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A theory for photodesorption of chemisorbed species is developed. Two cross sections are computed-
one for photodesorption in the excited state with subsequent free atomic fluorescence and the other, the
total desorption cross section in any state. A decay mechanism involving surface plasmon and
particle-hole pair excitations is introduced to account for nonradiative deexcitation processes. A
comparison is made to other mechanisms such as photoelectron-stimulated desorption. Estimates show

that the cross section is of sufficient magnitude to be readily detected in the laboratory.

I. INTRODUCTION

It has been known for some time that photons are
capable of desorbing chemisorbed (or physiosorbed)
species from solid-state surfaces. It may also be
possible to desorb substrate atoms. Apart from
the technological value of this discovery as a sur-
face preparation technique, photodesorption car-
ries with it the potential of being a useful spectro-
scopic probe to study the physics of the surface
itself. Numerous experimental investigations of
photodesorption have appeared in the literature, '
although a comprehensive theory of the phenomenon
appears so far to be lacking. The purpose of this
paper is to develop such a theory of photodesorp-
tlon.

The phenomena of photodesorption and electron-
stimulated desorptione are closely related. In
both cases an adsorbed molecule is electronically
excited from its ground-state binding configuration
to some repulsive excited state. Naturally the na-
ture of the excitation mechanisms differs, but the
resulting dynamics bear great similarities. The
excited molecule has several options for its be-
havior. It can desorb from the solid in its elec-
tronically excited state and radiatively decay at a
later time. Alternately, it can deexcite in a non-
radiative manner in the vicinity of the surface and
desorb, as a ground-state molecule. Qn the other
hand, the energetics might be such as to prevent
the desorption in either the ground or excited
states. If one broadens the definition of excited
states to include ionized states, then one must also
consider neutralization' processes in the analysis.

In the following analysis, we will limit our atten-
tion to the case of adsorbed atoms which are de-
sorbed in the ground or excited states. It is felt
that a thorough understanding of this simple situa-
tion is required before attempting to tackle the prob-
lems associated with molecular desorption. Due
to the complexity of the problem several approxi-
mations will be made. First, the motion of the de-
sorbing atoms will be treated classically, although
their internal degrees of freedom will be treated

quantum mechanically. This approximation has
recently been applied to analysis of photodissocia-
tion of molecules. "'2 Second, we will neglect
structure of the solid in a direction parallel to the
surface and assume translational invariance in
this plane. Finally, we limit our attention to the
case of weak photon fluxes and disregard nonlinear
effects. High-field studies are a topic worthy of
study in their own right, but lead to a more com-
plicated formulation of the theory. The thermal-
desorption effects will not be considered.

In Sec. II we develop the basic formulas for the
photodesorption cross section. This is followed by
Sec. III, concerning nonradiative deexcitation, and
finally by Sec. IV, the discussion section.

II. THEORY OF PHOTODESORPTION

Having decided to adopt the approximations
listed above, we now proceed to develop the theory.
I et z denote the distance of the atom from the sur-
face and v depict the z component of its velocity.
The ground electronic state of the atom-solid sys-
tem will be denoted by the subscript 1, while the
state where the atom. is excited and the solid (ap-
proximately) unperturbed will be denoted by the
subscript 2. In the present discussion we limit
our attention to the case where only one excited
state is relevant to the desorption problem. The
analysis may be extended readily to the multistate
situation without much difficulty.

The probability of finding the system in the nth
state with coordinate z and velocity v lying in the
range z to a+de and v to v+dv will be denotedby
P„(z,v, f) ds dv. This distribution obeys the Boltz-
mann equation,

BP„BP„1de„sP„ t'dP„dP„
et sz Md@ sv &df z dt D

Here M is the atom's mass and e„(z) (n = 1, 2) refers
to the electronic energy curve of the eth state. The
first term on the right-hand side of Eq. (1) is the
change in the probability distribution due to optical
excitation. The second term is the change of P„due
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to nonradiative deexcitation processes. These in-
volve a transfer of excitation from the atom to the
solid. Deexcitation only occurs when n = 2. Since
the spontaneous-emission lifetime is Long compared
with other characteristic times in the problem, we
wiLL neglect spontaneous emission in the following
discussion.

If there were no external radiation field present,
then we would have the equilibrium distributions

P~ 1/8 e-Sts)4t)+0/tt /2)3
P~i~ ( ~ ) — ~- -B~y(c&2g J„d8 8 (2a)

P(o) (z v) 0 (2b)

Here we are neglecting the thermal excitation of the
excited state, and P = (ksT ) ', T being the tempera-
ture and k~ being Boltzmann's constant. Introduc-
tion of the radiation field perturbs the distributions,
so

P„(z,v, t) =P„'o'(z, v, f)+P„'(z, v, t).

