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A general theory of the extended x-ray absorption edge fine structure is given within the framework
of a one'-electron approximation. An approximate evaluation of this theory is proposed which allows a
simple calculation of the spectrum starting from theoretically calculated electron-atom scattering phase
shifts. This is shown to agree quite well with the observed spectrum for copper in the energy range
200—800 eV above the K edge without the use of any adjustable parameters. A qualitative evaluation
of multiple scattering effects in the general theory is made which should be reasonably good below 100
eV. Multiple scattering corrections are found to be very important in the low-energy region of the
spectrum for close-packed structures. It is shown that significant cancellation of single scattering
amplitudes can occur which could account for detailed anomalies in the spectrum of Cu found by
Stern, Sayers, and Lytle.

I. INTRODUCTION

Recent improvements both in experimental ex-
tended x-ray absorption edge fine-structure
(EXAFS) data and in their interpretation, due to
Sayers, I.ytle, and Stern and the promise of great-
ly increased data rates with a synchrotron source
point to the need for a quantitative microscopic the-
ory of this potentially useful analytic tool.

In this paper we establish a multiple scattering
theory of EXAFS which is general within a one-
electron muffin-tin treatment of a solid. In the
higher-energy range of the EXAFS data (a few
hundred electron volts above an absorption edge)
we propose an approximate form for the evaluation
of the general formulas which allows us, with the
help of ab initio calculations of electron-atom phase
shifts, to make a completely parameter-free pre-
diction of the EXAFS spectrum. In the one case
where we happen to have access to a reasonably
complete set of phase shifts (due to Jepsen et al. ),
namely, copper, we show that the parameter-free
formula provides a semiquantitative fit to the ob-
served spectrum in the range 200-800 eV above the
K edge. Since the phase shifts for electron-atom
scattering in this energy range are mainly deter-
mined by the potential in the interior of the atom,
we expect a similar approach to work for any ma-
terial.

The plan of the paper is as follows. In Sec. II
we set up the general multiple scattering formal-
ism, following the approach to low-energy-elec-
tran-diffraction (LEED) calculations due to Beeby
and others. In Sec. III we present our ansatz for
the approximate treatment of the high-energy re-
gime. This is applied to the calculation of spec-
tra for both copper and germanium, although the ab-
sence of ab initio phase shifts for Ge makes this
case less reliable. In Sec. IV we go back to the

general theory and evaluate multiple scattering ef-
fects explicitly in a low-energy regime where only
s-wave electron-atom phase shifts need be con-
sidered. We show the importance of the geometry
of the solid in determining the size of the multiple
scattering corrections: For Cu with twelve first-
shell neighbors, the first-shell multiple scattering
is equal inmagnitude to the second-shell single
scattering and opposite in sign over the range 0-
150 eV. In Ge with only four first-shell rieighbors,
the multiple scattering corrections are corre-
spondingly weaker.

II. GENERAL THEORY

The physical mechanism of the EXAFS oscilla-
tions has been studied for many years (dating back
to Kronig '"). The basic mechanism is interfer-
ence between the outgoing photoelectron wave from
the absorbing atom and the backscattered waves
from the surrounding atoms.

In order to write down a theory of this mecha-
nism, we need to say something about the many-
electron relaxation processes which take place dur-
ing the ejection of the inner-shell electron by the
x-ray photon.

In this paper we make the basic physical assump-
tion that the interference effects are produced by
those events in which the electrons in and around
the absorbing atom are fully relaxed This a.ssump-
tion (which we have not proved explicitly) is made
plausible by remarking that the interference re-
quires phase coherence between the outgoing and
diffracted electron waves. Events in which shake-
up occurs will in general lose phase information to
the accompanying excitation (plasmons, electron-
hole pairs) and so may be expected to provide a
broad background absorption, but in general should
not contribute to the fine structure. For metals
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the final-state potential of the ionized absorbing
atom will be fully screened. In insulating crystals,
screening will only be partial, owing to dielectric
relaxation, so that the low-Lying part of the spec-
trum above the edge will be Coulomb-like. In the
following treatment we assume that the scattering
of the electron from the ionized atom can be treated
in terms of the phase shifts (fully screened case).
We also neglect final-state singularity effects which
occur right at the absorption edge.

