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The conditions which lead to electron self-trapping, in a material, are theoretically investigated. The
theory is developed for the simple case of a dense fluid, composed of a single kind of atom, obeying
the ideal gas equation of state, and interacting with an electron as a system of hard-sphere scatterers.
Possible generalizations are noted. A static continuuum approximation and statistical considerations
define configurations in which atoms feel no net force, electron states are obtained for these
configurations, and, then, stability is investigated. The theory developed is shown to reduce to the case
first investigated by Toyozawa, in the limit of small distortions (from the average configuration in the
absence of the electron). The material-electron coupling constant depends on the average density, and

since the stiffness of the materials is shown to be the external pressure, both may be continuously and

independently varied experimentally, The results, for arbitrary distortions, lead to stable self-trapping

and metastable quasifree electrons for strong coupling, weak stiffness; stable quasifree electrons and

unstable self-trapping for weak coupling, strong stiffness; and metastable self-trapping in a limited

intermediate regime. The different regimes are delimited quantitatively. The theoretical importance of
this work resides in the fact that the generally used adiabatic approximation can only be justified for
system states near stable or metastable configurations. The experimental consequences of changes in the

stability of configurations are dramatic changes in some properties. For example, the observed
electron-drift-mobility plunge in fluid helium is shown to be strongly correlated with the predicted
transition of self-trapped states to stability.

I. INTRODUCTION

The purpose of this paper is to investigate the
conditions which will lead to electron self-trapping
in materials. When these conditions are realized,
electron transport characteristics and optical prop-
erties, for example, are strongly influenced.
Dense fluids have been chosen as the materials of
interest in this investigation. These materials
are attractive experimentally since they can be
well characterized and, as will be shown, the elec-
tron-material coupling and the stiffness of the
material may be continuously and independently
varied by control of the externally determined
pressure and temperature.

It seems appropriate to begin by investigating
"simple" cases and then systematically remove the
simplicity to generalize the results. Therefore
results will be presented for dense fluid helium at
densities up to that of the liquid at atmospheric
pressure, and for temperatures up to room tem-
perature. Experimental results of low-f ield elec-
tron drift mobility are available. The theoretical
simplicity offered by a material which is essen-
tially an ideal gas, with a single type of atom,
which scatters electrons with a spherically sym-
metric short-range potential, is ideal. Further,
it may be generalized: by working in regimes
where the equation of states has known modifica-
tions from that of an ideal gas; by studying multi-
fluid mixtures; and by introducing species with
more complicated angularly dependent electron-
scattering characteristics. The flexibility avail-

able in experiments and theory offers systems
which may well be prototypes of a wide class of
technologically interesting materials, including
structurally and compositionally inhomogeneous
ones.

As might be expected for the simplest case,
stable electron self-trapping occurs for large-
coupling and low-stiffness materials. Metastable
self-trapping is also found. The appropriate con-
ditions can be established quantitatively. It is also
found that unstable self-trapping is possible and,
according to experiment, observable, as are con-
ditions of nonthermal equilibrium. Possible gener-
alization of the present work will be noted, through-
out the paper, as appropriate. The details of the
model, , results, comparison with experiment, and
discussion comprise the remainder of the paper.
The work being reported is a modification and ex-
tension of previous work by the author (Ref. 9 be-
low).

II. MODEL

The system consists of an excess electron and a
collection of s-wave scatterers of a single kind.
The scatterers are treated as a statistical con-
tinuum obeying the ideal-gas equation of state.
According to the Born-Oppenheimer approxima-
tion, ~ the states available to the electron should be
found with the atoms fixed in configurations where
the net force on each atom vanishes. Nearby con-
figurations should also be examined to investigate
stability; then atomic motion can be treated, as
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usual, by perturbation theory. Allowing the atoms
to move into configurations where the net force on
each atom does not vanish is a study of fluctuations.
The study of fluctuations far from equilibrium
seems very difficult since, although the electron
states for an arbitrary configuration may in prin-
ciple be found, an assumption that the atomic
motion may be treated perturbatively is strongly
suspect and nonadiabatic processes are presum-
ably important. It is therefore crucial to estab-
lish which configurations of the system are equi-
librium ones.

