frequency v~ where e'"(&u) = 0.
This feature becomes small by the time Oo =40'.

We next turn our attention to the roughness-in-
duced-absorption cross section. We introduce

0.40- 0 8--

0.30- 0 6--

H

FOR

E

0.20- 0 4--

0.IO- 0 2--

C)0

Q Q
I I I
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I I
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INCIDENT PHOTON ENERGY (eV)

FIG. 3. Varia 'iation of the scattering functions R( p —g)
and R(p p) with angle of incidence, for a 7-eV photon
incident on alualuminum. The transverse correlation length
a has been chosen equal to 500 A.

FIG. 5. Variation of R() with frequency for several
angles of incidence, at 7 eV for aluminum. The trans-
verse correlation len
0

length a has been chosen equal to 500
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f,"'= 5'a'(&u/c) 4(A,~ +A„)
and

(5. Va)

dimensionless measures of the absorption rate A,
&

similar to those employed in the scattering calcula-
tions through the relations

I.O-= ——
CL.
CO

0.8
O 0 6--
O

0.4--

(a) Q = 9eV

f+' = 5~a~(u)/c)4(A~, +A~~} . (5. 7b)

The function A;& is a dimensionless measure of the
contribution to the rate of absorption of radiation of
polarization i through roughness -induced coupling
to final states of polarization j. In the general ex-
pression for f,'", A,~ co. mes from the contributions
proportional to sin y, while A„comes from those
proportional to cos2y, . In f,~~, A~, arises from the
portion proportional to sin'y, and A» from the re-
m alnde r ~

In Fig. 6, we show the angular variation of A,~
and A», for the case where h(d = 7 eV. Note the
similarity in the dependence on angle of incidence
to the variation with 8, of the reduced scattering
cross sections R,~ and R». The solid lines in the
figure are obtained by fully evaluating the integrals
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FIG. 6. Functions A» and A&& as functions of the angle
of incidence, for a photon of AM = 7 eV incident on alumi-
num. The solid line is a result of a numerical integra-
tion over the exact formulas, and the dashed lines are
obtained from Eqs. (4.10) and (4.15). The transverse

0
correlation length g has been chosen equal to 500 A.

FIG. 7. Functions A» and A&& as functions of the angle
of incidence, for a photon of energy h~=9 eV incident on
aluminum. The solid line is a result of a numerical in-
tegration over the exact formula, and the dashed lines
are obtained from Eq. (4. 10) and (4. 15). The transverse
correlation length a has been chosen equal to 500 A.

numerically, and the dashed lines have been cal-
culated from the approximate expressions presented
in Eqs. (4. 10) and (4. 16). The agreement between
the analytical approximation and the full calcula-
tion is remarkably good at 7 eV although for rea-
sons discussed below, we will see it is less good
at both lower and higher photon energies. At 7 eV,
we find both A„and A~, are quite small, of the or-
der of 2 or 3% of A,~ and A» at all angles of inci-
dence.

In Fig. 7, we present calculations similar to
those in Fig. 6 for h(d=9 eV. The agreement be-
tween the analytic approximation and the full cal-
culations is now less good than that at 7 eV. We
believe that the reason why this is so is apparent
from the form of the integral over k„ in Eq. (4. 6).
One sees that the width of the resonance in the in-
tegral scales as e' '(e}/[I c" (&u) I

—1] . As e in-
creases, Ia"'(&u} I decreases until at =10.6 eV,
the surface plasmon energy in aluminum, le"'(&u) I

approaches unity. Thus, even though e' (e) may
be small, as co increases, the simple Lorentzian
approximati. on to the structure of the integrand in
the full expression for A;~ becomes less good. At
9 eV, both A„and A~, remain a very small frac-
tion of the total absorption rate.

In Fig. 8, we present the frequency dependence
of the various contributions to the roughness-in-
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small fraction of the total.
These calculations suggest that while the simple

analytic expressions in Eqs. (4. 10) and (4. 16) pro-
vide reasonable semiquantitative estimates of the
roughness-induced-absorption rates, attempts to
provide quantitative contact between theory and

experiment should proceed with the use of the full
expressions. In this regard, the calculations pre-
sentedhere shouldplace the analytic approximations
in a most favorable light, since aluminum is the
metal most accurately approximated by the free-
electron model.