The general x-ray absorption cross section is
given by

o, = ~4m

c(hvar

i(firii) &(E, Fz+hv-),

where n is the fine-structure constant and hv is the
energy of the absorbed photon. In a single-particle
model, the initial state I i) is the core state from
which the photoelectron is emitted, and I f) repre-
sents the final state of the photoelectron, which
must be above the Fermi level. More generally,
inelastic scattering will be expected to add an
imaginary part to the final photoelectron energy. '"'

(The effect of this will be discussed later. )
In order to solve the problem, we need a model

to describe the effective potential seen by the final-
state photoelectron. We shall assume a simplified
model in which this potential can be represented
by a nonoverlapping system of spherically symmet-
ric spin-independent muffin-tin potentials, cen-
tered about each atomic site. The potential be-
tween the muffin tins is assumed to be constant,
and this level determines the zero of energy. We
further assume that, apart from the central atom
from which the photoelectron is emitted, all atoms
of the system can be represented by the same muf-
fin-tin potential (unless more than one atomic spe-
cies is present).

To evaluate the cross section in E(l. (1) we re-
quire matrix elements of the operator p, given by

p=P ~f) ~(E,. -E,+av)(f ~=-- Imd'(E),

where

d'(E) = I/(E —a+ ie)

and H is the effective single-particle Hamiltonian,
representing the central absorbing atom and all the
surrounding scattering atoms. E is the energy of
the photoelectron, measured relative to the absorp-
tion edge, so that the photon energy is A;v= E+I,
where I is the ionization potential. The increment
+i& defines the relevant Green's function to be that
for the outward propagating wave.

It is convenient at this stage to use the angular
momentum representation. We expand in terms of
a complete set of one-center basis functions Qg(r)

at energy E and angular momentum I. (I, m) which
have the form

y', (r)=i'I~', (~)I",(~) . (4)

l nz,=l, +I; =m, , m, +1.

This will limit the number of partial waves oc-
curring in the sum of E(I. (6). In particular, for
E absorption l = l'= 1.

Most theories find that above the K edge, M I,~"
falls off approximately as some power of Av, this
power being given by & in the simplest theories
for the medium-heavy elements. In the case of
EXAFS, we are normally interested in the energy range
for which E«hv, i. e. , most of the energy of the
absorbed photon goes into the ionization energy I for

The I'z (x) represent spherical harmonics, and
we shall take the radial functions R, (x) to be solu-
tions of the Schrodinger equation at energy E for
the potential of the central absorbing atom in the
absence of the other potentials. Outside the muf-
fin-tin sphere of the central atom these functions
will look like free-electron solutions, but with a
phase shift introduced by the presence of the central
atom for each partial wave.

The initial state of E(I. (1) is a core state, which
we shall write as

~i) =y,(r)=i"E, (~)I", (r), (5)

where R,(x) is the radial solution of the atomic
Schrodinger equation for a core electron in an l = l,
state. For absorption edges corresponding to a
deep core state we can expect the core wave func-
tion to be highly localized near the origin, so that
the matrix elements for E(I. (1) are evaluated es-
sentially at the origin r = 0 of the central atom.

By using these angular momentum expansions,
the cross section may be written in the convenient
form

,.= ——rm P M;:( o,'(o)
~

o&"
~

o',. (o) ))

The matrix element ML,'L,
' is given by

M Pg = 3 7( ct(hv) ( P~ ~

r
~ g, ) ( P, ~

r
~
f~. ) . ('7)

The problem has now been conveniently divided in-
to two parts; first, the effect of the potential of the
central atom on the photoelectron which is emitted
from its core, as represented by M~'~"; second,
the behavior of the photoelectron outside the central
atom as it propagates through a system of spheri-
cally symmetric nonoverlapping potentials.

The matrix element M z'~", is calculated by vari-
ous authors who wish to investigate the atomic
photoelectric cross section. The angular part of
the overlap integral leads to the dipole selection
rules for the transition
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is then found to satisfy the equation

GI I.(R, R))) = GI I (R, H~)

+ P P G„., (H. , H„)t,„(Z)
Ry/R o L' '

xG',„,, (R„,R, ) . (10)

Here G~~, (H, Rz) are the matrix elements arising
when the free-electron Green's function is ex-
panded in terms of spherical Bessel functions about
the respective centers 8, Rz, and so

G (R +r, RB+rs)

