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Power-series expansions of the spin-pair correlation functions of the square, sc, and bcc Ising lattices
have been obtained using the semi-invariant approach for general field H and temperature T. In three
dimensions Pade-approximant analyses indicate 2v' = 1.285+ 0.020, in agreement with scaling, but
2v' 0.835+ 0.02 which is some (1-3)% above the scaling prediction v' = v/P8 0.823.

'However, ratio techniques reveal that this discrepancy can be attributed to significant confluent critical
singularities. Cubic and quintic parametric representations of the critical equation of state, and corresponding
expressions for the correlation length, $, (H, T), are developed, which are considerable improvements over
the linear model. The universality and spherical symmetry of the critical scattering intensity p(k, H, T)
is confirmed to within (1-2)% by estimating suitable invariant combinations of amplitudes. The
deviations from Ornstein-Zernike theory for general H and T are found to be considerably greater
than for H = 0, T & T, . Complete parametric scaling representations of X(g,H, T) are developed for
three dimensions; corresponding scaling approximants are constructed in two dimensions but only for
T = T, and for T~~T, withH=O.

I. INTRODUCTION

As one approaches the critical point of many sys-
tems a dramatic increase in the scattering cross
section in certain directions is observed. For a
ferromagnet this critical scattering can be seen
most readily in scattering experiments performed
with neutrons; the small-angle scattering in the
vicinity of the critical point increases sharply as
T- T, . It is now well established that this phenom-
enon is due to the divergence of the spatial range
of the magnetization fluctuations at the critical
point. If the scattering is quasielastic (or can be
suitably corrected for inelasticity) one finds (in
first Born approximation) that the scattering in-
tensity is proportional to the Fourier transform of
the appropriate pair-correlation function. ' ' For
a ferromagnet or fluid, the study of critical scat-
tering thus reduces to an investigation of the be-
havior of the spin-spin or particle-particle cor-
relations, respectively, in the critical region.

In Paper I of this series, ' the behavior of the
scattering intensity above T, and in zero magnetic
field was analyzed in detail for the spin-~ Ising-
model fer romagnet in dimensions d = 2 and d = 3
on the basis of exact series expansions. In the in-
terpretation of the model as a lattice gas or fluid,
zero field corresponds to the critical isochore p
= p„ in the interpretation as a binary AB alloy
system, zero field corresponds to equal mole frac-
tions of the two components, i.e.„~,=@~. Similar
calculations were performed in Paper II' for Hei-
senberg models of general spin (including the clas-
sical limit S- ~) on three-dimensional lattices.

These studies lead to estimates of the exponent p,
describing the divergence of the correlation length
$(T, H=0), and of the exponent q for the variation
of the scattering intensity at the critical point it-
self. The nonzero values found for g confirmed
the failure of the classical, Ornstein-Zernike theo-
ry, ' as anticipated earlier. ' Similar results were
found by Jasnow and %ortis' in their work on the
S= ~, anisotropic Heisenberg models.

The analyses of Land II also lead to explicit ap-
proximants for the scattering intensity as a func-
tion of temperature T, and wave number k. These
expressions, in turn, confirm the scaling theory of
the critical correlations' ' and lead to approxi-
mants for the asymptotic scaling functions them-
selves. Furthermore, the universality of the scal-
ing functions (and the exponents), specifically,
their lattice independence (given the dimensionali-
ty, d, and number of isotropically coupled spin
components, n) is confirmed to within the available
numerical precision. However, the scaling theory
of the correlations'" also makes definite predic-
tions for the scattering bezom the critical point,
and for the scattering as a function of magnetic
field (or, in the case of a fluid, as a function of
density of chemical-potential deviation). Specific-
ally, the correlation-length exponent below T, is
predicted to satisfy v' = v, while the corresponding
exponent for the field dependence at T= T, should
be v' = v/(P+y), where P and y are the spontaneous
magnetization and susceptibility exponents, re-
spectively. '

Up to this time essentially none of
these predictions have been tested by theoretical
work. Furthermore, the theoretical description
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of the scattering below T, is already of relevance
to experimental work on ferromagnets, antifer-
romagnets, and binary alloys. With improving ex-
perimental techniques the behavior of the scatter-
ing as a function of density, as well as tempera-
ture, should soon be a focus of work on fluids;
scattering experiments on ferromagnets in a finite
magnetic field can no doubt be anticipated before
too long.

The present paper aims to fill these gaps in theo-
ry by studying the spin-spin correlations of the
nearest-neighbor spin- —,

' Ising model in two and
three dimensions as a function of both field H and
temperature T. As in parts I and II, our analysis
is mainly based on the systematic extrapolation of
power-series expansions for various moments of
the correlation function, but now in the high-field
and low-temperature variables y = exp( 2mH/-kaT)
and u= exp( —4J/ksT). Particular attention has been
paid to the phase boundary, i.e. , H=O+, M=~, (T),
T &T, [or p= p„.„(T) or p„,(T) for the fluid picture],
and to the critical isotherm T = T, . However, with
the aid of scaling concepts (which are tested in the
analysis) expressions have been developed for the
scattering intensity through the whole critical re-
gion of the (H, T) plane. Some of our results have
been summarized previous1. y in a short communi-
cat.ion. '

We have derived series for the square and sim-
ple-cubic lattices to order y', and for the body-
centered-cubic lattice to order y'. Independent
calculations for the fcc lattice (to order y') have
been undertaken by Ritchie. " The low-tempera-
ture expansions for the moments, etc. , to order
gg' for square, u" for sc, and g' for bcc, turn out
to be not so well behaved as those on the critical
isoch. oxe, H=O, T &T,. Thus our estima, tes of
the exponents are less precise than above T, and
the checks of the scaling predictions are not as
tight as might be desired. However, the numerical
values of various important critical amplitudes are
quite well determined (accepting the preferred ex-
ponent estimates) and, in particular, we clearly
establish that the deviations of the form of the
scattering intensity (as a function of 7 andk)from
the Qrnstein-Zernike (OZ) predictions are sig
nificantly larger below T, than above. [It was
shown in I and II that the OZ approxima. tion to the
scaling function above T, is accurate over a sur-
prizingly large range in the scaling variable ~k ~/
(T —T,)'. ]

In the bulk of this paper we describe the Ising
model in the language appropriate to a ferromag-
net. The transcription into lattice-gas models,
etc. , follows as in I. The notation of parts I and
II is retained as closely as possible, but a few ex-
tensions and modifications are described in Sec.

II, below. As in I, the standard approximate theo-
ries, namely, mean-field theory, " and the Elliott-
Marshall-Bethe approximation, "are a convenient
point of reference and comparison; they are sum-
marized briefly in Sec. III. The predictions of
scaling theory are parametric fits to the equation
of state, including cubic and quintic models, are
discussed in Sec. IV. Similar fits to the correla-
tion length as a function of H and T, and general
considerations pertaining to the nature of the full
correlation scaling functions are developed in Sec.
V. In Sec. VI we describe the methods used to
generate the series expansions of the correlation
function, and mention other ancillary calculations.
The numerical analyses on the phase boundary and
on the critical isotherm are presented in Sec. VII;
tables are presented of exponent and amplitude
estimates for the various moments on all lattices.
Explicit approximants for the susceptibility and
correlation length on the phase boundary, and cri-
tical isotherm and isochore are presented in Ap-
pendix B. The various results are summarized in
Sec. VIII where, in adddition, explicit scaling and
parametric approximants for the total scattering
intensity are constructed and discussed.

