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The role of phonon-modulated transfer integrals in the electrical and magnetic properties
of an extended Hubbard model*
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The coupling of a narrow band of electrons to lattice vibrations is described in terms of the
modulation of the one-electron transfer integrals due to phonons. The electrical conductivity due to
phonon-assisted processes is calculated for the Mott insulator. These processes modify the temperature
dependence of the conductivity and introduce lifetimes related to the phonon density of states. The
magnetic susceptibility is calculated at high temperatures and it is seen that the eA'ects of the phonons
can be described in terms of a reduced Curie constant and an enhanced Curie-gneiss temperature,
Possible applications to the tetracyanoquinodimethan salts are briefly mentioned.

I. INTRODUCTION

It has become increasingly recognized in recent
years that the description of the electron-phonon
interaction in narrow electron bands should not be
based on the same assumptions as those for wide
bands. In a wide band, one normally describes
the electron-phonon interaction in terms of the
change in the interaction between the electron and
the (screened) ion as a result of the displacement
of the ion from its regular lattice position. On the
other hand, when the one-electron Wannier func-
tion is fairly localized on the scale of the inter-
atomic spacing, it is more appropriate to start by
assuming that the electron wave function is based
on the instantaneous position of the ions. As has
been noted by several workers, ' ' this latter de-
scription leads to the modulation of the one-elec-
tron transfer integrals in Wannier-site space. In
comparison, the more familiar electron-phonon
interaction is only site diagonal with respect to
one-electron transfer.

We have studied the role of the phonon-modulated
transfer integrals in an extended Hubbard model.
It has been suggested that the one-dimensional
Hubbard model' has been experimentally realized
in N -methyl phenazium -tetr acyanoquinodimethan
(NMP-TCNQ). 8'9 However, this suggestion has
been the subject of some criticism, because, al-
though there appears to be some qualitative agree-
ment between theory and experiment, there is
strong evidence that the experiments cannot be ac-
counted for in terms of the Hubbard model alone
and that modifications of the model would be re-
quired.

Therefore, in view of the narrowness of the
bandwidth in many of the TCNQ salts, the extreme-
ly short mean free paths and the relatively low
Debye temperatures, an investigation of a modified
Hubbard model that includes the coupling of the
electrons to lattice phonons is warranted.

We consider a single nondegenerate half-filled
band of electrons, described by a modified Hubbard
Ham iltonian

II~ =Urn;&n;&+ g b(X;+q -X;)C~t,C;+q,

+ Gg q aqaq

C~ and C;, respectively create and destroy an
electron with spin 0 in a Wannier site centered at
the instantaneous position X; of lattice site i. n&,
is the electron-number operator, while a~ and a,
are phonon operators. We assume that we have a
harmonic lattice with nearest-neighbor interac-
tions, so that the frequency ~(q) of the phonon
mode of wave vector q is'

~(q) = ~~l sinaqal,

~~ and a being the maximum-allowed frequency
and the lattice spacing, respectively.

U is the on-site Coulomb repulsion and b(X;, q

—X;) is the amplitude for an electron in a Wannier
state centered around I;+z to tunnel into one
centered around X;. We expand b(X;, z -X;) to first
order in the phonon operators and obtain

—e i)(g yg )

where g; is the mean position of site i and ~ is a
dummy variable. M is the mass of the lattice site,
and N is the number of sites. Assuming that b(r)
describes tunneling in the region of exponentially
decaying localized electronic wave functions, we
may write'
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b(r) =be

Here b = b(r = a) and q, is the inverse decay length
of the exponentially dying-out wave function. Then

(4)
&b(r) =-q Qr

and putting Eqs. (1), (3), and (4) together, we ob-
tain the Hamiltonian

1g qp =n«,n& egte(q)a, , +5+ Ce Ce,„,—aqua ( ( )
'a(e" '+e —e" ') gnn(n,a+ac)C;C, e,

a 4~0 &s&g&

Unlike Barisic et al. ,
' who regard the on-site

Coulomb repulsion in a secondary fashion (only
insofar as it enters the MacMillan expression for
T, ) in their studies of superconductivity, we take
U to be the largest parameter in the problem and
consequently describe a Mott insulator or semi-
conductor.