LL'
GI.I. (H RB)~I.(ra) ~2 (r8) ~

The elements G~~, (R, R))) are given in terms of
the Gaunt coefficients

C«z, =
~

dQ Yg(8, p) Yz, (6, y) YI, (8, p)

0G~~. (H, , R8) = —4@k Z Cr, ~ qHI, (R~ —R))) .
(13)

The spherical waves J~(r) and H~(r) arising in
Eqs. (9), (11), and (13) are defined in terms of the
usual spherical Bessel function j,(kr), the spheri-
cal Hankel function k', (kv), and the spherical har-
monics Y~(r) by

Z, (r) = t'q, (k~) Y,(~),

H, (r) = i"k', (kr) Y,(i),

k= {2m'/k')"'.

the core electron. Thus r'I/IL'L" is only slowly vary-
ing as a function of the photoelectron kinetic energy
E, and in practice we shall neglect this variation.

The behavior of an electron moving in the presence
of a system of nonoverlapping potentials is a prob-
lem similar to that arising in I EED calculations,
and has been formulated by Beeby and others.
Essentially one can think of EXAFS as a kind of
"spherical LEED." To proceed one expands the
outgoing photoelectron wave from the central atom
in terms of partial waves about any other scatter-
ing center. The individual electron-atom scatter-
ing is then treated exactly in terms of the t matrix
appropriate to the muffin-tin potential. The result-
ing scattered wave is then re-expanded about the next
scattering center. The full Green's function de-
fined relative to two scattering centers at 8 and

Bg,

G, (R, H, ) = ( &f& (r —R„)i

G' '
~ Q .(r ' —R,) )

Note that asymptotically we have

t'"'k', (kr)
~

„„-e'""/k~,

and so

H, (r) „-(e*'"/k~) Y,(~) .
The diagonal t-matrix elements t, (E) in Eq. (10)

were shown by Beeby to be the usual f, matrix, re-
lated to the phase shifts 5, (E) (after correction of
Beeby's result by a factor 2) by

f, = —(2ik. ) ~(e "& —1) .
We shall use the label e to denote the central

atom, whose origin will be at position R . The
relevant Green's function for Eq. (5) is then
G» (H, R ). Using Eq. (10) for this Green's
function, we obtain two terms. The first term
will be just G~~, (H, H ), and will represent the
photoelectric effect of the isolated atom, which we
shall not consider further here. The second term
will contain the interference effects of interest for
EXAFS. Thus our general formula for the oscilla-
tory part of the photoelectric cross section is

osci 1 1 core i (r)~+rt~i )

7T

x Y p G (R, , H6)t (l)G, (RB 8 ))
(19)

In this expression we have extracted the phase
shift q, + rj, , introduced, via the central atom ma-
trix elements, between the outgoing .L wave and the
incoming t. ' wave.

From the general form of Eq. (19) it is evident
that it represents a summation over the atoms P
of backscattered waves from each site, which is a
generalization of earlier theories of EXAFS, where
the backscattering was not treated in terms of the
full Green's function. In our formulation multiple
scattering effects are al1. included in principle by
the full Green's function Gl. ~. (H, R))), which con-
tains scattering at all other sites in the waves
that propagate from n to P. The multiple scatter-
ing equations are essentially the same as those of
I EED theory, where they have been successfully
handled by numerical techniques.

For K-edge absorption, the dipole selection rules
give t=- t'= 1. Analytical evaluation of Eq. (17),
however, would be greatly simplified if we dealt
with the Green's functions G0L and GL0 instead of
G&L and GLz. Asymptotically, this is equivalent to
assuming that the photoelectron wave is spherically
symmetric about the central atom. In a material
of cubic symmetry, this modification is not expected
to give rise to any qualitative differences. It should
be noted that for numerical evaluation using the
matrix i~version procedures developed in I EED
there would be no reason to make such a modifiea-
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III. HIGH-ENERGY REGION

At sufficiently high photoelectron energy, the
crystal is relatively transparent, and the amount
of scattering at a given site, as represented by the
t(k) in Eq. (20), becomes small. In this regime
we make a basic assumption that the main effects
of multiple scattering will be to attenuate the
amplitude in a given outgoing wave by transferring
it to other partial waves in a rather complex and,
at high. enough energies, incoherent manner. In
order to estimate this attenuation for a given shell
of atoms, we calculate a spherically averaged
transmission function for each shell, given by