A. Mode1

The model which we discuss is the spin- —,
' Ising

model in an external magnetic field H with Hamil-
tonian

1X= —— J(R —R')s-, s-, . —mH P s-„
2

R, R

(2.I)

where sR=+1 is the spin variable at lattice site R,
m is the magnetic moment of a spin, and J(R- R')
is the exchange integral coupling the spins at
R and R'. The sums, ga run over all lattice sites.
In this paper only nearest-neighbor ferromagnetic,
J(R) &0, interactions are considered. If 5 denotes
a nearest-neighbor vector of the lattice, we thus
set J(5) = J and J(R —R') =0 if R —Rw&. By chang-
ing the sign of J our results will describe an anti-
ferromagnet in a staggered field H' =H. (See Sec.
3.1 in I.)

The behavior of the Ising model as a function of
magnetic field and temperature can most conven-
iently be described by the variables

II. DEFINITIONS AND NOTATION

The notation of I will be followed except where
explicitly indicated. The reader is referred to
Secs. II and III of that paper for a detailed discus-
sion of the notation and various other relevant fea-
tures of the Ising model.
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t = (T/T, ) —1 and k =mH/ksT, . (2.3)

K= J/ksT, L=mH/ksT, u=x'=e ', y=e '

(2.2)

which enter directly as Boltzmann factors on over-
turning spins from the fully aligned ground state.

In the critical region we will use the reduced
variables

(2.10)

This defines (,(H, T) =1/K, as the effective range of
correla. tion or the second nzoment co~xelation
length. The function A, (H, T} can be conveniently
expressed in terms of the spherical moments of
the correlation function, namely,

B. Correlation functions and scattering
p, , (H, T) = Q (H/a)'F(R, H, T) . (2.11)

We will be concerned with the spin-pair correla-
tion function, defined by

I'(R; H, T) = ( s,-s ~) —(s;)(sa), (2.4)

where ( ) denotes a thermal average, and s; is
the spin at an arbitrary origin. It should be noted
that this definition of I" differs from that in I by a
factor (1 —(s,-)(s~)). If radiation of wave vector
k, is scattered elastically, yielding a final wave
vector k&, with Ik, I

= Ik& I, then the scattering in-
tensity I(k) is a function of the transfer wave vec-
tor, k=kz —k, and is given in Born approximation
by

Then we have

A, (H, T) = p, ,(H, T)/2dg, (H, T), (2.12)

where d is the dimensionality of the lattice,
[Again, a slight difference in notation from I
should be noted. ] By the fluctuation theorem, the
reduced static susceptibility is given by

X,(H, T) = (k, T/m')yr(H, T)

= (ksT/m)(BM/SH) r = P, ,(H, T), (2.13)

where M = (s,) is the reduced magnetization per
site. [The corresponding relation in I was X,(T)
=1+p, ,(T}.]

t(k)/f, (k) = g(k) = I (k),

where the Fourier transform is defined by

r(k, H, T) = g e*" ' 'r(R, H, T),

(2 5)

(2 6)

0, True range of correlation

The "true" or exponential range of correlation,
g;= 1/K,-, in the direction e is defined by

I/$, =K, =-»m H '»Ir(He) I, (2.14)

6(R, H, T) = pe*"' 'e(R, H, T) (2.7)

and I,(k) is the corresponding scattering intensity
from the equivalent set of noninteracting spins.
[In contrast to I, where X(k) =1+I'(k), the defini-
tions of 1(k) and g(k) have been chosen to coincide;
in the subsequent discussion lt(k) and I'(k) will be
used interchangeably. ] For the purpose of calcula-
tion it is convenient to define explicitly an inverse
correlation function g(R, H, T) with Fourier trans-
forrn

which implies that for large g the correlation
function decays as exp(-K, R) in the direction of the
unit vector e. It follows immediately that z-, will
be determined by the pole (or the more general
singularity) of I (ke) closest to the real axis in
the complex k pla, ne, which must be located at k
= k2g~.

Rather than work directly with K,- or exp(-K,-a)
it is usually more convenient (see I) to define the
coefficient

defined through

g(k) =1/r(k) . (2.8)

Clearly, p(R) is closely related to the direct cor-
relation function, C(R), defined originally by Orn-
stein and Zernike. '

C. Moments and the correlation length

X(0)/g(k) = 1+A, (H, T)k'a'+ O(k'a'),

where

(2.9)

Away from the critical point the reduced scatter-
ing intensity, g(k), can be expanded about k =0 in
the form

A2(K a) =f '/2 [cosh(fK~) —1],
where f is a geometric factor which depends on e
and the lattice considered. For a tabulation of fac-
tors f for various directions e and for different
lattices, and for a more detailed discussion of A,'

and g-„ the reader is referred to I. In the case of
Ornstein-Zernike theory, A,' and A, are identical,
so that the difference (A,' —A, ) provides a direct
measure of the departure of a given system from
OZ theory. Near the critical point we expect the
correlation function to be spherically symmetric
and this will be checked explicitly. With this in
mind we drop the subscript e from the true range
of correlation, (-„denoting it by $ = 1/K.
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E. Critical exponents and amplitudes

At the critical point the expansion (2.9) fails be-
cause the effective range of correlation, . and hence
A„becomes infinite as do all the moments p, The
correlation function behaves as

and second, for the correlations

y=(2 —q)v with v= v, = v~ (p& 1). (2.28)

These correlation relations were tested in I and
found to hold to within the fairly high precision ap-
parently available. Similarly, we expect

r(k, O, 7;) = r, (k) = 8/(h a)' ", (2.18)
v =v{=up and v —vg= v~p (p~ 1), (2.27)

while in real space the correlation function be-
comes long range, behaving as

1(R,O, 7;) = r, (R) = D/(Z/a)'-'",

7= 7„ II =0, (2.17)

These relations, of course, serve to define the ex-
ponent g. The asymptotic behavior of g;a, I(.,a,
and p, , in the vicinity of the critical point depends
on how the critical point is approached; we will
consider in detail the three loci.

(a) Critical isochoye: &= 0, g & T„where the
exponents v, v„and v arid corresponding ampli-
tudes are defined as t-0+ by

((T)/a=i/«=f "t ',
(,(T)/a =1/g, a =f,'t 'i,
)t„(T) =C't ~,

).„(T)=m,'t ""»,

(2.18)

(2.19)

where t was defined in (2.3). (Note that in 1 the
amplitudes F= 1/f ' and E, =1/f,' were employed. )

(5) Phase boundary: H=o+, T &T, As t-0-.
we similarly define u' and f by

&(T)/a=i/«=f (-t) ', (2.2o)

with analogous definitions of v, , f, , C, and m,
in which y' replaces y. %e also define the ampli-
tude and exponent of the spontaneous magnetization
by'

As in I it is instructive to examine the basic
approximate theories since they yield an informa-
tive basis for comparison.

A. Mean-field theory

The general result of mean-field theory is"

1-j(k)(1- V')/h, T ' (3.1)

where the Fourier transform of the interactions is

Z(k) = Q e'" '
Z(R) = J(0)[1 —a'If'(k)/2d]. (3.2)

and, more strongly, the scaling hypotheses pre-
dict the symmetry relation,

(2.28)

and, for the critical isotherm,

u' = u/0& = ul(tl+ y)

An important aim of our work was to test these
last three relations. In fact, we have found them
to be consistent with the available data although it
unfortunately transpires that the precision atain-
able is not as good as might be hoped. In the more
detailed analyses to determine critical amplitudes
and the scaling functions, we will assume the va-
lidity of (2.28) and (2.29).