Atomic configurations are to be specified by a
position-dependent number density p(r) T.he
Schrodinger equation for the electron is to be
solved, for a given p(r), using the Wigner-Seitz
(WS) potential

where &(r) is the dilation and V„ is the potential
appropriate to the average density p, which is ob-
tained from the external pressure and temperature
according to the fluid equation of state. The linear
density dependence is known to be somewhat in-
consistent with the WS potential, but this is of
minor importance; the zero of energy has been
taken as that for the uniform configuration p(r)
= p . Finally, the polarizability of the fluid has
been assumed small and neglected (which may not
be reasonable for materials such as liquid neon,
though it is appropriate for helium).

In principle, solutions are to be sought for arbi-
trary p(r) with the total energy (fixed atoms) ob-
tained by adding the electron contribution, E,& (p(t')),
to the energy required to adiabatically construct
the dilation &(r). Statistically, the energy to es-''
tablish 4(r) is given by the integral over all space
of4

p(r)(krln -(p(r) —r ],Z(r)

where the pressure is

P(r) = p(r) k T .
An approximation to the Helmholtz free energy

of the system, which neglects the entropy asso-
ciated with the center of mass of the electron and
the density distortion, is then obtained from

E, (~(~)) = p„kT //2(r)+ [1 —~(r)]

in[1 —6(r)j)d2r+E„(&(r)) . (1)

This equation can be verified to hold even if the
equation of state is modified to include a small
correction due to a nonzero second virial coeffi-
cient. The equation for the electron i:s

82
——r'- &„~(r) -& ~(~(r)))((r) = 0 .

2m (2)

The requirement that each atom feel no net force
in the configuration &(r) is equivalent to requiring
that EToT(r). (r)) be an extremum with respect to ar-
bitrary small variations of h(r). Statistically,
the requirement is of a constant chemical potential
(electron interaction included):

A. Quasifree states

A subset of solution to Eqs. (1)-(3) is given by

((y) (g) 1/2 elk t, g(~r) 0.
h2

EroT =
2m

That is, if the electron state is assumed diffuse
(the normalization volume 0 large) then the right-
hand side of Eq. (3) will be small and &(r) will
also be small; Eq. (2) demonstrates that the diffuse
electron is a self-consistent solution. With fixed
atoms, 2 &(r) = 0 with EToT = 0 is an energy minimum.
Keeping 4(x) = 0 and increasing E„increases ETor,

which yields

1 [1 6( )1
rr I g( ) I

(3)p„k T
Equation (3) would normally contain b(r)-depen-
dent atom-atom interactions, which vanish for an
ideal gas. It is apparent throughout that V„(which
increases with p„) is the electron-material cou-
pling constant, and p„kT (the external pressure)
plays the role of the stiffness of the material.
Thus by varying the pressure and temperature a
continuous independent variation of coupling con-
stant and stiffness may be achieved.

Toyozawas treated the problem of self-trapping
by a continuum in terms of a coupling constant and
a material stiffness. Equation (2) is identical to
the one he used. Further, if &(r) is assumed
small (« I) and Eqs. (1) and (3) are expanded to
lowest nonvanishing order, his equations are ob-
tained, with the given identifications for coupling
constant and stiffness,

ET oT = E„+p„kT A(r)2 d r,
V l(1)(&)l'

P IP

but only in the limit of small dilation. This limit
is indeed appropriate, in general, for the positive-
energy solutions of Eq. (2), but may not be appro-
priate if Eqs. (2) and (3) yield bound electron
states. The relationship of the present work to
that of Toyozawa will be explored further below.
In what foQows, the general case is explored.
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FIG. 1. Total energy
in units of k T, for selected
temperatures, of states
satisfying Eqs. 1-3, as a
function of number density
for fluid helium. ETpT = 0
is also a solution. For
any p„and T the minimum
energy state shown is an
absolute minimum. Solu-
tions are by the method of
Appendix A, except those
denoted by crosses, for
77 K, which are from the
numerical method of Ap-
pendix B. See text for
discussion,

and small changes in 4(r) will be unable to bind
the electron, while costing energy to establish.
Since the coordinate origin is arbitrary, the sys-
tem has translational symmetry, but only statis-
tically. In fact, if transport of the electron is es-
tablished, wave-packet formation will result and
what may be called a large polaron is obtained.
The state ET =0, calculated in the absence of
motion, is either stable or metastable for all p„
and T. For electrons in such states, the usual
low-field drift mobility is expected:

4e 1 1+Bp
3 (2n'mkT)'g2 4va2p„ (4)

with m the mass, B„the second virial coefficient,
and a the low-energy s-wave length for the atom-
electron scattering (0.62 A for helium). The
mean free path used results from an assumed
random arrangement of scatterers.