W, (k) =1 —X,.
or(k)

where N& is the number of atoms i.n shell j, at dis-
tance 8& from the central atom, and o.~ is the total
scattering cross section, including both elastic and
inelastic contributions. The latter contribution is
the one represented by assuming a complex atomic
potential in LEED calculations. ' '

The probability of reaching a given shell without
scattering is then given by the product of the trans-
mission functions for the intermediate shells, and
we assume that the full Green's function may be re-
written in the form

Gp~(R, Rp) =—A~(k)G()~(R I R()) I (22)

where j is the shell label corresponding to the atom
site P, and A, &(k) is the attenuation factor given by

a, (k)=II w, . (23)

We define A~(k)= 1 for the first shell. Just how
high the energy need be before this approximation
becomes reasonable cannot be predicted at this
stage, but we shall see in later sections that 200-
300 eV is reasonable for elements with Z in the re-
gion for copper. With this rather crude approxi-
mation we then have from Eq. (20)

tion. However, for the purpose of physical insight
in the next two sections we shall make the simpli-
fication and therefore consider the behavior of the
function

X(k)= —Im{e "1Q g Gm(R, , He)

xe, (I)G e(He; R, )) .
This function will be a measure of the EXAFS

spectrum in our simplified model, apart from the
factors in ML'L", which, as we have argued, will
be approximately independent of k. In the rest of
the paper we work with the simplified form given
in Eq. (20).

X(k)= —Im{e "eI ke PGe (R, , He)OL nr g

x t, (k)Ge (Re, R,)),
where jz is the shell containing the P atom.

The free-electron Green's functions are given
in general by Eq. (13). The asymptotic form is
obtained by using Eq. (16) for the Hankel function,
and this will be a good approximation at energies
E~ 100 eV. Equation (24) then becomes

2jARa, g
x(k)= —Im(eeGe p RI —, p G„,

B~& +08 L1.R.,(-R.,) PG,„x„( R.,)) . (sa)
Lg

The Gaunt coefficients in Eq. (26) are given by

el I, p
= (I/x) 4g )5) a

(26)
e„,, = (- I)"a (I/& 4~) 6, „6„...

where the 6's are Kronecker 5 functions. If we
substitute in Eq. (25) and use the addition theorem
for spherical harmonics~

+l

&( )= Z (-1) I',- ( ')I', (),
(2'7)

where I', is a Legendre polynomial, we obtain the
compact form

x(k) = {E&Ie „. f(e)), (28)

where the sca.ttering amplitude f(8) is defined in
the usual way:

f(8 ) = —. P (2l + 1) (e "a —1)P, (cos8) .1
2N go

Our expression for the EXAFS spectrum from Eq.
(28) now becomes

x(k)=(f(e)Z ~R' e""'""'ke(k)), (30)

where the summation is now over shells j.
The form of Eq. (28) is similar to that used by

Sayers et al. and earlier authors. However there
are two physically important generalizations in our
form which have a considerable effect on the result-
ing fit to experiment. One is that we use the full
t matrix to determine the backscattering amplitude
f(m). We show below that the energy dependence
of both the amplitude and phase of f(w) are impor-
tant. The second is that we allow an energy-de-
pendent penetration of the electrons to distant
shells. This will be important in the high-energy
regions of the spectrum where electron mean free
paths become relatively long and result in high-
frequency Fourier components in the interference.
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I IG. 1. Penetration. of. electrons calculated using a
spherically averaged transmission function [Eq. (23)] ex-
pressed in terms of effective energy-dependent inverse
mean free path.

Furthermore our Ansatz for A, (k) allows us to cal-
culate this penetration directly in terms of calcu-
lated electron-atom cross sections.

This calculation requires an estimation of the
energy-dependent elastic and inelastic cross sec-
tions o~ and o~. The former can be evaluated
either from the atomic scattering phase shifts, us-
ing the optical theorem, oI by jntegrattLon from a,

model potential form (e. g. , screened Coulomb) in
the high-energy limit. Calculation of the inelastic
cross section is not so straightforward, but I EED
work~ '"'~ " ' ha, s indicated that OI is sufficiently
small in metals (mean free paths of about 10 A at
100 eV) that we may take crz as giving the dominant
contribution to the total cross section.