%e will only keep those terms appearing to lowest
order in intensity in this linear analysis. We will
disregard the depletion of the thermal part of the
P, distribution.

The change of the P2 distribution due to optical
excitation from the n = 1 state is given in this clas-
sical approach approximately by the Fermi Golden
Rule '"~

~~ ~

„'1(21@„11)1'',P"5[ e() —~,( ) —h ],
(4)

where Eo is the electric field strength, (2 [ p,„~ 1) is
the (z-dependent) transition moment, and ur is the
radiation frequency. In keeping with our lineariza-
tion program, we neglect the stimulated deexcita-
tion of state 2 Now P y repre sents the nonthermal
portion of the ground-state distribution. Depletion
in the thermal part of P, will not influence the de-
sorption rate, so we take

in the excited state. The former quantity is mea-
surable by counting aLL particles, while the Latter
quantity is monitored by detecting the free atomic
fluorescent radiation which is emitted at a frequen-
cy ~zg=[&z( )- &g( )]/K The reiev»t »«s are
given by

N„=No dvv P„(~,v, f),

where No is the number of atoms adsorbed on the
surface. In N, is included the thermal desorption
rate due to the unperturbed distribution of Eq. (2a),
although it will be assumed to be negligibly small.

A further simplification will be made by assum-
ing that there exists a unique solution to the reso-
nance condition implied by the argument of the
Dirac 5 function in Eq. (4). This approximation
may be relaxed at a later time, if necessary, but
clouds the formalism somewhat. Thus, let zo be
the root to the equation

k(lj + 6 $(zo) E2(zo) =0'
Combining Eqs. (1), (2), (4), and (6), we have the
following Boltz mann equations:

BP', BP', 1 dc, BP,'
Bt Bz M «Bv

M,' eP,' 1 d&, eP,'
8t BZ 3f dZ 95

-+ v —' —— 2 ——~+D(z) P'
2

=g (z, )B(z —z, ) e-™2/2,

(10a)

(10b)

mZ' /'pm "' i(21 p,, l 1) I' e-"~"o'
o)- 2k 1, 2, ~[d(~, )/«]~ |'«, ~,~» )

I et us examine the solution for times sufficiently
long that a steady-state behavior has evolved in the
neighborhood of the surface, so that the explicit
time dependence of P„may be neglected. Integra-
tion of Eq. (10b) proceeds by introducing a new set
of variables,

The nonradiative decay term appearing in Eq. (1)
wiLL not be fully specified until later, but for now
we assume it can be written in the form

dP2 = -D(z) Pz(z, v, t),

f= 8~

zv =- (v'+ (2/M) [e,(z) —e, (z,)]P',
so Eq. (10b) becomes

eP2 2 2
+ +—[e2(zo) —&3(g)] D(g) P2

(12b)

dP) 0z ) &w//w /2

This is consistent with models that have appeared
in the Literature. ""

The goal is to calculate the rate of atoms desorb-
ing from the surface region in the state n, N„. Two
quantities are of physical interest. Qne is the total
rate of desorbed particles entering the detection
system. The other is the rate leaving the surface

The solution to this is

0) Og ) &
BN/w /2-

zv

D(K') df'
A@2 + 2 jg q g q f 1%2

If we assume that the curve ez(g) has no local max-
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imum, then only those trajectories for which —,'Mao

+ «z(zo) —«o(~) is positive will lead to an outward
flux from the surface. Those trajectories for which
it is negative lead to trapped excited atoms.

The number of atoms desorbing in the excited
state per unit time is obtained by combining Eqs.
(8), (12), and (14):

)(&=No dM(, (*o)~ Bl +~s(zo) ~s( ))
t'Mgy

D(g) dg., j~'+ (2/~)(&a(*n) —~ (5)&)' ') '

It is convenient to express this in terms of anequiv-
alent cross section for photodesorption. Dividing

by the photon flux, E = cEoo(8m'&) ', and the number
of adsorbed atoms, N p, we obtain the cross section
for producing free atomic fluorescence upon photo-
desorbing:

4o'~ e o'1 "o& i(2I l1 I 1) I'
2 f d& e-861&z&

I [d(««. )/d ]I [«2(eo) —«2( )]
'o

D(l')d K'

., &(2&M)(~3(~c) —~s((')&)'") '

Physically the last exponential is interpreted as
being the probability of surviving to "infinity" with-
out radiative decay. A similar quantity has ap-
peared in the theory of electron stimulated desorp-
tion, '

a,s one should expect.
We now proceed to integrate Eq. (10a) to find an

expression for the cross section for photodesorption
in the ground state. We assume immediately that
P is large, so Eq. (14) becomes

g( 0) O (g & )
-ohfw /2

D(gl ) dg )