B. Self-trapped states

The positive electron-energy solutions of Eq.
(2) need not exhaust the spectrum of states which
also satisfy Eq. (3)—negative-energy solutions
can be sought. This has been done for helium (a
=0.62 A which, given p„, defines V ), for T
= VV K and p„= (6, V, 8, and 9)&& 10~~ atoms/cm3 by
a numerical scheme of iterating (by computer)
Eqs. (2) and (3) to self-consistency. An additional
(aside from EToT =0) two states were found for
each p . Both are configurations for a self-
trapped electron; one has a minimum for ETpT
with respect to small variations of &(r), and the
other is a saddle point for ETpT in the space of
spherically symmetric fluid configurations. The
results obtained are essentially the same as the
set previously obtainede by restricting

(6)

This two-parameter functional space may be used
to define a semianalytic perturbation scheme in
which the parameters C and b are chosen to satis-
fy a limited self-consistency and perturbations
are carried out to improve it. The perturbation
scheme is described in Appendix A; the numerica1
iteration scheme is described in Appendix B. The
results of the two schemes are so close that the
numerical one is a verification of the one [using
Eq. (6)] which was used to obtain results for a
large number of values of p„and T. The electron
is always kept in the ground state of Eq. (2).

Figure 1 gives the energy E»T of states satis-
fying Eqs. (2) and (3) as a function of p„ for se-
lected temperatures. At sufficiently high p„, for
all T, a solution is obtained with EToT & 0. This is
the stable self-trapped state; E»T =0 is a meta-
stable solution, and there is an ETp T ~ 0 solution
representing a self-trapped electron in a saddle-
point configuration. As p is lowered the energy
of the stable self-trapped state rises, eventually
becoming positive. Then this state becomes meta-
stable with ET p T = 0 achieving stability. For still
lower p„ the energies of the metastable and saddle-
point configurations approach. Using the method
of Eq. (6) a degeneracy is finally found and no
solutions are obtained (other than ET»=0) for
lower p„. The numerical method shows a decreas-
ing energy difference but, as degeneracy is ap-
proached, becomes so cumbersome that it must
be abandoned. Physically, very weakly bound
metastable states are essentially indistinguishable
from moderately long-lived unstable ones which
yield no extremum for Er~ [i.e. , which do not
satisfy Eq. (3)].
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FIG. 2. Total energy
contours in units of kT for
T51 K, p =5 5xl0
atoms/cm3 (helium) . The
electron is in the lowest-
energy state consistent
with Kq. (2). The fluid
density profile at each
point is given by Kq. (5)
so that C is the fractional
density decrease at the
origin and b ~ is the
"radius" of the fluid dis-
tortion. Note the saddle-
point and negative-energy
configurations.

b (A)

Insofar as V increases3 with p„and, for a given

p, the material stiffness (p kT) increases with

T, Fig. 1 is a representation of the equilibrium-
state energies as a function of coupling constant
and stiffness. These results are quite similar to
those given by Toyozawa and Emin in their cal-
culations of self-trapping (or small polarons) in
crystal models. In their work small polarons are
restricted to dimensions of a single cell, while
here these states overlap a substantial number of
atoms (as will be shown) in agreement with the
continuum approximation made to obtain them.

A clearer qualitative picture of the types of
states shown in Fig. 1 (quasifree states, self-
trapped states in stable or metastable configura-
tions, and at the saddle point) is obtained, at a,

given p and T, by plotting the contours of E~»
in the space of the dilation parameters: C and 5"'
in Eq. (5), for example. Figure 2 shows such
contours for helium at p„= 5. 5 & 102' atoms/cms
and T = 51 K as a function of C (the dilation at the
origin; C = 1 means that the atoms are totally ex-
cluded at r = 0) and 5 ' (the "radius" or healing
length of the dilation). There is a metastable
state for C = 0, a saddle point, at which fp„h(r)
& d r-50 atoms, and a negative-energy region.
Naturally an extremum in this figure need not
represent one in the space of arbitrary &(r); for
example, the saddle-point energy of Fig. 2 is close
to but not quite the result in Fig. 1 for the same
p and T, but perturbations can be carried out.
The figure, however, suggests that a wave-packet
conduction electron with p(r) = p„(i.e. , C-O,
5 ' is approximately the size of packet) could col-
lapse to the stable configuration (negative-energy
well) by being thermally activated over the saddle

point. It is probable that configuration tunnelling
involving many atoms is a very slow process.
These remarks are purely qualitative insofar as
dynamical processes have not been investigated,
though trends can be noticed: In the regime where
self-trapped solutions have been obtained, the
height of the saddle point decreases with p„, for
example, which seems to imply that thermal acti-
vation from the quasifree states into the self-
trapped minimum would be faster with increasing.
p~ ~