APPENDIX

0.0 I I

8 9
n(eV)

I

IO

In this Appendix we outline the derivation of the
elements of the Green's-function tensor D,„(x,x';
~), which is the solution of the equation

FIG. 8. Variation with frequency at normal incidence
of A,&, &, and the analytic approximation to the rough-
ness-induced-absorption cross section. The calculations
have been performed for an aluminum substrate with the

0
transverse correlation length a equal to 500 A.

(d 82
fg(E; t8) —II — +II „7) D „,(x, x'; Ul)c ~xy ex~

= 47(5~„5(x —x'), (A

duced-absorption rate, for the case of normal in-
cidence. The results of the numerical calculations
are shown as full lines, and the analytic approxi-
mation as a dashed line. The roughness-induced-
absorption rate falls off dramatically as one passes
through the surface plasmon frequency at 10.6 eV,
and one can see that while the analytic approxima-
tion represents the trend well, the agreement with
the full calculations is semiquantitative, with dis-
crepancies of up to 50%%uo in the range of energies
displayed in Fig. 7. Note particularly that the
analytic approximation falls below the full curves
below 7 eV. We ascribe this to the fact that at
these lower energies, roughness-induced absorp-
tion by free-particle —hole pairs becomes a signif-
icant fraction of the total, so the picture which

assigns all the absorption to roughness-induced
coupling to surface polaritons underestimates
the total roughness-induced absorption. In the fig-
ure, the importance of roughness-induced coupling
to single-particle excitations is illustrated by the
fact that A„now contributes to the absorption rate
significantly, while above 7 eV it represents a very

e,(z;(d) = 1, z&0

= E((d) && 0

together with boundary conditions which will be
specified below.

We begin by Fourier analyzing D,(x, x'; ur) and
5(x —x') according to

i,k ~ (x -x')
5( I) 5( I)

l

II e( ((' X((X(()
(3~)2

(A4)

where kll and x„are two-dimensional vectors given
by (k„, k, , 0) and (x, y, 0), respectively. The de-
composition (A3) reflects the fact that the system
for which the Green's function D„„(x,x'; (d) is being
sought retains infinitesimal translational in-
variance in the x and y directions, even if it has
lost it in the z direction. Substitution of Eqs.
(A3) and (A4) into Eq. (Al) yields the following
set of differential equations for the Fourier coef-
ficients d „(k„elzz'):

(d
0
—

2 -&'.+
C Z

d—ik, —'dz

Q) d
&o ~ —~i+

dZ

d—ik 'dz

—ik„—
dZ

—ik 'dZ

t'1 O 0)
= 4m5(z —z') 0 1 0

l
. (A5)

(0 o ap

At this point it is convenient to exploit the isotropy of our system in the xy plane by premultiplying and
postmultiplying Eq. (A5) by the matrices 5(k„) and S '(k„), respectively, where
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/ k„ k, 0 )s(k„)= —
I

—k, k„ 0
k

II 0

(k„-k„O ~s-i(I „)= — k, k„o
0 0 kiii

(A6}

[The matrix S(k„) is recognized as the matrix which rotates the vector (k„, k, , 0) into the vector (k„, 0, 0). ]
The result of this transformation is the simpler equation

(d
&0m+ d 2

—ik
II d~

(d d
z ~ —k + ——

C dZ

d-2k "dZ

CO

ao ~ —k,

(I o 0)
= 4w&(z —z') 0 1 0

(0 011
(A7)

d,„(k„u)i
zz') = Q g, ,„,(k„u) i

zz')
u'v'

xS „(k„)S„. (k„) . (A8)

In what follows we will obtain only the coefficients

g,„(k„&u I zz').
We note first from Eq. (A7) that the functions

g,„and g, satisfy homogeneous equations

(
(d

~0 F kll + v 8 gyxc QZ

(
(d 2 d

0 7 II ~ 2 gas ~c dZ

(A 9a)

(AQb)

The functions g„and g„satisfy a pair of coupled
homogeneous equations

for Fourier coefficients g,„(k„&u I
zz') which are re-

lated to the coefficients d~„(k„ur lzz') by

From Eqs. (All)-(A13) we see that we can regard
the Green's functions g„„, g», and g„, as the pri-
mary functions to be solved for, since the remain-
ing functions g,„and g, can be obtained from g„„
and g„„respectively.