The attenuation coefficient A&(k) is only defined
as a function of x at the discrete values x= x&, a
shell radius. In order to get a feeling for the en-
ergy dependence of the corresponding photoelec-
tron mean free path, we have fitted the calculated
values of A&(k) to the exponential form e~" with an
energy-dependent parameter y. y thus represents
the inverse mean free path, and is shown as a
function of energy in Fig. 1 for copper and germa-
nium. In ihe case of copper we have used the scat-
tering phase shifts of Jepsen et al. in the low-
energy range (E ~ 200 eV), a screened Coulomb
form in the high-energy range (E ~ 500 eV), and a
smooth interpolation in between. The resultant
curve for copper shows an effective mean free
path of about 3 A at 200 eV, increasing to 8 A at
1000 eV. In germanium we expect the cross sec-
tion at high energies to be roughly the same as for
copper, since their atomic numbers are approxi-
mately the same, but this assumption leads, never-
theless, to very different mean free paths because
of the different lattice structures. Figure I shows
that the effective mean free path in germanium is
much larger than the corresponding value in copper,
because the latter is a more densely packed lattice.
We shall see further aspects of this contrast in

I.O "
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G BORN APPROX,
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IL'
~g

(IOO) {200) QOO) (500) E (eV )
5 4 5 6 7 8 9 IO II l2 Is l4 I5 k (k ')

~))
PHASE SHIFTS

FIG. 2. Energy dependence of backscattering ampli-
tude f(~) calculated using phase shifts of Jepsen et gl.
(ref. 2).

We have included a simple Debye-Wailer fa,ctor
similar io that used by Sayers et al. , o'& being a.

measure of the mean-square Quctuations of the
actual positions of the atoms in the jth shell about
their average positions r&. The phase angle n is
given by

n(k) = 2q, + arg [f(w)] .
The phase shift qj corresponds to the central

atom, with an effective potentia, l that will be differ-
ent from that of the other atoms owing to the pr es-
ence of a core hole, but for simplicity we shall
assume that for energies greater than 100 eV, we
may replace p by 6, the atomic phase shift. In or-
der to determine f(m) we use the phase shifts for the
one case (Cu) where we can conveniently make use
of the calculations using a self-consistent atomic
potential by Jepsen, Marcus, and Jona. When
this is done, u(k) is found to be approximately lin-
ear in the range 100-300 eV, and given (for cop-
per) by

o.c„=&. 9 —0.42k, (33)

where k is in A '. The amplitude and phase of f(w)
for Cu is plotted in Fig. 2. Above 306 eV we have
made a smooth extrapolation into the value calcu-

Sec. IV, when we look in detail at the multiple
scattering effects.

We have also shown in Fig. 1 the correspondi. ng
value of y in copper using the inelastic cross sec-
tion a, (as given by the work of Jepsen et af. "'"
This shows that o~ does indeed dominate the atten-
uation. The single scattering formula for the
EXAFS [Eq. (30)]now becomes

y(k) =
~
f(w)~ Q ~ sin(2kB~+ n)A~(k)e '8 ~'. (3l)



lated from the Born approximation, using a
screened Coulomb potential with screening radius
of order 0. 1 A. For the phase shift o. in Eq. (31)
we shall use Eq. (33) over the entire energy range.
The results for Cu are plotted in Fig. 3. The ver-
tical scale in this figure represents the absorption
coefficient (minus the sloping background) in arbi-
trary units, since we have made no attempt to cal-
culate the absolute magnitude of the absorption co-
efficient. The experimental data of Sayers et ul.
are shown for comparison on the same scale. KVe

have shifted the theoretical spectrum slightly to al-
low for the different zeroes of the energy scales-
in our theory we take the muffin-tin zero (also
called "inner potential" ) in the crystal to be the
zero of energy, whereas the zero for the experimen-
tal curves is the Fermi level. This point is dis-
cussed by Azar off, who estimates a value of II
eV for the shift in copper.

The general agreement between experiment and
theory is reasonably good over the range 200-900
eV. It is important to remember that there are no
experimentally fitted parameters in our theoretical
spectrum. This removes one of the Limitations of
the earlier theories. The other general improve-
ment is that the envelope of the oscillations is cor-

A{E)

A(E)

Ge -Theory

I

J
IOO 200 XQ 400 500 600 700 800

E(eV)

Ge —Experiment

J
l00 200 360 400 500 600 700 800

E(eV)

FIG. 4. Calcu]. ation of EXAPS spectrum for Ge using
one empirically fitted phase-shift parameter [Eq. (34)]
compared to data of Sayers et al.