II. CONDUCTIVITY

X/2

J, = ieb(q, a —1)Q

x (e' i e'q iq() )(a p at )

(8)

The electrical conductivity of the Mott semi-
conductor has been calculated by Bari and Kaplan"
for the Hubbard model in the absence of electron-
phonon coupling. They found that the temperature
dependence of the dc conductivity is similar to that

of an ordinary two-band semiconductor with the
band. gap replaced by the Mott-Hubbard correlation
gap. We find important modifications to their re-
sult, due to phonon-assisted processes, as noted
below.

In the system described here, an electron can
move by either of two distinct mechanisms: (a) It
can hop from site to site, a process that may be
assisted (hindered) by a temporarily increased
(decreased) value of b(X(, (; -X;), caused by neigh-
boring sites being closer together (farther apart)
than usual, due to phonons. (b) It can participate,
with the site on which it is in residence, in the
thermal motion of the site.

Measurements of the electronic dc conductivity
probe only contributions from process (a), as that
is the process by which electrons are transferred
from site to site. The operator which corresponds
to a direct electronic current is

[ )=(I/I)
4p

x dy(J J(i + i A)),

where L is the crystal volume, P is the inverse
temperature, J(t + iX) is related to 8 by the usual
Heisenberg time evolution, and

(9a)

=J, +J2+J3. (9b)

Jx and J2 have been defined above.

J, is the current operator one would obtain in the
absence of phonons, whereas J, is the phonon-as-
sisted current and arises from modulation of the
electron hopping matrix element by phonons.

The response, at frequency &, of the current to
a uniform electric fieM is described by the con-
ductivity"

Z=e+X;ii;, = J, + J, , (6)

(10)

where e is the electric charge and

and

J, = ieba g (- sgnb)C;, C;,~,
J, represents the operator corresponding to pro-

cess (b) above and consequently it does not appear
in the current operator J in the calculation of the
dc electronic response. On the other hand, in the
calculation of the ac energy dissipation it should,
of course, be included in J.
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The expression for the conductivity given above
differs from the more familiar expression in terms
of the current autocorrelation function since the
current response J is distinct from the quantity,
Eq. (9a), that couples to the external field.

The real part of o[io] can be written in the form
S 2

o((d) = Q Qo„((d),

where

o „(&o)= (tanh~P(o/2(oQ dt e '"'[(J,(t)Z, (0)) + (J,(0)Z,(t)) ] (12}

and

Tr~- 8(H-PN+v ) i(Hyv)t J ~-&(H+v)tJ
(~(,(0)d.(t})=

Here p. is the chemical potential, N=gn;&+n, i, and

H=U n~n~+ & q a~a, (14)

1g=g P&g C; e
—a S P (gg((( (- (e""+e-""')(sgss)(a,ea, )g, ,g, , e

f, g g, ,i, a

Vfe carry out the calculations of o to order b'.
Since J, and J, are both explicitly proportional
to b [Eqs. (7) and (8)], whereas 8, [Eq. (10)] is not,
we see that in calculating 0„, 0», o», and o», we

may drop V in the density operator and the time-
evolution operators in Eq. (13), whereas in our
calculations of o» and o» we need first-order
(in V) contributions from both thermal and time
operators.

o»((o) is the conductivity of the phononless Hub-

bard model, and we obtain the results of Bari and
Kaplan. " The dc contribution, which we denote

by Gc)cc 1s

o„„=[2i(e5 a'n/(1+ e ') ]

xpesot'5(~o) . (16)

Here n is the concentration and 6(&o) is the & func-
tion.

o„((o) and o„((o) are seen to vanish to the order
we are interested. o»((o), o»((o), an«32((0) are
contributions to the conductivity due to phonon-as-
sisted processes. The response, which was
limited to 5-function peaks at (d =0 and ~ =+ U in
the calculations of Bari and Kaplan is, in these
contributions to the conductivity, seen to be spread
over a frequency range +w„within each of the
peaks. The contribution to the dc conductivity
from phonon-assisted processes, which we shall
denote o»,„ is

4e'b'n
M 2 1 8o('2)2 qo Pe

~„&~+~

„("geaseg-,'a
)

2e te/2
+ — (qaoa' —Sq,a + 1) (17}

o,„,„2q,a 1 & " pe coth2pe
O' M(d a2P m J ((s( e ) t2

q,a -3+1/q, a+—

(18)

We see that the contribution to the conductivity
from phonon-assisted processes is a sensitive
function of q„ the inverse decay length of the lo-
calized molecular wave functions. %'e also see
that for T» QpQ Oph tends to a constant value.
From Eq. (16) we see that o„„falls off as 1/T at
large temperatures. Thus the relative importance
of phonon-assisted processes grows with tempera-
ture.