M, (T) = lim (s,) =B( t) 8. -
H~O+

(2.21)

~(0)/a=i/«=f Ih I-"
g, (If)/a=f; IhI ',
x.(fI) =c'IhI ",
p, „(a)=m', Ih I

"'~

(2.22)

(2.23)

where, using standard exponent notation, ' we have

(c) Critical isotheyypg: T = T„B+0. Finally, ex-
ponents v', v'„and v~ and corresponding ampli-
tudes are defined, as H-O, by

M(H, T) = (s,). (3.3)

By setting M=-0 the critical temperature is found
froxIl

hT, = z(0), (3.4)

and thence the asymptotic equation of state i.n the
critical region may be written

Here the second part introduces the effective wave
number X=k[1+0(h'a')] as in Eq.{2.2)of 1. The re-
duced magnetization, M, in (3.1) is defined simply
by

y'= (b -1)!b. (2.24)
h =- M(t + —', M ~), (3.5)

y =y'= P(& —1) = P&y' =(P+y)y', (2.25)

Now the homogeneity and scaling hypotheses''
predict, in the first place, that

where, as usual, the appropriate branch of the
solution for M(h, t) must be used below T,." From
this it follows that the exponents take their stan-
dard classical values P= -'„y= 1, and 5= 3 [and y'
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)((H, T) = (1 —M')(1+I)
(3.6)

from which the critical amplitudes C', C, and
C' follow [see (2.19) and (2.22)]. Finally, (3.1)
may be rewritten as

= 2 in (2.23)]. The reduced susceptibility itself may
be written

K„a = -In(1 + g,a[1 + ~(g,a)']' ' + 2 (g,a) }, (3.9)

for the square (d=2) and simple-cubic (d=3) lat-
tices along an axis; this holds for all II and T.
Evidently a,/z, 1 as the critical point is ap-
proached by any route. This conclusion follows
more generally from (3.7) when z, = I/$, -0.

zero of the denominator. We quote only the result

)((k, H, T) = X,(H, T)/[1+ (',E'(k)], (3.7)
B. Elliott-Marshall-Bethe approximation

with the identification of the correlation length via

a'(1 —M')
t', (H, T) = I/g' 2d(t+M') (3.8)

In the critical region the factor (1 —M') may be
dropped and we find p= p'=-,', p'= —,', and q=0, as
is well known. The correlation length amplitudes

f;, f, , and f; [see (2.18) et seq. ] follow easily.
The various amplitudes are listed in Table I to-
gether with certain characteristic "dimensionless"
combinations which are expected to be universal,
i.e. , to depend on dimensionality but not on lattice
structure (see Sec. IV). Also listed in the table are
the results discussed below for the Elliott-Mar-
shall-Bethe approximation, and the estimates for
the Ising model itself found in this paper, and al-

readyy

available.
The true, exponential range of correlation can

be found from (3.1) or (3.7) by locating the nearest

)t(1+xxy)' '=(x+) y)'-'.

The equation of state is then given by

M = (1 —) 'y')/(1+ 2~ay +) 'y'),

(3.10)

(3.11)

from which the critical point is, as usual, found

The Bethe approximation is of interest because
it includes one nontrivial piece of information
about the lattice structure, namely, the coordina-
tion number q. It is thus exact for a Bethe lat-
tice or infinite Cayley tree. ' Elliott and Mar-
shall" extended the approximation to discuss the
scattering intensity, but only for zero magnetic
field. It is straightforward, although fairly tedious
to extend their results to nonzero field. " To state
the result we use the variables x and y defined in
(2.2) and define the local molecular field parame-
ter A, by the solution of

TABLE I. Susceptibility and correlation amplitudes, The various amplitudes are defined in (2.18) to (2.23). The
dimensionless parameters are Q&

C'd/(B ~ 'C+——)'/~, Q&
——(C+/CC) (f~&/ft+)t ", and Q&

——8 (f&) "/C+. Data are listed for
mean-field (M.F.) theory, for the Elliot-Marshall-Bethe (EMB) approximation, and for the square, triangular, sc, and
bcc Ising lattices. For the square Ising lattice C and C are known exactly (Ref. 46). The two-dimensional Ising am-
plitudes f&+ follows from I. In three dimensions the amplitudes C are taken from Ref. 38c and represent slight re-
visions of the values used in I. Accordingly, the values of f~+ given in I [as (E+&) ] have been rederived using the values
of (w&/a), quoted in I (see Sec. 7.8). The amplitudes f~ and f&' are obtained in Sec. VII, where the value of C is also
discussed. The spontaneous magnetization amplitudes, B, are taken from Ref. 20. In three dimensions the exponent
values adopted are P=;, y=1-, v=-, and q=&-.

M.F.
d=2

c'/c- Cc

0.480 750 0.5 0.353 553 1.414 214
0.480 750 0.408 208 0.288 675 1.414 214

fc

0.346 681
0.283 064

EMB
sq
tr
sc
bcc

1.442 695
1.233 152
1.233 152
1.158 686

0.666 667
0.584 804
0.584 804
0.553 218

0.735 534
0.620 774
0.506 860
0.474 658

0.520 101
0.438 954
0.358 404
0.335 634

1.414 214
1.414 214
1.414 214
1.414 214

0.5
0.427 494
0.349 047
0.327 979

Ising
0.962 582 37.693 562 0.070 60

sq +0.000 02
0.567 02

+0.000 05
0.176

+0.005
3.22

+0.08
0.233

+0.004
0.880 23 2.88

+0.000 25 +0.02
0.413 77

+0.00010

0.9244
+0.0004
1.0585

+0.0010

0.9868
+0.0030

37.33
+0.45

5.06
+0.08

5.01
+0.05

0.069 38
~0.000 03

0.2602
+0.0020

0.2498
+0.0030

0.525 11
+0.000 05

0.478 26
+0.000 40

0.444 56
+0.000 40

0.244
+0.001

0.227
+0.005

1.96
+0.01

1.96
+0.03

0.257
+0.008

0.242
+0.010

0.880 23
+0.000 30

0.897
+0.007

0.903
+0.012

0.413 84
+0.00010

1.216 0.896
~ 0.03 ~0.005

1.2l.( 0.902
~0.04 +O.OO4
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to be

x, = exp( —2J/k~T, ) =1 —(2/q),

or

tanh(J/keT) = (q —1) '. (3.12)

is again equal to v2 a.nd the combination Q,
= (C'/C')(f;/f, ')' " still has the value unity. These
results are to be contrasted with those found for
the Ising model in two and three dimensions.

IV. SCALING FOR EQUATION OF STATE
Incidentally the equation of state given by (3.10) and
(3.11) is found to be exact to order y' for loose-
packed lattices as H- ~. For close-packed lattices
the term of order y' is exact but the y' term is
only approximate because of the presence of tri-
angles.

The equation of state in the critical region can
still be written in the mean-field form (3.5) but
with h. replaced by

2(q —2) '(in[q/(q —2)])
and the factor —,

'
by

-,'(q —I)/(q'in[q/(q —2)]) .

The critical exponents, of course, have the same
values. The reduced susceptibility can similarly
be written near the critical point as

X.(H, T) = 2

(q —2) 1n[q/(q —2) ]

In this section we recapitulate briefly the scaling
hypothesis for the equation of state with particular
reference to the parametric representations. ""
Since the zero-momentum limit of the reduced
scattering intensity y(k, H, T) is just the static sus-
ceptibility, knowledge of the equation of state is
pertinent. In particular, we have developed para-
metric forms for the equation of state sufficiently
flexible to accommodate precisely the principal
data on the critical isochore isoiherm, and op the
phase boundary.