Cu —Theory

A(E)

J
IOO 200 300 400 500 600 700 800

E( V)

rectly peaked around 150-200 eV by the form of
I f(m) I shown in Fig. 2. Finally, the fact that the
effective mean free path becomes long at higher
energies means that more high-frequency compo-
nents are predicted than in the constant-mean-
free-path calculations of Sayers et ul.

For germanium, in the absence of tabulated
phase shifts similar to those for copper, we use
a best linear fit to the primary peaks in the experi-
mental EXAFS spectrum (Fig. 4) and obtain

O'. Ge =4. 5 —O. 41k .
CU —Experiment

lOO
J I, i

200 500 400 500
E (eV)

600 760 800

FIG. 3. Ab initio calculation of EXAFS spectrum for
Cu from Eq. (31). (Only the amplitude is arbitrary. )
The experimental data are from Sayers et al„(aef. 1).

We shall assume I f(n) I has the same k dependence
as for copper. The resulting theoretical spectrum
(Fig. 4) is reasonably good above 200 eV.

We note that the attenuation in germanium is
predicted to be much less than in copper, mainly
because of the smaller number of nearest neigh-
bors in the former structure. This means that
the contribution to the EXAFS from distant shells
in germanium will be much more important than
for copper. Our theoretical spectrum for ger-
manium shows more fine structure than that of
Sayers et ul. , especially in the high-energy region
where we predict a mean free path -8 A rather
than their value of 3-4 A. (See Fig. 1.) Our ener-
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gy-dependent value of y predicts significant contri-
butions to the EXAFS in germanium from atoms as
far out as the fifteenth shell. These features ap-
pear to agree with the high-frequency components
seen in the observations at high energy (subject to
uncertainties about noise).

IV. MULTIPLE SCATTERING EFFECTS

In the previous section we saw how our simple
formula, which replaces multiple scattering ef-
fects by a penetration probability, works in the
higher-energy region of the EXAFS spectrum. The
resulting attenuation was shown to be quite sensi-
tive to lattice structure, especially the number of
nearest neighbors (first-shell atoms). This atten-
uation factor was at its largest value at low ener-
gies (E& 300 eV), and was sufficient in copper at
200 eV to reduce the amplitude of the outgoing wave
from the second shell by 501o. When the first-shell
scattering is this strong, it does not seem reason-
able to neglect possible structure due to multiple
scattering terms, .and we must look at these terms
in detail. This is certainly the case in LEED cal-
culations, where the inclusion of the full multiple
scattering effects has been essential to obtaining
agreement with the experiments.

The full Green's function that includes multiple
scattering is given by the solution of Eq. (10), and
to solve this equation in general will require matrix
inversion, which has been successfully performed
in I EED using numerical techniques. The dimen-
sions of the matrices involved depend on the number
of non-negligiblephase shifts in the energy range of
interest. I EED calculations in the enez gy range
0-300 eV tend to use four to seven partial waves.
In the present paper we report a trial calculation
where only the s-wave (1 = 0) phase shifts are in-
cluded. This will be a plausible approximation at
low energies (E & 100 eV), but the main reason for
making this assumption is that the problem is then
amenable to simple analytical solution for the full

Green's function. We shall find interesting effects
that arise as a result of including just the s-wave
multiple scattering, and will then discuss the addi-
tion of higher partial waves.

For s-wave scattering only, our Eq. (20) for the
EXAFS becomes

x(k)= —Im(e '"' 2 G gl(k)Gq )

where we have dropped the angular momentum
labels on G and t since they are always l=O. The
equation satisfied by the full Green's function is
now, from Eq. (10),

G 8
= G 8+ Q G „t(k)G„8 . (36)

We shall evaluate Eq. (35) for the EXAFS due
to the first two shells only. The closest shells
tend to dominate the structure in any energy range,
but at low energy (above 20 eV for Cu) this seems
to be particularly true, owing to the inelastic col-
lision effects being large. In LEED it has been
found that the spectrum is insensitive to the addi-
tion of further atomic layers beyond the fourth
layer. Thus if multiple scattering effects are im-
portant in EXAFS, they shouM appear in the contri-
butions from the closest shells.