4&)'&o pM '/' e o"'" i(2 I g„i 1) I'
c 2&) f d e o'1( & l[d(«o —«,)/dg]l,

x2 a '" "O,~,(*,)-~,(-))/Mrna/2

OC& 2 ) 1/3
xexP — D(f) u)o+ —[«z(zo) —«o(f)]

~

gp
. (16)

Introducing a new set of variables,

( =@,

u =$v'+ (2/M )[«,(z) —«, (~)]] '/',

we write Eq. (10a) as

sP1 D(K )Po
8( v

(12a')

(12b')

(isa)
This formula. simplifies considerably if one as-

sumes keT small compared with «o(zo) —«o(~). Then
se = 0 in the last integral and we have

Integration leads to the formula for the ground-state
distribution:

P1(g, u) =g'(eo)

(, 2
x O~ u'+ —[«,(t') —«, (zo)+«, ( ) —«, (g')]I

D(&') o-[«..(e.) —«.(t')]
-.,

' ((2/~[..(.) -..«)]]'"I:"(2/ )[..(~ )-..(..)",(-)-.,(~)]]'"
PM o 2 D(t")dg"

x e P —
2

u +
M [«o(t ) «2(eo) + «1( ) «1(t )] +

l f(2/M)[ ( ) ( )))])1/2
go

The cross section is given by

4m'o& e o'1&'o& l(2I p,, I 1)I'

c

fdic

e '1"'
I d/dz («o —«, ) I g go

D(~ )o[«2(&o) + «1(&') «1( ) «2(~ )]
].(2/M)[«o(~o) —«o(&')]]"'

D(g) ) ) dt. 1)

2 M &3ZQ —eaf"

The total desorption cross section o is simply
0'y + 0'p.

Evaluation of the above integral is complicated
somewhat by the possibility of having «z(zo) —«o(f')
&0 for some value of f'& zp. This corresponds to
trapping in the excited state. The excited atom
(which is chemsorbed in an excited state now)
emits surface excitations and decays to the ground
state. It may desorb if the condition defined by the
0 function is satisfied.

III. NONRADIATIVE DECAYS

In the preceding formalism a knowledge of the
decay function appearing in Eq. (6) was required.
In general, the computation of such a function is
rather complex since Coulomb-matrix elements
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are involved. It was shown recently, however,
that in the case where the radiation frequency is
greater than the surface plasmon frequency, a non-
radiative decay channel involving surface plasmon
emission~3 is possible. In this section we apply
this formalism to the problem at hand, the calcula-
tion of D(z&. When the plasmon emission mecha-
nism is operative, one expects it to dominate' the
decay modes so other contributions will be ne-
glected.

Rather than working directly with the surface
plasmon, we choose to work with a hybrid excita-
tion called the surface quasimode. " It resembles
the surface plasmon at long wavelengths, but in-
corporates particle-hole excitations at shorter
wavelengths. This construct has proven to be of
value in other surface-related problems. '~ The
Hamiltonian is expressed as

a=H, + p, vc(r)+Qko'„- (a~a„- + —,'), (19)

co~ being the plasma frequency of the solid and the
quantization area being taken to be unity.

The decay rate D(z) is obtained by using the Fer-
mi Golden Rule again:

D(z)=—'g l&l, k, l p. . ~cl2, vac&l'&(~, -~, -e„).
ki

(21)
Here the atom makes a transition from the excited
state with no surface excitations, l2, vac&, to the
ground state with one surface excitation, I1, k, &.

Thus

x e (.'5(g~ —q, —ho„) . (22)

where H is the Hamiltonian of the atom-solid sys-
tem, p, is the electric-dipole operator of the per-
turbed atom, 4 is the quantized surface-quasimode
field, 0 „- is the frequency of the quasimode excita-
tion with wave vector k, parallel to the surface,
and a„-, a„- are creation and annihilation opera-
tors. We are assuming that the surface-quasimode
wavelength is typically large compared with the
atomic size, so that the dipole approximation is
used. For shorter-wavelength excitations this ap-
proximation becomes cruder, but still allows us
to estimate the magnitude of the decay rate. The
quasimode field is given by

@(r) Q g (k ) (~ 8-Ail(( I fk P+|g-e-)l| I8 I+ fk) F).
kg

(20)
where

The presence of the & function allows us to evaluate
the integral and we obtain

D(+) =
@ id p dk i

(I &11 (u. l
» I

'+
I &ll )L(. l » I

'&

x 8(6, —6, - 8c')',

where k is the root to the equation

e,(z) —e,(z) —ka = 0.

(23)

(24}

We note that D(z) is not simply a decaying expo-
nential. Additional dependence on z enters through
k and through the transition-moment matrix ele-
ments. It is only for large z that these values ap-
proach their free atomic values, so D(z) tends
asymptotically to an exponential decay. It should
also be noted that the x and z transition moments
are not simply related in the neighborhood of the
surface. Asymptotically, however, they are re-
lated by simple Clebsch-Gordan coefficients. Fi-
nally, the above formula for the decay rate is not
applicable when e, —e, ( e~/v2 because then no sur-
face-quasimode emission is possible.