For the regimes in which self-trapped states
were found, it is a general result that the electron
is more diffuse in the saddle-point configuration
than in the stable or metastable one (for the same
p„and T). Further, at constant T, the electron
diffuseness in the saddle-point configuration in-
creases with p; this trend is reversed for the
stable or metastab1. e configuration. For constant
p the electron is more diffuse at lower tempera-
tures for the saddle-point configuration; the trend
is again reversed for the lower-energy configura-
tion. The energy trends are shown in Fig. 1.

Figure 3 shows the density profile of the self-
trapped low-energy configurations for p„= 2. 9,
4. 0, and 5. 25 (x102'atoms/cm~), at T=20 K.
Since the potential felt by the electron has been
taken as linear with p(r), this figure is also V(r)
versus r. The electron energy is shown so that
the classical turning point can be seen. The con-
figuration for the lowest p„ is metastable, the
others stable. The radius of the mean sphere oc-
cupied by an atom (r,), at p„, is shown. As can
be seen (and this result is general), increasing
p leads to an increased exclusion of atoms from
the central region, a decreasing radius (classical
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trapped state has SToT = —24T. There are stable
self-trapped states for higher p and/or lower T
than the line denoting the transition. The dashed
line gives the density of helium at its saturated
vapor pressure and the temperature «n question;
the (gas-liquid) critical point is noted. ~2 Since
self-trapped electrons should have much lower
drift mobilities than conduction-band electrons,
one expects that isothermal measurements of mo-
bility would show a drop for densities in the neigh-
borhood of that at which stable self-trapped states
exist. This has been observed" and measurements
are noted in the figure by showing the density at
which the observed mobility is 10 ' or 10 2 of the
semiclassical value expected for a conduction elec-
tron [Eq. (4)]. Clearly, the observed mobility drop
correlates well with the predicted transition of
self-trapped states to stability.

FIG. 3. Density profile p(y) [also V{y)] for lowest-
energy self-trapped states in helium at 20 K, for three
values of p„as noted. Electron energy is noted to show
the cia,ssical turning point of the electron. Electron and
total energies are indicated, as well as y, , the radius of
the mean sphere occupied by an. atom for a density of p .

turning point), and a sharpening of the density pro-
file. The square-well model often used for liquid
helium is a limiting case which is well justified
by the trend of the present results.

Figure 4 shows the locus, in p„- T space, of
the transition from metastability to stability of the
low-energy self -trapped configuration in helium. ~~

A line is also shown at which the low-energy self-

III. DISCUSSION

The states of the system, with the atoms at rest, a

have been found for configurations in which the net
force on each atom vanishes statistically. Atomic
motion can be treated perturbatively to deal with
configurations adjacent to the ones calculated. It
should be realized that the apparent translational
symmetry (r= 0, not defined) of the system disap-
pears on allowing atomic motion, though it is still
present statistically. One might worry that the
disorder which appears when atomic motion is al-
lowed may void some of the results obtained. This
should noi be the case for the stable self-trapped
states obtained, since the distance over which dis-
order-induced incoherent scattering takes place

200-
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FIG. 4. Locus in den-
sity and temperature space
for the transition from
metastability to stability
of electron self-trapped
states in fluid helium
(EToT = 0). Conditions for
which EToT —-™.e2kT, i.e. ,
the stable self-trapped
state ha.s energy AT be-
low the configuration with

p(~) = p and a conduction
band (k =0) electron, are
also shown. The experi-
mental points denote iso-
therma, l measurements
(Ref. 13) of mobili. ties of
10" and 10 2 of the semi-
classical value [Eq. (4)].
Dashed line gives the den-
sity of helium at its satu-
rated vapor pressure (the
gas-liquid critical point is
shown); see P.ef. 12.
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[approximately the mean free path for momen-
tum-exchange scattering, equal to p4mp a~) '] is
large as compared to the typical size of the
stable self-trapped states obtained. Further,
nonadiabatie processes due to atomic motion about
equilibrium configurations are not expected to be
severe: In the first place, the configurations are
stable; also, the electron ground state is well
separated from excited states. The above argu-
ments are not appropriate for configurations which
are unstable and far from equilibrium, and/or for
electron states which are extended over dimensions
larger or of the order of the disorder-induced inco-
herent-scattering mean free path. The first case
violates the assumptions inherent in the adiabatic
approximation, ' ' and the last case loses sight of
part of the existing disorder. " "