A. Scalmg hypotheses

According to the scaling or homogeneity hypothe-
ses' "the equation of state M=II(H, T) can, when
@ and p approach zero, be written asymptotically
as

(4.1)

2(q- )

q'l"[q/(q-2)] (3.13)
or, equivalently (in the form analyzed by Grif-
fiths")

X
x+2k, y+A. xy

2
—1

qzy(l —x') (3.14)

Close to the critical point this is equivalent to (3.8)
but with the factor 2d replaced by

2 d(q —2)' ln [q/(q —2) ]/2 (q —1)

and M multiplied by the factor

2 (q —1)/q' ln [q/(q —2) ] .

The values of the amplitudes f,', f, , and f; follow
as

(f,')' = 2(f, )' = (q —1)/d(q —2)' ln[q/(q —2)],
(3.15)

(f;)' = q(q —I)/3 (2d)'~'(q —2)'. (3.16)

Numerical values are given in Table I. Note in
addition that as q- ~ the results approach the
mean-field values. Furthermore the ratio f;/f,

from which the amplitudes O', C, etc. , presented
in Table I follow immediately. Note that we again
have C'/C =2.

The reduced scattering intensity can be again
written in the form (3.7) but with

2d x(1+2xyz+z'y')
a' (x+xy)(1+A.xy)

I IsA(f/~iii8) (4.2)

By differentiation it follows that the susceptibility
can be written similarly, for example,

(4.3)

For convenience we assume here and below that
M and h. are never negative; owing to the symme-
try about H=0 this entails no loss of generality.

The functions B(z) and X(z) have different forms
for ]» 0 and t ~0 but these must match at large
arguments. ' The function A(w) [commonly known
as @(x)]avoids this matching problem. It has been
studied numerically for the Ising model by various
authors. " Its form in the mean-field approxima-
tion where 5=3 and 1/P=2 follows from compari-
son with (3.5) and is simply

A(w) =I'+-,'. (4 4)

By rescaling the variables p, 5, and M by fixed
numerical factors this form can be retained pre-
cisely for the Bethe approximation for all q. This
"universality" of the scaling function is expected
to apply also for the Ising model; i.e., subject on1$
to the parameters which alter exponents, prihci-
pally the dimensionality d, and the order paramete'r
symmetry n, the scaling functions have fixed forms
independent of details of the model. " Accordingly,
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8. Parametric representation and linear model

The simple form of scaling function (4.4) cannot
apply for more general exponent values (y w1,
P & —,'), nor can B(z) and X(z) have such explicit
forms. This follows from the stringent asymp-
totic analyticity conditions which the scaling func-
tions must satisfy in the limit of large argument
(go- ~ or z-~)." " Accordingly, a parametric
representation" which automatically ensures the
required analyticity properties is more useful. "
To this end one may introduce a "radial" coordi-
nate y o 0, which measures the distance in the

(H, T) plane from the critical point, and an "angu-
lar" coordinate 8, which specifies the correspond-
ing "direction. " Conventionally" "one takes 8=0
on the critical isochore (H = 0, T & T,).

For pure power law critical behavior one may
then write the scaling hypothesis generally" as

(4.6)

and

M =~'m(6) . (4 7)

Correspondingly the susceptibility may be written

X. =~ 'p(6), (4.8)

where p(8) is determined by k(8), l(8), and m(8).
With no loss of generality one may choose k(8)
and l(8) to be polynomials; by symmetry the sim-
plest assignment is thus"

k(8) =1 —b6' (b &I),

l(8) = fo 8(1 —8 ) .
(4.9)

The parameter 5 fixes the critical isotherm at
g g-x/2

C

The so-called linear mode/" "is then specified
by

m(8) =m, 8. (4.10)

The susceptibility angular function then becomes

p(6) =p,p(8) with p, = C'=m, /I, (4.11)

1 —b(1 —2P)8'
1 —(3+b —2P5b) 8+(3 —2P5)b8' '

If one sets 5=1+-,'m,' and /, =mo, the linear model
describes the mean-field equation of state, (3.5),
exactly. The linear model is also exact to order

dimensionless combinations such as C'/C, and

q, = C'5/(H'-'C')'«J (4.5)

should be independent of lattice structure, etc.
Evidence supporting this is exhibited in Table I.

e', with e =4 —d, for Ising-like models of continu-
ous dimensionality" d (although it fails for Hei-
senberg-like and spherical models owing to the
divergence of Xo as H -0 for T & T, in these mod-
eis15, 19)

The two- and three-dimensional Ising models,
however, cannot be described in a fully satisfac-
tory way by the linear model. This is seen most
directly"' by calculating the ratio C'/C from
(4.12); the ratio is found to attain a minimum val-
ue of (r/P)'[(I -2P)/2(x —I)]" ' at b = (r -2P)/
y(1 —2P). For the two-dimensional Ising model
(with P=-,', y=1-', ) this minimum exceeds 60.24;
in three dimensions (assuming p= —,'„y=l~) its
value is 5.264."' Both these figures significantly
exceed the entries in Table I. If, none the less,
a "best" linear model is adopted in three dimen-
sions it. should have the parameters

tf = 3: b = 1—'„ I, = 1.0516, m, = 1.1131 (sc),

l, = 1.0824, m, = 1.0681 (bcc) .

(4.»)
Note that the parameters l, and m, are scale fac-
tors which are not expected to be universal. The
universal dimensionless parameter Q, takes the
value 0.8936. . . ; unlike the ratio C'/C this does
agree moderately well with the estimate in Table
I. Despite these defects the linear model works
fairly well considering its simplicity. As a test,
one may study the derivative amplitudes defined
by

ek Xo (k+2), C, , , .z~——
gI k (0+2)

t, k=0
(4.14)

and by the analogous formula for T &T,. These
amplitudes have been estimated by Essam and
Hunter" whose results are shown in Table II. The
comparison with the linear model predictions for
the sc and bcc lattices are seen to be quite good.

C. Cubic and quintic models

In order to obtain an improved representation of
the three-dimensional Ising models and a passable
representation of the two-dimensional models it
is desirable to extend the linear model. One such
extension has been examined by Mulholland and
%idom. "' They modified the linear model by mul-
tiplying both angular functions l(8) and m(6) in
(4.9) and (4.10) by the same factor (1 —c8'). How-
ever, this seems unnecessarily complicated as a
first step in fitting the equation of state in the

(H, T) plane. (Mulholland and Widom were pri-
marily interested in the "unstable" extension of
the equation of state into the two phase region and
thus chose a form which would ensure van-der-
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TABLE II. Tests of parametric equations of state. Susceptibility derivative amplitudes calculated from the linear
and cubic models are compared with the results of Essam and Hunter (Ref. 20). Columns (a) give the series estimates
of Essam and Hunter for C&+2 defined in (4.14) together with the corresponding percentage uncertainties (quoted in
parentheses). Columns (b) and (c) show the percentage deviations from the series estimates resulting from the fits to
the linear and cubic models, respectively.