Following arguments presented in the literature, '4

it is possible to obtain an expression for o~ in
terms of the dielectric properties of the solid. Thus

where

k, ""
dk

(k', +k', ) '
(26)'

~(k, 0}

and e(k, &u) is the dielectric function of the bulk
metal. It is convenient to employ the Lindhard di-
electric function in actual computations,

a(k, o)=1+(rraD); x ) (
—+ )n ), (27)

where kz is the Fermi wave vector, x=k/2k~, and

ao is the Bohr radius.

IV. RESULTS AND DISCUSSION

As mentioned in the text, two simple photodesorp-
tion cross sections are amenable to experiment. The
simplest is oq, the cross section for photodesorp-
tion into an excited atomic state, which is measured
by counting the free atomic fluorescent photons.
The cross section for desorption into any state, 0,
is obtained by counting all atoms that stream from
the surface under the influence of the light beam.
In actual experiments, the source of light could be
either synchrotron radiation, vacuum ultraviolet
laser, or perhaps some other light source.

In addition to the mechanisms considered in the
previous sections, there exist other processes that
could result in photodesorption. For example,
thermal photodesorption'6 could lead to a contribu-
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TABLE I. Typical values for the parameters deter-
ming the cross section.

zp= g~= 2x 10
a =10 cm2

A2=2 eV
v=200 gsec
P-'=0. 025 eV

l (2 l g„l 1) I = 10 ~8 esu cm
@cd&=5 eV

Ss =10 8 eVcm
&=10 g
Vp=2 eU

e2(~) =4 eV
hay=6. 3 eV

4=1.5xl08 cm ~

No=5 eV

values for the various parameters. To this end,
it is convenient to adopt a simple expression for
&s(z), such as es(z) = es(~)+As e 's'. If we further-
more ignore all z dependence in Eq. (23), except
for the rapidly varying exponential, the last expo-
nential appearing in Eq. (17) may be evaluated
analytically. Furthermore, we might assume for
&,(z) something of the form c,(z) ~- Vs+ s ~(z —z,)' .
The surface-quasimode dispersion formula is as-
sumed to be a'=(~~/v2)+sk, . Since state 2 is ex-
cited by the x component of the dipole operator, we
neglect the z component of the dipole linking state
1 and 2. Thus we find

47K (d

tion to a, although it is expected to be small at low

temperatures. It will not contribute appreciably to
o2, however. Another possible contributor is
photoemission coupled with electron-stimulated de-
sorption. One may estimate the cross section for
this process from the formula

arssn=f assn ~ (28)

where Y is the photoemission yield (number of
photoelectrons per incident photon), assn is the
cross section for electron-stimulated desorption,
and f is a number less than unity to account for the
fact that only part of the yield has sufficient energy
above threshold to cause electron-stimulated de-
sorption. Values of T are typically on the order of
10 and oE» is on the order of 10 o cm, so an
upper limit for apE» is 10 24 cm~.

Aside from the smallness of these cross sections.
they also produce distinctly different energy dis-
tributions for the desorbed atoms. Photodesorption
produces essentially a monochromatic distribution,
while the other processes are expected to result in
somewhat broader distributions. Thus they should
be experimentally distinguishable by studying the
energy- distribution of the emitted atoms.

Let us now obtain a crude estimate of the cross
sections by plugging in typical order-of-magnitude

x exp ——(zs —z,)'(
P» s l(2 I P.„l 1) ls

2 s ' lasAse 's'o+ v(zs —z, ) I

~

—
m(ozark l(2 I p.„l 1) I

2@sa, [(u),/~2) + sk j

I'(2k jas) as
I'[(1/2)+(2k'~, )t P 0 2 ) I'

where he = es(~) +As e 's'o+ Vs —w(zs —z~) /2. For
simplicity we choose so= z, .

Typical values for the various parameters are
tabulated in Table I. Because of the wide variation
in all the parameters, we elect not to study their
full range of possible values. Our main purpose is
to obtain a typical estimate for o~ to see if experi-
mental studies are feasible. We find 0~ =2&10 '
cm, which clearly is much larger than 0'pgsD, The
01 cross section has a similar magnitude. For a
monolayer of 10's atoms jcms adsorbed on the surface
this would correspond to a quantum efficiency of
2x10'. Quantum efficiencies of this magnitude
have been observed experimentally recently. 7

A more exact calculation is, unfortunately, not
possible at the present time. This is due mainly to
the absence of quantitative information concerning
the e„curves. On the other hand, experiments on
photodesorption should enable us to obtain informa-
tion concerning these curves.
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