The conditions for stable self-trapping have been
established by the results presented, and are not
surprising —strong coupling and weak stiffness.
One may speculate, in a more general case, that
weak stiffness is not really necessary„but rather
that weak barriers between different atomic con-
figurations (lattice metastabilities) are sufficient—
such might be the case of amorphous solids.

The present result, giving the energies of the
states of the system, is not sufficient to predict or
explain experimental observations in detail. Con-
figurational entropies are needed to calculate a
density of states for the system and, if transport
is to be investigated, the dynamical process in
question must be calculated. If thermodynamic
equilibrium is not assumed, then lifetimes of the
states are also necessary. At this time these con-
cerns mill not be pursued in detail; some qualitative
observations, however, deserve mention.

For the type of fluid under investigation, the
general features of electron behavior, with pres-
sure and temperature, are clear. At high density,
especially at low temperature, the stable self-
trapped state is so overwhelmingly favored by en-
ergy considerations, and the barrier for populat-
ing it is so low, that it will have the predominant
population. At low density, especially for high
temperature, the free-electron-like conduction
band is favored; only unstable self-trapped states
exist and large dilations are necessary for trapping,
so that such configurations are at high energies, "
For intermediate conditions, even though self-
trapped states may not be favored energetically
they do have an entropy advantage, which has been
neglected in the present treatment, insofar as they
may be considered free particles of possibly large
effective mass (m"),

relative to the quasifree-electron states. ~'-.n ef-
fective mass of the order of the atomic one would

make the entropy factor substantial (in the hydro-
dynamic limit, '3 m* is one-half of the mass of the
atoms displaced by the dilation). These considera-
tions can only be qualitative since there is no known
formula for m"', except in a hydrodynamic limit.

The bulk of experiments on excess electrons in
fluids are mea, surements of low-field drift mobil-
ity. '~'9'2o The expected mobility for quasifree
electrons has already been mentioned, and the in-
fluence of self-trapping mill be to substantially re-
duce the observed mobility, as noted in Fig. 4.
Mobilities of self-trapped species are expected to
be given by'3

e 9m/
s~nz 4p a(2~sar)'~')'

where g is the viscosity of the fluid, ll the effec-
tive radius, and M the reduced mass between m~
and the atomic mass. In the limit of a strongly
bound self-trapped state the dilation is essentially
a square well, with B being its radius. The effec-
tive mass will be large (hydrodynamic limit) so
that M is approximately the atomic mass. For
weak, though stable, binding the region of the dila-
tion can be quite penetrable by host atoms [as the
results and Zq. (4) show] so R can be small and
ill defined. m* is not well known either, so that
the above formula is not very helpful.

Since some experiments" ' have indicated the
observability of nonthermal-equilibrium conditions,
some qualitative comments regarding state life-
times may be helpful. The trends of Fig. 1 imply
that the stable self-trapped states should have a
lifetime which increases with p (fixed T) and de-
creases with T (fixed p ), against release to a
quasifree-electron state. The time for self-trap-
ping, from a quasifree state, should decrease with
p (fixed 7) and increase slightly with T (fixed p„),
Judg1ng from the height Gf the saddle-point con-
figuration. A somewhat speculative extrapoLation
of the calculated trends to unstable self-trapped
states, for conditions where self-trapping has no
stable or metastable configurations, can be made.
Trapping times, to such states, should decrease
with p„(fixed T) since they can be found at lower
energies. The lifetimes of unstable states against
electron release to a quasifree state should become
longer and more sharply defined as p„ is increased
and stability is approached. This extrapolation is
partially prompted by recent experiments, '9'~0 and
will be further discussed elsewhere with the ex-
perimental results.