We must now consider the boundary conditions
which supplement the differential equations (All)-
(A13). They are of two types: (i) boundary con-
ditions at z= +~, a,nd (ii) boundary conditions at the
interface z= 0. For the former we assume either
outgoing waves at infinity or exponentially decaying
waves at infinity, depending on the values of k„and
co. To obtain the boundary conditions at the inter-
face z=o we proceed as follows.

It is straightforward to obtain from the Maxwell
equations in the presence of an external current
j'"'(x, f), in a gauge in which the scalar potential
y(x, f) vanishes,

(
d cf

0 C2 dZ2 gxy II dZ gay (Aloa)
]

VxH = —j'" + —D,c C

CO

gran+ &0 ~ —
I'I gay=0 ~

QZ c (Alob}
QxE =- —H,c

These four functions therefore vanish. We are
thus left with the following sets of equations to
solve:

H=gxA,

B=H,

E=- —A,
C

D= a0E,

(A14b)

(A14c)

QF 2
&0

—
z

—kz + z g„=4w5(z —z'), (All)

(
40 d . d

zo ~+ d z gran ikq ggx=4&6(z z ) i

(A12a)

(d
II -~ ax+ 0 F II gexdZ C

d
&0 m + 2 gx~ —~kII ~

C dZ dZ

(A12b)

(A13a)

d (d
-ik„, —g„,+ &0 ~ —k„g„=4n'&(z —z') .

(A13b)

that the vector potential A (x, v) is related to the
external current j &"(x, u&) by

A„(x, u) ———
l

d Bx'D z(x, x'; v) jz"t(x', &u),
C

(A16)

where D z(x, x'; ~) is the same Green's function as
appears in Eq. (Al). It follows from Eqs. (A14)
that the electric and magnetic fields induced by the
external current are given by

E,(x, (o) = —~ Q ll

d'x'D ~(x, x'; ~)jp'(x', (o).
C g

(A16)
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H (x, e) = ——P e p„d'x'D„, (x, x'; v)
C gy6 ~X/

xj;*'(x', ~) . (A17)

The boundary conditions on D 0 (x, x'; e) follow from
the continuity of the tangential components of E
and H, and the normal components of D and H

across the plane z=0. Since j *'(x, &0) is arbitrary,
we see that the following quantities must be con-
tinuous across the plane z = 0, for P=x, y, z:

we have that

g„„=~ (k„d„„+k„k,d„,+ k„k,d,„+k, d„) .1

II

Since each term on the right-hand side is continuous
across the plane z =0, we obtain the boundary con-
dition

(A22a)

In addition, we have that

D„p(x, x'; ~), D,p(x, x', &u),

ggy X~ CO Dy g X, X
~

(d

—D,n(x, x '; e) ——D,p(x, x'; &u),

—D„p(x, x'; &u) ——D 0(x, x'; ur),

(A18}

(A19a)

(A19b)

d k„d d—z„=p k, —d,„+k, d)Z (I Z z

k d d
+ ~~ k„~—d„,+k, —d„

II z z

ik„. d . d- ik —d -ik —d
k "dz "" ' dzII

D, p (x, x'; v) ——D„p (x, x'; &u) . (A19c)

ik, d 0(knurl zz ) ——d, p(kn~l «) k (A20b)

dxp(kii &I zz ) —ik„d,p(kn &I «) k (A20c)

In writing the third of the quantities in (A18) we
have assumed, for greater generality, an arbi-
trary position-dependent dielectric tensor & 0(x; &u)

which, however, still possesses a discontinuity
across the plane z = 0. The boundary conditions
which follow from the continuity of the six quanti-
ties given by (A18) and (A19) are not all indepen-
dent, however.

With the aid of Eq. (A3) we find that these bound-
ary conditions translate into the following condi-
tions on the Fourier coefficient d„„(k„~I zz'). The
quantities

d„p(kn (el zz'), d, p(kn Idl zz'),
60(z; &d)dzp(kn 9)

I
ZZ ), (A20a, )

t p(zk C'd )
kn —fp(z; (d)((d /C ) dz k

+k, ep(z; ~) d„] .
According to (A20a), the right-hand side of this
equation is continuous across theplane z =0. Thus
we obtain the second boundary condition

&0

kii —Kp (d /C

In the same
conditions

d
I &0 d

gxxl 0- kp & 0/ 0 d gxxl pk
0

(A22b)
way we obtain the remaining boundary

(A22c)

+i -k —ik, —d,„—ik„„—z,)
. k . d' . d

2 CO= p- k'„—ep(z; u&) x (k„d,„+k,d,,),
where we have used Eq. (A5) in going from the
second equation to the third. Multiplying both sides
of this equation by ep(z; &u)[k„—ep(z; &u)(uP/c')] ' we
obtain

ik d 0(kn &dl zz ) ikxd 0(kn col zz ) (A20d) cf
I

Q
(A22d)

must be continuous across the plane z= 0. Note
that the first two conditions imply the last, which
will therefore be discarded in what follows. We
have also assumed a z-dependent scalar dielectric
constant in writing these conditions, the situation
appropriate to the problem at hand.