For the two-shell problem we shall use a con-
venient notation where P or P' represents an atom
in the first shell, and y or y' represents an atom
in the second shell. n represents the central atom
as usual. In this notation, Eq. (33) becomes

P

y(k)= —Im e '"~t Z G 8G8 +Z G „G„,

(3V)
The relevant Green's functions G ~ and G, are

found by application of Eq. (36) and solution of the
two resultant coupled equations. This is quite
straightforward foe s waves and we obtain

G'.,(1 —tg„,,„G„'.„)+tG'.„y„G„',
(1 —t Z8 «8 G8 8) (I —t » «. G'.")—t (&8 G8~) (» G'8)

G', (1 —t Z8 «8 G8 8)+ «'8(Z8 GB.)
" (1 —ty, ,„,G,', ,)(1 —t», ,„G„'.„)—f'(y, G,'„)(»G„',)

' (39)

Note that Eqs. (36) and (39) are symmetric with
respect to the interchange P, P' y, y', and reduce
to G= G as t-0, as required. The multiple scat-
tering terms that arise for finite t appear in Eqs.
(38) and (39) as products of the form tG, which is
proportional to the parameter I/ke8, where a8 is
the lattice parameter. This can be seen from the

(40)

form of G in Eq. (13), using the asymptotic ap-
proximation of Eq. (16), so that we have

G 8f )-„8( „-—e' '"8 " '/ [R8.—8, [

Although theparameter 1/ka8 is small at all en-
ergies of interest here, it is not obvious that one
can expand in powers of t since the multiple scat-
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FIG. 5. Comparison of single and multiple scattering
contributions for Cu obtained from an s wave only, two-
shell evaluation of the general theory. The large can-
cellation between second-shell single scattering and first-
shell multiple scattering might account for the anomalies
observed by Sayers et al. (Ref. 15) for Cu.

tering terms also involve summations over the
number of atoms in each shell, and there may be
large factors involved. We find, however, that
the s-wave scattering is not large enough to pro-
duce poles in the Green's functions in Eqs. (38)
and (39).

Substitution of Eqs, (38) and (39) into Eq. (3V)

gives the s-wave contribution to the EXAFS spec-
trum for two shells. The input data for a given
material are the phase shifts 5o and g~ and the
structure and lattice parameters. The results for
copper and germanium are shown in Figs. 5 and
6. In order to assess the relative importance of
each contribution„we have plotted separately the
contributions to )((k) from the first-shell single
scattering, second-shell single scattering, and
multiple scattering only terms in Eq. (37). For
each material these contributions are plotted on the
same scale, and the sum of the three will give the
total two-shell s-wave EXAFS at low energy. The
phase shifts 50 and g& used in plotting Figs. 5 and
6 were the same as those used for copper in the
previous section. We again took the phase shifts
for germanium to be the same as for copper, and
while this is an unlikely assumption at low energy,
the relative magnitudes of the multiple and single
scattering terms are not very sensitive to the phase

0.5-
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r
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Cu DOUBLE
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FIG. 6. This shows how multiple scattering effects
are much weaker in Ge than in Cu owing to the much
smaller number of first-shell neighbors in the Ge lattice
(four as opposed to twelve for Cu).

shift chosen. The main effects. of changing the
phase shifts would be to move the positions of the
peaks along the energy axis and to shift the position
of the maximum of the envelope by the same amount
for each contribution to the spectrum. For the
present purpose of gathering physical insight, the
lack of accurate phase shifts for germanium is ac-
ceptable.

Comparing the multiple scattering contributions
for copper and germanium, we see that the magni-
tude of this contribution in copper is approximately
twice that for germanium. This effect is purely a
manifestation of the structural difference between
the two lattices, specifically the fact that copper
has twelve first-shell atoms and germanium has
four. The scattering by the first shell of copper
is very strong and leads to strong multiple scat-
tering effects.

Moreover, the second-shell single scattering
contribution in copper is relatively small because
there are only six atoms in this shell (in germani-
um there are twelve). The strong multiple scat-
tering contribution is actually larger than the sec-
ond-shell single scattering contribution in copper,
as can be seen from Fig. 5, where they are plotted
together. It is also significant that the multiple
scattering contribution is almost exactly 180' out
of phase with the second-shell contribution over
most of its energy span. This effect is a possible
explanation for the anomalous results found by
Sayers et al. for copper. They found an apparent
sign reversal between the EXAFS contributions due
to the first and second shells, using a simple single
scattering formula similar to Eq. (30). Our analy-
sis shows that strong multiple scattering in copper
can lead to an appreciably large contribution to the
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FIG. 7. Comparison of full multiple scattering com-
pared with simpler to calculate double scattering. It
would be much easier to include higher-than-s-wave
phase shifts in a double scattering calculation than to per-
form the full inversion of the multiple scattering Eqs.
0.0).