For the purpose of comparison, and in order to
obtain a measure of the two terms in Eq. (17}, we
replace w6((o) by a relaxation time 7 which we as-
sume to be caused by a temperature-independent
scattering mechanism" (e.g., scattering from im-
purities). Making a similar replacement in Eq.
(16), we find from Eqs. (16) and (17),
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In Fig. 1 we have plotted o~„„„/o„„versus tem-
perature using values of M, a, U, b, and +~ which
are believed to be appropriate to NMP-TCNQ. '
For q, we have used a value of 3A ' which is ap-
propriate to the 2p orbitals in an isolated carbon
atom. ' " The curve is plotted with 7 set equal to
~ (corresponding to no scattering). Using the im-
purity concentration quoted in Ref. 9, we find a
scattering time" of 10 "sec. With 7 set equal to
this value in Eq. (18) the curve in Fig. 1 is not
perceptibly altered.

Figure 2 exhibits the temperature dependence of
the conductivity, a =o,&„+o»,„, assuming no scat-
tering is present (7 =~). The parameter A which is
plotted is related to the conductivity 0 by a temper-
ature -independent multiplicative factor:

o=A(e b a n/2V)5(&).

For comparison we have also plotted A„„which is
related to o„„,by the same factor as that relating
A to a.

Both Figs. 1 and 2 show that at high temperatures
the phonon-assisted contribution to o is apprecia-
ble. This suggests that the interpretation of the
high-temperature behavior of some TCNQ-salts in
terms of a simple power-law dependence"'"
(o - T ") may be misleading.

We see that the phonon-assisted contribution to
the dc conductivity is significant for q,a&1. In the
opposite limit or q,a«1, we see that Eq. (17) re-
mains finite even as q, -0. This result can be
understood in terms of the phonon-assisted cur-
rent operator J, given by Eq. (8). The current op-
erator is basically a velocity operator and in the
terminology of the cell space of our model, the
velocity is constructed in terms of a hopping time
and a hopping distance. The hopping time is as-
sociated with the hopping parameter given in Eq.
(3) and the hopping distance is just Xt z -X;. The

modulation of the hopping time is reflected in the
term proportional to q, in Eq. (8) and the term
that is independent of q, reflects the modulation of
the hopping distance due to the phonons.

III. SUSCEPTIBILITY

H' =Q -B n]) -n)), (19)

where H was defined in (5). The partition function
is

= Tr exp[- p[H Bg(-n, i -n, i)

—pN+V]] . (20)

Z may be evaluated straightforwardly provided we
retain only second-order terms in PV. We then
find

Z= Z, (1+&),

where

(21)

Z, =[2(l+ es ~' coshPB)]" (22)

I I

b I ~M I

U 8 ' b 3

We now turn to the effect of the electron-phonon
interaction on the magnetic susceptibility at high
temperatures.

The Hamiltonian of the system in a uniform mag-
netic field 8 is

2.0—
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0 phon
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FIG. 1, Ratio of the phononic to the electronic contri-
bution to the conductivity is plotted vs the temperature
in units of U.

FIG. 2. Temperature dependence of the conductivity
is exhibited. A is related to the conductivity 0 by a
temperature-independent multiplicative factor. A,&, ,
which is similarly related to o,~„, is also plotted for
comparison.
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8U/2=
(1 C l h~2) 0

— + l)c cocll))B)

1 eBU-~ " & de &Ucosh2Pe -e'
A ~0 U —e

(23)

The magnetic susceptibility y is obtained by dif-
ferentiating:

1 8'
, lnZ

1R=
1 -8/T~ (31)

%Ve find

1 82

p sfl2 0

1 g2
+ ——6

P g A/2

c 1 1 — )cell ))0(2[1+S0))]

(24)
P'b'(X, „-X,) «1. (32)

Evaluating

(b'(X, „,-X,)),„.„

is the factor by which the Weel temperature is
raised and the square of the effective magnetic mo-
ment is lowered.