To obtain the boundary conditions on the func-
tions g„(k„~I zz') for which we are solving, we
must combine the conditions (A20) with the inverse
of Eq. (A8),

gIkn(kn +I zz ) = g Skk(kk)kSnw'(kn) dkk' '(kit +I zz ) k

(A22e)

&0/cn dz gxz~ 0-= kp & 0/ 0 d gxzl pk

(A22f)
Equations (A22) constitute the boundary conditions
at the plane z= 0 on the primary Green's functions
g», g», and g

In solving the differential equations (All)-(A13)
the following two results are useful for obtaining
the particular integrals:

P'v'
(A21)

and the differential equations (A5). For example, (
~2 e~n ~z-8' l

, +o, ' . =5(z —z'),
Gz 2Q

(A23a)



SCATTERING AND ABSORPTION OF ELECTROMAGNETIC. . . 1413

(
2

dg2, +n' 2 e' ' "' sgn(z —z') = —6(z —z') .
dg

(A23b)
We illustrate the determination of the g,„(k„&v I zz')

by working out g„,(k„(d Izz'). We assume first that
z'& 0. On combining Eqs. (A13a) and (A13b), and
recalling Eq. (A2), we find that the equations
satisfied by this function are

geikz z&0

2ik„z e ~(~ ' 'sgn(z —z )+Be'~(', z&0,I

6(Q))&d

the fact that Ime((d) &0, ensures that Imk, & 0.
The solutions of Eqs. ('A24) can be written in the

forms

2 +k g, =0, z&0 (A24a)

which, in view of Eqs. (A25) and (A26), satisfy the
boundary conditions at infinity, We now apply the
boundary conditions (A22e) and (A22f) to obtain the
following equations for the coefficients A and B,

z +k, g„,=ik„z d—6(z —z'), z&0
d 2

~

~ ~ ~z
~~ I

I !

~

2

2 d~~

~ I
t

4' d
2

A, =@+27~ kII C eik1z
e ((d) &d

where we have introduced the functions
(A24b) k1A . k

ke((d) e((d)(d'

~2 1/2
(d —

2
—kII

(d—r &k'„

(d—z&k„

(A26)

(A26)

In obtaining the second equation we have assumed
that z'&0. We thus find that

4mik„c k
(d k, —e((d)k

2iiik„c' k, + e(&u) k
e(co)(d' k, —e((d)k

The choice of the sign in Eq. (A26), together with from whence it follows that

4mik c

g„,(k„(d!zz') = ('

ikz+ik1z'

k, —e((d)k
z&0, z'&0

2
a c kl+ e(+) k eik&(z+e''i e-ik( te-z'I s niz zI) z& 0 zI & 0

When z' &0, the equations obeyed by g„,(k„(d lzz') become

4mik„c d
dz2 +k g = " —6(z —z') z &0

(d dZ

d'
a&0.

The solutions satisfying the boundary conditions are

g„,(k„u&! zz') =

~~k1+ (+)k (it(E+S') ia ls-8'I
2

e' '" -e' '' sgn~z —z j
&d I( k~ f ((d)k

4mk„c ik, z+ik"
oF k, —e(&o)k

z &0, z'&0

z& 0, z'&0 .

All of the remaining Green's functions can be obtained in the same way. The results of these calcula-
tions are summarized below.