(c) (a)
bcc

(b) (c) (a)
sq

(c)

C+
8

C8

Cgp

0.5299 (0.03)

-0.1530 (0,3)

0.1366 (0.7)

-0.1722 (1.4)

0.2601 (3.3)

-0.453 (12)

0.1015 (2.4)

-0.0293 (6.8)

0.0157 (3.8)

-0.0115 (7.8)

0.0100 (18)

—0.11

+3.40

—0.11

-0.26

+ 9.66 +0.07

+17.5
+25.7

+30.0

-0.46

-0.04

-4.19

-0.89

—7.85

+3.65

+4 44

—12.10 + 10.19

-18.3 + 13.04

-26.0 +16.0

0.4952 (0.1)

-0.1385 (1.7)

0.1169 (0.9)

—0.36 -0.36

+ 1.37 -3.03

+ 8.21 -2.82

-0.1397 (1.1) +16.5 -2.93

0.2023 (3.4) +23.7

-0.330 (10) +30

-4.84

-8.18

0.0997 (0.9) —6.02 -1.60

0.0154 (7.1) —20.1

-0.0109 (9.2) —25.7

0.0093 (22)

-1.30

+2.75

+4.30

—0.0275 (2.2) -10.55 +1.09

0.4812 (0.1)

-0.1821 (1.2)

+0.02

+7.03

0.1761 (1.5) +19.5

-0.237 (11)

0.343 (18)

-0.731 (17)

+32.9

+62.4

+49.1

0.012 84 (0.5) -0.55

—0.002 91 (1.0) -6.53

0.001 45 (2.1) -22.8
—0.001 40 (13) —56.4

m(6) =m, 6(1 —c6'), (4.15)

Waals-like "loops" for 6&1.)
Accordingly, we have investigated two simpler

alternatives. The first is a cubic model in which
the linear form (4.10) is replaced by the cubic

t(6) = f,6(1 —6') (1 —c' 6') . (4.16)

This last form has the advantage that, with c'= 1,
it can represent the spherical model exactly for
d= 3.' ' ' The corresponding susceptibility angu-
lar functions are

while (4.9) is retained. "~ The second is a quintic
model in which the linear form for m(8) and the
quadratic form for k(8) are kept while the cubic
form l(6) is extended to a quintic

cubic:

1 —(b —2pb +3c)8'+bc(3 —2p) 8'
1 —(3+b —2Pbb) 8'+(3b —2Pbb) 8' '

quintic:

1 —b(l —2P) 8'
1 —(3+b —2pbb+3c') 6'+ (3b —2pbb+5c'+3bc' —2pbbc') 6' —bc'(5 —2pb) 6' ' (4.18)

d= 2: b = 1.2930, c = 0.1853, (4.19)

d = 3: b = 1.4787, c = 0.06352 . (4.20)

The corresponding values of the scale factors lo
and m, are listed in Table III. The values of b and
c in three dimensions are quite sensitive to C'/C
and Q, . We have adopted the "universal" estimates

d=3: C'/C =5.03, Q, =O.999, (4.21)

which are consistent with data for both bcc and sc.

while p, = m, /l, = C' as before.
The cubic model can accommodate the precise

estimates for both Q, and C'/C in two and in three
dimensions. We obtain the fits

However, for a large range of assigned values of
b, both Q, and C'/C can be fitted well within the
uncertainties by proper choice of c for the cubic
model in three dimensions and, to a, lesser degree,
also in two dimensions. This allows a certain
amount of freedom in choosing b, so that one can
pick that value which best matches other available
data. In fact, we have chosen the values of b and
c which reproduce Q, and C'/C exactly. By for-
tunate chance it is found that these values also
give the best agreement with the Essam and Hunt-
er estimates of the susceptibility derivative amp-
litudes as can be seen in Table II. Indeed the
agreement in three dimensions is quite remark-
able. We should note that in fitting various models
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TABLE HI. Cubic-model scale parameters l p and ynp.

Lattice Lp 82p

sc
bcc

1.3370
1.2574
1.2943.

1.2870
1.3310
1,2771

we have used amplitude estimates based on series
longer than those available to Essam and Hunter.
(For references see Table I.) This suggests, in
fact, that the error estimates assigned by Essam
and Hunter (and shown in Table II) may be some-
what overoptimistic, especially below T, Thus,
in particular, the values for C,'= O', C, = C,
and B show deviations from their results. The
amplitude fits for the square lattice above T, are
not as precise as in three dimensions but the fits
below 7.", are surprisingly good.

The quintic model may be similarly analyzed.
For three dimensions we find a fit to (4.21) with
5 = 1.2889 and c' = 0.0473. Unfortunately, however,
no solution can be obtained with the quintic model
which represents the data for the two-dimensional
lattices. Accordingly, we have restricted our-
selves to the cubic model in the subsequent analy-
sis.

V. SCALING OF THE CRITICAL CORRELATIONS

In this section we develop parametric equations
for the correlation length ],(H, 7) and discuss the

scaling theory of the full correlation function.

G(a ', 0, 0) =D, (5.2)

on].y if the prefactor has the exponent 2 —q.
An expansion of (5.1) in powers of k shows,

through (2.10), that the correlation length $, obeys
a scaling relation in the critical region. %'e may
write, in parallel to (4.3),

(h Jn) '= ~l~'=I&I'"yoy(k/I&I"),

yo=(J;) ', (5 3)

A. Homogeneity of correlation length

The scaling hypothesis for the correlations is
most genera]. ly expressed as the asymptotic homo-
geneity relation' '

I"(k, H, T) =A. "G(kA., tA'" kA. '). (5.1)

as A, , t, and k approach zero, where A. is an arbi-
trary multiplier. The assignment of exponents in
(5.1) is dictated by the exponent definitions in Sec.
Ii. Thus if we choose A. = I/kg and let f and k go
to zero we obtain the critical point behavior (2.16),
with

where again the function I'(z ) for f o 0 and t «0
must meet asymptotic conditions as & - ~ [in order
to ensure an analytic variation of ], with (T —T,)
for H &0]. Alternatively one may introduce the
parametric representation

[~,(a, T)a] ' = r '"
y,y(8), (5.4)

where y, is defined in (5.3) and k and t are still
given by (4.6). Furthermore, if the polynomial
forms (4.7) are employed, one finds that the mean-
field results are reproduced exactly by the simple
quadratic form

y(8) = 1+a, 8', (5.5)

d = 2: g, = -0.1099, (5.7)

d= 3: go = 0.4900 . (5.6)

These in turn yield new values of the amplitude f;,
namely, 0.264, 0.249, and 0,293 for sc, bcc, and

square lattices, respectively. These predictions
for the three-dimensional lattices are somewhat
improved, being about 3/0 too high. However, the
square lattice value is too high by 26/0.

In order to obtain a more accurate representation
of the available data we have adopted the quartic
form

y(8) = (I+a, 8')(I+ a, 8') (5.9)

for use with the cubic model. [See (4.9), (4.15),
(4.17), (4.19), (4.20) and Table III.] Fitting now to

f;/f, and to the dimensionless ratio

Q~=(C'/C')(fl/f;)' ", (5.10)

with (4.10), (4.12), and a, = -I +-,'rn,' and y, = 2d.
More generally if the quadratic form (4.9) is

adopted for k(8) and one matches (5.4) on the cri-
tical isochore and phase boundary one finds

(5.6)

The value 5 =1—,', appropriate to the "best" linear
model for the three-dimensional Ising models,
then yields (using Table I) the universal value a„
= -0.0644, This representation can then be
checked by calculating f; with the aid of (4.9) and
(4.13). One finds f', =0.267 and 0.251 for sc and
bcc lattices, respectively, which values lie about
4% above the direct estimates given in Table I
(and derived in Sec. VII). Considering the sim-
plicity of the linear model, this agreement is quite
gratif ying.