EXAFS with the same periodicity as the second-
shell contribution, but almost exactly out of phase
with it. Cancellation would occur between the two
and the result might very well look like a second-
shell single scattering term with sign reversal.
A more complete calculation involving several phase
shifts would be needed to establish this conclusion
quantitatively.

Further physical insight into this cancellation ef-
fect can be had by examining the double scattering
terms, which can be extracted by taking the first-
order iterative solution of the Green's function in
Eqs. (36) or, equivalently, by expanding Eqs. (38)
and (39) to first order in t. Figure 7 shows a com-
parison of the double scattering and multiple scat-
tering contributions in copper, and it is evident
that the former contains the main part of the full
multiple scattering expansion. The advantage of
considerinp; double scattering terms is that they'

can be identified with specific scattering paths in
the lattice, and we find two main contributions for
copper, one of which is the path involving the
shortest intrashell scattering in the first shell.
This is the contribution that has the same perio-
dicity as the second-shell single scattering term,
and so we can see that the possible cause of the
copper anomaly is the contrast between the strong
multiple scattering within the first shell (twelve
atoms) and relatively weak single scattering con-
tribution from the second shell (six atoms). In
the case of germanium, the situation is reversed,
with only four first-shell atoms and twelve second-,
shell atoms, so that the single scattering contribu-
tions are not so likely to be obscured by multiple

scattering effects. This is consistent with the fact
that no sign-reversal anomaly was found by Sayers
et al. in the case of germanium.

We can make some qualitative observations about
the effects of higher par tial waves by considering
the angular dependence of the scattering amplitude
f(&)[see Eq. (29)]. The general behavior of the
I egendre polynomials means that this function is
strongly peaked about the forward scattering direc-
tion (8 = 0'), with a smaller peak about the back-
scattering extreme (8=180'). Since the two-shell
multiple scattering paths generally do not involve
forward-scattering angles, the use of s waves
only (which means spherically symmetric scat-
tering) may be an overestimate of the relative
importance of multiple scattering. An alterna-

- tive approach used by Lee is to consider only
the multiple scattering from specific forward-
scattering paths, the shortest of which involve first-
and fourth-shell atoms in copper. His calculations
seem to indicate that strong multiple scattering ef-
fects are indeed associated with these selected
paths. A full numerical calculation for copper using
several (~ four) partial waves and at least four
shells should be possible using the formalism we
have developed.

V. CONCLUSIONS

We have developed a general formalism for
EXAFS within a one-electron theory, presented
in Sec. II, and have seen how the EXAFS spectra
for different materials can be calculated in a simple
way from fir st-pr inciples electron-atom phase
shifts in terms of a simple formula given in Sec.
III. The approximation made there, which involves
the calculation of an effective energy-dependent
attenuation length for the photoelectrons was seen
to work rather well for the one case, crystalline
copper, where adequate phase shift data were con-
veniently available. In Sec. IV we have discussed
multiple scattering corrections in terms of a high-
ly simplified solution of the general equations. Our
considerations indicate that the attenuated single
scattering approximation of Eq. (31) is most likely
to be successful for relatively loosely packed
structures such as germanium, and most likely to
break downfor closely packed structures such as
copper (and most other metals) in energy ranges
where the scattering due to a single atom is large.
This is an important point as regards the possible
use of EXAFS as a structural probe, as suggested
by Sayers et al. ~ They showed that, by taking a
Fourier transform of a simple formula such as
Eq. (31), it is possible to obtain from the data a
radial structure function which has peaks corre-
sponding to shell radii from a given central atom.

Our calculations suggest that this approach
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would need to be modified to correct for multiple
scattering at lower energies in close-packed struc-
tures. It is fortunate that many of the interesting
amorphous materials and complex molecules where
the power of the EXAFS method in determining lo-
cal structure on an element-specific basis is most
promising are indeed loosely packed structures,
so that the single scattering approximation of Eq.
(31) is most likely to apply.
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