(k ~!zz&) e(kz+ih(a'
1-

k1 + k
e ik1(z'+z') -ik1 I z-z' )

z &0, z'&0

x&0, ~'&0

+1 + k eik (Z+z' ) e ik f Z-Z' )

k k1 —k
z&0., s' &0

e ik 1z+ikz~

k1 —k
z& 0, z'&0
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g„,(k„&di zz') =- 4mik c2 k ei,kz+i, k jz~
(d k1 —I(&d)k

27TTk))C k1 +e( &d)k 'z
& g) z I

~
I

277ik)) cz k)+ c((d)k . (,)
)k

e' '" —e' ' ' sgn(z —z')

4mik)( c2

&d' k, —e((d)k

g (k &d
~

ZZ ) — (T)z+(T))g'4mik„c

k1 —e(&d)k

z &0, z'&0

x&0, z'&0

~ &0, z'&0

x&0, z' &0

z&0, g'& Q

z& 0, z'&0

2+)k)) C k1+ C((d)k o) ( s) (g I,I
47TC

2772k)) C k)+ e(&d)k (z(
k~' k e(~)k

' ' + „~ '('-'» ~&0, z'&0

4m'ze™((c 1 Ar s+Qz'
2 k, —e(&d)k

g (k (d
~

zz~) = — 1 e(zg+("lg4mic' kk
&d' k, —C((d)k

z &0, z'&0

)'. (&d)(d' k, —e((d)k

Rt/EgC g+E(fd))! i (,);i,
i)

k1 —6((d) k2 + eiI(t 8 Z

4mike k~

(d k, —E'(&d)k

'X
(( c y QM'~gp 8

z& 0, z'&0

z &0, z'&0

z& 0, z'&0

z &0, z'&0

4&z+~kz'

k, —e((d)k

2
2777k)) C kl + e(+) eig)(z+z') -O)) lz-z'I S n(Z

277zk„c' k1+ e((d)k ())(z+z') Ig(g-g'I
— e +e ' sgn(z —z )

4mik„c

x&0, z'&0

z &0, z'&0

z& 0, z'&0 .

We conclude the Appendix by pointing out that in
addition to the uses to which they are put in the
present paper, the Green's functions D,„(x,x'; (d),
whose Fourier coefficients g„„(k„(dlzz') have been
presented here, also arise in the evaluation of
thermodynamic and double-time Green's functions,
and correlation functions of the electromagnetic
fields in the layered medium for which the present
calculations have been carried out. "

For example, we consider the retarded Green's
function

~ay(x1) Xz ~ f) —t2) = —)e(f) —t2)

(I&.( t), &, ( t)i),
(A2V)

wheze A(x, f) is now the operator of the vector po-
tential in the Heisenberg representation, and the
angular brackets denote an average with respect
to the canonical ensemble described by the Hamil-
tonian of the electromagnetic field. The Fourier
transform of this Green's function can be written
in the form

OO

D ~(x, , xa; &d) =
~

d(t, —t2) e'""1'7)
OO

XDo)7(x)) X~) t1 t2)

OO

e-8))g) P)z8 'LX1) X2) +)
x —co —z5

(A28)
where the spectral density p, (x, , xz; x) is given by
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A

a!B(Xl i XS i S) -Sg~) piMS(X1 i XS i X)
x —8

x(a~A, (x,'1~ m) i r-
p (Z„-Z„))
1

(A29)
in terms of the eigenfunctions In) and eigenvalues
E„of the system Hamiltonian; S is the partition
function. We can express the Fourier transforms
of several useful correlation functions in terms of
p s(xt, xs, x). For example, we have that

(A32)

which coincides with D s(x, , x2,'~) for Imz &0.
[For Ims& 0 D s(xt, xs; s) coincides with the Fourier
transform of the advanced Green's function. j Then
we have that

1
pcs (xsi xa i ~) = -as ~

2W 1 —8

00

d(tt —ts) e'""t 's (A (xt tt)As(xs ts))

= 21Tpus (xl, xs (0)

d(t, —ts) e'""t '&' (E (x, t,) Es (xs ts))

(A30)

.[D~s(xt, xs', (8 +t0) —D~ s(xg, xs', (d —20)] .
(A33)

The importance of the Green's functions D s(x, ,

xs, &u) studied in this Appendix for such calcula-
tions lies in the fact that Dzyaloshinski and Pitayev-
ski' have established the relation

= 2w(~s/es) p .s(x, , xs; &c) . (A31)

The spectral density p s(x„xs; &u) can be ob-
tained in a standard fashion. '7 We introduce a func-
tion of the complex variable z by

D s (x, x'; u&) = AID s(x, x'; v), (A34)

from which D s(x, x'; s) can be obtained, and hence
the spectral density p s(x, x'; &u) and other useful
correlation functions.
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