As explained in Sec. IVC, the. cubic parametric
model gives a better fit to the equation of state.
Since it utilizes the same quadratic form for k(8)
the relations (5.6) still apply to (5.5). However,
the new values of k given by (4.19) and (4.20) lead
to
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for which we adopt the "universal" estimate

d=3: Q, =1.21, (5.11)

A. = g, where g, (H, T) is given in terms of a scaling
function I'(z) in (5.3), and parametrically via (5.4).
This leads to our final form

(see Table I) leads to the universal parameters
I'(k, H, T) = g (H, T)D (k')„h/ i t i ), (5.16)

d=2: a, =3.7122, a, = -0.8111,
d= 3: g, = 1.1650, a, = -0.31179,

(5.12)

B. Correlation scaling functions

Starting with the general homogeneity relation
(5.1) there are many routes towards the develop-
ment of scaling forms and, thence, to the calcula-
tion of scaling function approximants. Perhaps the
simplest conceptually ' follows, as before, by
putting X =1/ka which gives

f'(k, H, T) =D(ka) ' " Z(t/(ka)' ', h/(ka) '),

while y, is still equal to (f „') '. ]Incidentally, a
[1/1] Pade approximant in e' in place of (5.9),
leads to an unacceptable pole in the physical re-
gion. ] The expression (5.9), is, of course, by no
means unique. In principle it could be checked by
estimating the derivatives of $,(H, T) with respect
to H on the isochore and phase boundary, etc. (as
done for the equation of state in Table II). Al-
though we have not undertaken such analyses we
believe that the cubic model with (5.9) will provide
a reasonable representation of the Ising model cor-
relation length over the whole critical region to
an accuracy not significantly less than that of the
data utilized.

where, with o = -I/O v and r = -P6/2 v, one has

G(x, +[yo I'(z)/a]', z [yo I'(z)/a]")
&(0, +[y. I'(z)/al, z [V. I'(z)/al') ' '

The + signs refer to t ~ 0 or t ~0, respectively,
and the appropriate form of F(z) must be similar-
ly used. Thus, D(x', z) consists of two parts
matching as z-~; for brevity, however, we will
not normally indicate this explicitly. The various
exponent relations quoted in Sec. IIE follow from
(5.16) in the standard way' ' subject only to the
nonvanishing of various limiting amplitudes. "

On the three principal loci; critical isochore,
critical isotherm, and phase boundary D(x', z)
reduces to three single-variable scaling functions'

D(x', O)„.= D'(x'),

D(x', O)„,= 5-(x') .

D(x', ~) = D'(x'),
(5.18)

D(0, z) = 1 all z,
(dD/dx') „,= -1

(5.19)

(5.2o)

The function D'(x') was studied intensively in Parts
I and II.

By considering small k$, in (5.16) we see that
the scaling function must satisfy the normalization
relations

where, using (5.2),

&(u, v) = G(a ', u, v)/G(a ', 0, 0),

(5.iS)

(5.14)

Evidently we may regard D(x', z) as a normalized
scattering line shaPe functi-on.

In order to reproduce the correct critical point
behavior (2.16) [or satisfy (5.2)] the scaling func-
tion for z- ~ must vary as

so that Z(0, 0) =1. Although this represents the cri-
tical point limit simply, it does not describe the
low-momentum, k-0 (h, t &0), limit transparently.
Since data on the low momentum limit are more
readily available and more accurate, both experi-
mentally (from low angle scattering) and theore-
tically (from series expansions), this is a fairly
serious inconvenience. Accordingly, we now de-
velop a form which is theoretically more elaborate
but which seems more practical for the representa-
tion of the series data and for analyzing experi-
mental observations.

By taking the k-0 limit in (5.1) we can write

1(K, H, T) =)t, (H, T)i-'G(k~, t ",h~'"')

(5.15)

where y, is given in scaling form by (4.3), or in
parametric form by (4.6)-(4.8). Now we choose

D(x', z) = D„(z)/x'- &,

where

(5.2i)

(5.22)

in which the dimensionless parameter Q, is de-
fined by

Q3=D(fi)' "/~'=D. (o) =D'. . (5.23)

z =h/t" =z(e) = l(e)/[k(e)]". (5.24)

Then using (4.8), (4.11), and (5.4), one can write

The data, of Parts I and II (see Table I) support rea-
sonably well the expectation that Q, should have a
universal value. We adopt the value Q, =0.899
+ 0.006.

These results may be written somewhat more
simply in terms of the parametric representation.
Thus by (4.6) we may substitute for the variable z
in favor of 0 since one has
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(5.22) a.s

(5.25)

C. Scaling function approximants

The mean-field scaling function, D(x', z)
=(1+x') ' cannot satisfy (5.21) for nonzero q. The
simplest function which will accomodate a non-
vanishing value of g is the "zeroth-order approxi-
mant" of Part I, namely,

D, (x', z ) = 1/(1 + q ') ' " ', (5.28)

with g= (1 ——,'g) ' in order to preserve the normal-

For small values of x (i.e., k-0) we expect' '
an expansion of the form

1/D(x', z) =1+x' —Z, (z)x'+Z, (z)x'+ . (5.26)

The first two terms follow from (5.19) and (5.20).
The coefficient Z4(z) measures the first deviation
from the Lorentzian line shape of the scattering
away from the critical point. We will present es-
timates for Z, on the principa, l loci. (For T & T,
estimates are implicit in Parts I and II.) Values
of p4 and p, have been calculated by renormaliza-
tion group techniques to order e'. All the coef-
ficients Z» (k & 2) vanish identically in mean-field
theory, and in the Elliott-Marshall-Bethe (EMB),
and Ornstein-Zernike approximations, so that
D(x', z) = (1+x') ', independently of z. This simple
result provides an indication of the usefulness of
the representation (5.16).

The asymptotic form (5.21) for large x ma. y
similarly be extended. One expects ' ' "''~

D(x' z) =D„(z)/x' "+D„,(z)/x' "

+D„,(z)/x' ~"~'+ ~ ~ (5.27)

as x- ~, where e is the specific-heat exponent.
The form of the correction terms in this expansion
is of considerable interest" and has recently been
the subject of an a=4 —d expansion calculation"
which confirmed (5.27) and gave explicit expres-
sions for 8'„, D'„„and D'„, (i.e. , for H=0, T&T,)
correct to order e'. The leading correction intro-
duces a term which mirrors the energy, - t' ",
in the variation of I'(k, T, 0) at fixed k as T -T,+.
This behavior has been detected in observations
of the critical resistivity of ferromagnets" but
is very hard to see directly in scattering experi-
ments. The correction amplitudes D„, and D„,
are also difficult to estimate reliably by series ex-
pansion techniques but in Sec. VIID we discuss the
estimation of the leading correction in (5.27) and
quote a numerical estimate for D„, . [It may be
mentioned that a more recent renormalization
group analysis" indicates the nature of the higher-
order terms in (5.27).]

ization (5.20). Although as shown in Part I, this
is a tolerable, rough approximation on the critical
isochore (H=O, T&T, ) for d=3, it fails more seri-
ously in nonzero field and below T„ in particular,
the predicted value of D„(z) is not accurate even
for z = 8=0, and it will be worse elsewhere.