In the derivation of Eg. (25) for the susceptibility
we have assumed that

where

+1, cl( I)+2(())I)PU (25)
where the thermal average is taken over the phonon
states, we find that the condition (32) is satisfied
provided

R(P) = I/PT, (26)

S )= Af

(P -2T ( 2,2))./2

Ue cothzPc -e'
X- tU'2 ~2

T„=M(u' ~/4q20. (23)

Setting q, =0 in E(I. (25) we recover the result of
Hone and Pincus. " In the temperature range b'/U
«T«U Hone and Pincus showed that the suscepti-
bility reduced to the form expected for an antifer-
romagnet at temperatures much larger than the
Weel temperature:

I/lt= T+8, (29)

where 8=2b'/U is the effective exchange constant.
The effect of the electron-phonon interaction is

to renormalize both the effective magnetic moment
and the Neel temperature. In Fig. 3 we have
plotted the inverse susceptibility versus tempera-
ture for various values of b/U and q, .

We may simplify E(I. (25) for the susceptibility
provided the temperature is in the range U» T
&&R6, co~.

In this regime

1—=R(T+R8)
X

T»b, b /Ts. (33)
The experimentally measured value of p.,'« in

NMP-TCNQ is —,
' (where g,« is the effective mag-

netic moment expressed in units for which the
Bohr magneton is unity). Epstein et (2/. 2 noted that
the discrepancy with the Hubbard-model prediction
of }/, ,« = 1 (in the limit b/U «1) might result if the
ground state (for b/U =-, ) contained large admix-
tures of polar states. However, calculations by
sahib and Kaplan" for a four-site Hubbard model
showed that with b/U =-', , the effective magnetic
moment of the Hubbard model is not sufficiently
different from the b«U result.

Although agreement with the apparent reduced
moment in NMP-TCNQ can be formally achieved
as a result of an appropriate choice of the param-
eter q0 in E(I. (25), there are at least two reasons
for not taking this agreement too seriously. First,
this choice of q, would violate the condition [Eq.
(33)] required for the validity of E(ls. (25) and (30).
Second, and more generally, if the value b =0.021
eV in Ref. 8 is to be believed, then in the tempera-
ture regime T&200 K, the analysis of the sus-
ceptibility in terms of the high-temperature ex-
pansion is inappropriate. This point has also been
noted by Kaplan. "

%e also comment that the phonon mechanism
studied here does not lend support to the sugges-
tions in Ref. 8 that NMP-TCNQ can be understood
in terms of a Hubbard model with different values
of the parameters in the high- and low-tempera-
ture regimes.
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FIG. 3. Reciprocal of the susceptibility, in units of U/p, ~, is plotted versus the temperature in units of U. (p~ is the
Bohr magneton. ) We have used values of M, a, and U quoted in Ref. 8. The effect of changing qo is exhibited with b/U=

$ and g.

IV. SUMMARY

%e have studied the consequences of the phonon
modulation of the transfer integrals in a Hubbard
model.

The current operator for the system contains a
part which depends explicitly on the phonons. Con-
sequently the conductivity has a phononic contribu-
tion, and is enhanced over its value in the absence
of phonons. The enhancement increases with tem-
perature, reflecting the fact that more phonons
are available at higher temperatures to assist
electron hopping.

From a high-temperature expansion of the sus-
ceptibility we showed that the phonons have a two-
fold effect: (a) They cause the Neel temperature
to rise; (b) they result in a lowering of the effec-
tive magnetic moment. In a restricted tempera-
ture range the susceptibility took on a particularly

simple form [Eg. (30)].
Both the conductivity and the susceptibility de-

pended strongly on q„ the inverse decay range of
the localized electronic wave function. In this con-

0

nection we remark that the value 3A ' for q, is its
value for a 2P orbital in a carbon atom. In NMP-
TCNQ the electrons are trapped by the highly

withdrawing cyanide groups, and this may result
in a larger value of qo.
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