IV. SUMMARY

The conditions which lead to electron self-trap-
ping in simple fluids have been calculated and the
stability of such states discussed. It has been
shown that the present work is formally related to
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APPENDIX A

Solutions to Eqs, (l)-(3) in the text a.re desired.
Define

E= 1- (C/coshabr), (Al)

where C and b are constants which will be chosen
in such a way as to construct a perturbation series
(X, which is later set to unity, will denote the or-
der of perturbation). Expand g, E„, p(r)/p„, and

E~()~ in a power series in X, using

XG(x) —= —E+ exp(-
I'-

~ 4o(r) ~'

p kT (A2)

where go, the zero-order term in g, and a choice
of C and b define G(r) in such a way that, hopefully,
it is "small. " Inserting the expansion and defini-
tions into Eqs. (1)-(3) and equating powers of X in

Eq. (2) yields

[T+ V„(E—1) —E,'P) (o=0,

[T+ V (E —1) —E,', ] ()

(A3)

+V~ G —2 Fol @el 0p„kT

etc. , and also

(A4)

'" =(- "
~.~,"())*.(-;-, l~. l),

(A6)

x a =x xr r) —exxp — lp l)op„kT

„' *.(-,;, l~. l)

+E,', +XV /G/go/'dr+O(X') . (A6)

previous work on self-trapping, or small-polaron
formation, by Toyozawa and Emin. The compari-
son with previous work exhibits the similarity of
the results and emphasizes the flexibility of the
materials considered, in that coupling constant
and material stiffness may be continuously and in-
dependently varied experimentally. The calcula-
tions have been shown to be capable of adequately
interpreting observations of low-field electron
drift mobility in a semiquantitative manner.
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Note that terms of O(X) containing P, in (A6) cancel
so that (A4) need not be solved for results correct
to order X. Equation (A3) can be solved for any C
and b exactly. In this work, the "smallness" of
(A2) is achieved by choosing C and b such that
G(0) = G(b ') = 0. Alternative choices are possible.
It is then found that G(r) is indeed small [compared
to F(0) or to kT, for example] for all r O. ne may
judge the appropriateness of the method by compar-
ing E~o~ correct to O(X), in (A6), to

E~+~~ = p„kT dr(1- F+ElnF)+ E,'o' . (AV)

The method gives quite good results and is further
verified by comparing the results with those of the
numerical scheme described in Appendix B. It is
not as good for Ey pp/kT large and negative, where
a better choice of F might be

Z= I- e(ft- r), (As)

i.e. , a square mell of radius R. An electronic
calculator and computations by hand are quite ade-
quate throughout this technique.

APPENDIX B

A numerical (computer-based) scheme of itera-
tion to self-consistency mas developed to solve
Eqs. (1)-(3) given p, T, and the material (which
determines V„). The scheme followed was to ex-
pand ( in a basis of the s states of a spherically
symmetric harmonic oscillator. The frequency of
the oscillator was used to optimize convergence.
The restriction to spherically symmetric states
was made to minimize energies. The method
starts with a trial function of the ground state only
of a harmonic oscillator of arbitrary frequency.
Total energy extrema were sought, in the first
pass, as a function of the oscillator frequency. The
frequencies at which extrema were found (there
were two) were then chosen as the oscillators to pro-
vide the basis sets. After setting the trial poten-
tial by restricting occupation to the oscillator
ground state, approximations to solutions of that
Schrodinger equation were sought by diagonalizing
that Hamiltonian in an Nx N basis. N = 2-10 were
examined until expanding the basis led to no ap-
preciable changes in ( or E„. In continuing, it
was found that calculating the potential with only
three terms of the expansion and then diagonalizing
10&&10 matrices led to iterations which converged
very mell after only three or four passes. Coef-
ficients in the expansion of the wave function be-
come small very quickly. All integrals were done
analytically as certain power series, with 1 func-
tions, and the computer was used to sum series
and diagonalize real symmetric matrices.

For a chosen p„, T, and P„, approximately five
runs of 10—15 sec each on a 360/V5 were required
to obtain the two solutions. Two runs were made
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to search oscillator frequencies, and the next three
runs were iterations; basis-set expansions were
done within each run. It seems quite reasonable
that there are only two solutions if the electron is
restricted to the ground state of the potential it de-

termines and only spherically symmetric states
are sought. The method becomes cumbersome
when the two solutions obtained are quite similar,
i. e. , when they are nearly degenerate in total en-
ergy. Results are discussed in the text and Fig. 1.

*Work supported by the Materials Besearch Center, UNC,
under Grant No. GH-33632 from the National Science
Foundation.
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