In order to be able to match the correct value of
D„(0)= Q, above T, , Fisher and Burford (FB)~ in-
troduced the approximant

(1 p y2x2) ~&2

f)„(x')=
+ gx

(5.29)

with parameters chosen according to

(=I+zqQ (5.30)

y "/(1 + l gy') = D.(o) = 0 (5.31)

(The first condition is again required to satisfy
the normalization. ) In Part I this was shown to be
a very satisfactory approximant: in particular if
k' was replaced by the effective wave number
K'(k) defined in (3.2), and if p was allowed to be-
come temperature dependent outside the critical
region, the approximant worked well for all k and
T [In this . case, p, in (5.31) is to be replaced by

p, = P(T, ).] An especially significant feature of the
approximant D~~(x') is that the nearest singularity
(assuming g& p'), is a pair of simple poles on the
imaginary x axis at x, =wig ' '. As discussed in
I (and Refs. 2 and 26) this corresponds to the
Ornstein-Zernike decay law F(R)-e ~/R~' '~ ',
with

z= Ix. I/g„ (5.32)

(I + yl2 2)o+ 'g/2

D„(x') =
(1+y'x')(1+ y"'x')

with, for normalization,

(5.33)

and is expected to be a characteristic of the exact
scaling function. Indeed this should still be true' "
for nonzero fields, and also below T, in zero field
(except for the two-dimensional, nearest-neighbor
Ising model; see below" ). Unfortunately, if the
Fisher-Burford approximant form is tried for gen-
eral z or 8, the corresponding equation for P(z),
namely, (5.31) with Q, replaced by D„(z) from
(5.22) or (5.25), is found to have no real root on
the critical isotherm or below T, . [This is simply
because the maximum value of p "/(1+-,'qp') is
(1 ——,'q)~' ~~ ' &I, while it follows from the data of
Table I that the required values rise to 1.26 and
2.26 times this value below T, for d=3 and 2,
respectively. ]

In order to solve this problem one may adopt
a purely ad hoc approach. Thus the form
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q' =1+-,'qy" + a(y" —P"') (5.34) function should have singularities of the form

d=2: (4ix, i'+x')"', (5.37)

ys2a+ q/~i~s2o (5.35)

2K B/Pf as p (5.35)

compared with the dominant single-particle pole,
which leads to the Ornstein-Zernike decay e '"/

', as already mentioned. Fourier transfor-
mation then leads to the conclusion that the scaling

is more flexible a.nd, we will show' in Sec. VIII,
can provide acceptable fits to the data at and below

T, . As in D~(x'), the nearest singularity is a
simple pole (provided p" and p"' are less than g,
as in fact transpires). A drawback is that the num-
ber of free parameters is more than required at
first sight. However, one of the parameters can
be chosen so as to obtain the correct value of Z4.
(The higher order Z» are too uncertain numerical-
ly to be useful. ) The exponent o should be small
for reasons to be indicated shortly. (Values
around g or 2q are found to work, as shown in Sec.
VIII, but the residual arbitrariness is unsatisfy-
ing. ) A second drawback of this form is that it
cannot go smoothly over into the FB form as 8-0
(i.e. , as H-0 above T, ) unless the exponent g is
allowed to vary with 8, which seems very arti-
ficial: It would be desirable merely to have coef-
ficients, like p' and p", vary. We also expect
these coefficients to be not extraordinarily small
(since otherwise the approximant will vary with
unreasonable rapidity at large x).

A more systematic approach to generalizing the
FB approximant is to inquire more closely into the
probable singularity structure of the correlation
function, assuming that this, in turn, will be re-
flected in the scaling functions. As discussed in I,
and more generally in Refs. 26, one expects that
the "single particle" poles in I (k) at k = wig are ac-
companied by "multiparticle" branch cuts located
at +2iI(, +3iz, . . . . However, for reasons of sym-
metry the "even-particle" singularities at +2iz,
~4i g, . . . will be absent in zero field above T, .
The absence of the two-particle cut seems to be
the basic reason why the FB approximant works
so well on the critical isochore. The numerator
factor (1+p'x')" ' in D~(x') introduces a, weak
branch point at x =zip ' (which turns out numeri-
cally to correspond to about '' +7i& for d=3 and
+34ig for d=2) and thus represents the average
effects of the higher, odd branch points.

The nature of the next-nearest, or two-particle
branch point has been discussed by Fisher and
Camp" who conclude that in real space it corres-
ponds to an additive contribution to I (R) decaying
as

2 in&@ 1 +-', gx'

(5.39)

The first factor here is just the FB approximant,
to which Dz(x', z) reduces if one chooses A(z) -0
as z, 6)-0. The modification factor introduces the
desired logarithmic branch points at +2i ~x, ~,
where the poles occur at +i ~x, ~

=+i.g '~'. As be-
fore, the parameter g is chosen to preserve the
normalization which yields

(= (1 +-', qy')/{1 ——4x[1 —(ro' —1)/2(u' ln(u] }.(5.40)

Similarly, as a function of z or 6, one must satis-
fy

y "[1—z+-,'x((u' —1)/ln(u] = qD„(z) . (5.41)

If the parameter p is held fixed at its value on the
critical isochore (z = 8=0) this represents a rela-
tion between X(z) and ~(z). The parameter ~
should exceed —,

' to ensure that there are no other
singularities closer than the three-particle branch
points at +si ~x, ~

(which are not, of course, prop-
erly represented by the approximant). Subject to
thi, s, another relation may be obtained by matching
Z, (z). Of course, we could also choose to vary Q
with~ or g.

It should be stressed that none of the scaling
function approximants discussed so far reproduce
correction terms to the large-x behavior of the
form expected according to (5.27), i.e. , they will
all fail to reproduce an energy or t' ~-type singu-
larity at fixed momentum k as T-T, ." " Above
T, this defect is probably not very serious numer-
ically in most situations. Below T, (and, to a
somewhat lesser extent, at T, ) one must expect the
inaccuracies to be more significant, basically be-
cause the deviations from the Grnstein-Zernike
form turn out to be much larger. However, it is
difficult to devise simple approximants of the de-

d = 3: (4 i x, i
'+ x') 1n(4 i x, i

' +x'), (5.33)

as x-+2i )x, ( assuming there are poles at ai (x, (.
At the higher-order branch cuts the singularities
will be correspondingly weaker. [This is why one
expects a small exponent 0 in the ad hoc approxi-
mant (5.33)]; similarly one expects y", y"'c —', g
to ensure no singularities closer than the two-
particle branch points.

These considerations suggest as a possible ap-
proximant for three dimensions, the form

(I + y2 2) 'l7/2

D,(x', z) =—
1+yx'
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(5.43)

for the true ranges (which may be compared with

the estimate f,'/f, = 3.23 obtained below, and al-
ready quoted in Table I). Knowledge of f together
with an estimate of f, shows that the branch points
should be located at

(5.44)

As a matter of fact, using the approximant (5.42)
leads to surprizingly good consistency with (5.43).
However, better accuracy can be obtained by the

slightly more elaborate tzvo-dimensional approxi-
mant

(1 ~ y ~2x2) &~2

[1 y +g(I + ql 2)1/2]2 (5.45)

where, now, the correct location of the branch
point is ensured by the choice

(5.48)

In addition, the normalization conditions yield

A. = (1 + —1)@' )/g' (5.47)

Q'"/A. g' = D (5.48)

Further parameters could be introduced, in prin-

sired form and, as mentioned, not easy to esti-
mate the required amplitudes numerically (al-
though some progress is reported in Sec. VIID,
below). Accordingly, no serious efforts have been
made to remedy the defect.

We will discuss the application of the three-
dimensional approximant (5.39) in further detail
in Sec. VIII.

The behavior of the Geo-dimensional correlation
function below T, in zero field is very special"
in that the dominant decay is known exactly' ' to
be of the form e "s/H2. This corresponds to a
branch singularity of the form (5.37) rather than
to the simple poles that might have been expected. "
The absence of the simple poles means that none
of the approximants discussed above can be con-
sidered reasonable below T, . One of the simplest
possibilities with the correct nearest singularity
for takeo dimensions is'

D (x') =1/[1 —A. +X(1+('x')'~']' ". (5.42)

If ttI' and A, are chosen, as before, to match the
small-g and large-g conditions, one obtains a pre-
diction for the position of the branch points, at
x= zip' '~2. As before, this yields an estimate of
the true, exponential range of correlation. How-

ever, this information is known exactly from the
analytical solutions of the square Ising lattice. ""
In particular one finds" "

VI. CALCULATION OF SERIES EXPANSIONS

A. General considerations

The aim of the calculations described in this
section is to obtain the series expansion for the
correlation function I'(R, H, T) in powers of the
temperature and field variables M (or x) and y de-
fined in (2.2). The expansion may be written

l%)

F(R H T) =yg'~' Q Q q (R)u"~' 'y"
y=0 [=0

(8.1)

where q is again the lattice coordination number.
The upper limit l(k) is equal to the maximum num-

ber of (internal) bonds that can be formed in a
cluster of 0+1 sites on the lattice; it is less than
or equal to —,'qk so that the lowest power of M in the
sum is always non-negative; furthermore, this
lowest power generally increases with k. By set-
ting n equal to its critical value, n, = exp( —4Z/ksT),
series in the single variable y are obtained for the
critical isotherm; by setting y =1 (or H=O+) a low-
temperature series in powers of M is found for the

phase boundary. Readers uninterested in the de-
tails of the calculation of the coefficients q„(R)
may omit this whole section.

Through the Fourier relation (2.8), which is
readily programmed for handling power -series
representations, it is sufficient to know the cor-

ciple, to match Z4 but since, as it turns out, Z4
cannot be estimated numerically with much pre-
cision, this does not seem worthwhile. Again, it
must be noted that these two-dimensional scatter-
ing approximants will not reproduce the expected
energylike singularity (in this case -tin

~
t ~) in the

scattering at fixed k as 7.'- T, . This will be an in-
evitable source of inaccuracy at large z.

Various possibilities suggest themselves when
it comes to attempting to generalize (5.45) to non-
zero fields so as, hopefully, to transform smooth-
ly to the FB form as z or 6-0. In this region
above T„when d= 2, we expect the square root
branch point contained in (5.45) to correspond to
two-particle singularities at +2i ~x, ~

(with the poles
at +i ~x, ~). However, it is not clear what the rela. —

tion between pole and branch point should be below

T, in small fields. For this reason, and because
of additional numerical fitting difficulties en-
countered, with various trial forms, we will not
discuss the problem of field-dependent approxi-
mants further here. We mention, however, that
the ad I2oc approximant D„(x') of (5.33) may be used
on the critical isotherm for d=2 (where a pole is
expected to dominate). The detailed application of
the two-dimensional approximants is again post-
poned to Sec. VIII.
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%s)

g(R) 1u /2 g g c (R) 0/2 (6.2)

responding expansion for the inverse correlation
function,

F(H, T)/k~T =limN 'InZ„(H, T), (6.6)

ditions. In that case g„(N„N») for N»N„N»,
is simply a polynomial in N. The expansion for
the limiting free energy

Accordingly our basic results are presented for
the inverse correlation function (see Appendix A).

As sketched in Sec. VIB below, the series (6.1)
may be constructed directly by the method of
enumeration of spins "overturned" from a fully
ordered configuration. " This method is most ef-
fective for calculating the series in powers of M

alone, to a given order; it has been used in the
present work to obtain extra terms q» for large l
(corresponding to compact clusters of relatively
many spins). On the other hand, the general term
in yk, representing essentially k overturned spins,
involves many separated and noncompact configu-
rations which are hard to count correctly. We
have found the semi-invariant expansion for the
Ising model" "more effective in this case; the
method employed is outlined in Sec. VI C below.
This approach leads to the "high-temperature"
expansion

&(R, H, T) = y
' Q Q c,(R)K' "y,

k=o 1=o
(6.3)

in powers of Z=4/k~T Howeve. r, by expanding
u = e '" in powers of K in (6.2) (for fixed y) and

comparing coefficients with (6.3) one obtains sets
of [I(k) +1]x [l (k) +1] linear equations for the co-
efficients c»(R) in terms of the c»(R). These are
readily inverted by machine to yield the desired
expansion (6.2).

B. Low-temperature high-field expansion

As explained by Domb, "the low-temperature
high-field expansion starts with a fully magnetized
configuration in which all N spins point "up. " If
now N, spins are turned "down" to form a configu-
ration with N» unlike pairs of spins or "wrong"
bonds, the energy of the configuration for nearest-
neighbor interactions with coordination number q,
is simply

E(N„N») = ,'qNJ NmH+2N—»—j+2—NmH. (6.4)

The partition function can thus be written
tve/8 z/2-

is then obtained formally from (6.5) by retaining
only the coefficient, g&»(N„N„), of N' inthepoly-
nomial g„(N„N»).

The spin-pair correlation function (s,-sR) can be
obtained by a similar construction in which, how-
ever, the configurations of the spine at t) and R
are held fixed "up" (or +) or "down" (or -). If
the number of these configurations is
g» (N„N», R), etc. , we have

-w /8 w/2[Z (H T)]-1

with

X g N„N12R& y '
N1' , N12

(6.7)

g„'(N„N2, R) =g„"(N„N,2, R)

—2gw K~Ni2~ R)+g~ K»i2R).
It then follows that the coefficient of g~» 'y~1 in
the expansion of (s-,sR) may be found formally as
the coefficient, g&,~(N„N», R), of N' in the expres-
sion for g'„(N„N», R), which, for sufficiently
large N, is also a polynomial in ¹

(SJ,) = $~
R

I J jT

q(gp

(6.6)

This may be written

spexp K sRsR

( )
(%,%')

exp K sRsR
{R, R')

(6.9)

C. Semi-invariant expansion for the Ising model

The semi-invariant approach for the Ising model
yields an expansion in powers of K for general
field H= LksT/m We outline .the discussion of
Englert" and indicate later refinements developed
by Jasnow and Wortis, "and Wilson. "

Consider the thermal expectation of a product of
a set P of p spine at sites R, (wE-P), namely,

+1,N12

MN12~2y 1 (6.5)

where g„(N„N») is the number of distinct configu-
rations of N, overturned spins forming N12 wrong
bonds on the lattice of N spins. It is appropriate
to take a large lattice with periodic boundary con-

where the summation runs over all distinct near-
est-neighbor bonds (R, R'), while the subscript 0
denotes an expectation taken in the uncoupled
Hamiltonian with K= 0. Expansion of the exponen-
tial in powers of K then yields a graphical expan-
sion for (sp) as a sum over p rooted, weigh-ted

graphs; that is,
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(6.10)

The rules for the graphs" and the weights 8' are
the following:

(a) The sum runs over all undirected, labeled,
linked graphs G~~~ with p root points. (Multibonds
are allowed and regarded just as a collection of
distinct simple bonds or lines. )

(b) Each vertex i of a graph G~~~ is associated
with a lattice site R, , each root point (or external
vertex" i —= n = 1, 2, . . .p being associated with the
corresponding (fixed) spin site R, (wcP).

(c) Each internal vertex (non root point) i of
.degree n (i.e., at which n bonds meet, counting
each component of any multibond) is given a vertex
weight wof =M„'(L) where, for the spin- —,

' Ising mod-
el, the bare semi-invariants Mo(L) may be defined
by

M'„(L) = (d/dL)'Mo(L), M', (L) =ln(2 coshL) .

(6.11)

(d) Each root point, i, of G~~' of degree n is as-
signed a vertex weight w, = M'„„(L).

(e) Each line or bond, (i, j), of G~" is assigned
a bond weight w, , which, for nearest-neighbor in-
teractions is equal to Ks(R,. —R,.), where

s(R) = 1 if
I
R

I
= a,

(6.12)

(so that b, vanishes unless R is a nearest-neighbor
vector 6).

(f) The total weight of a, graph G~~~ is defined by

As before the product runs over all bonds of G ~

and the sum over the coordinates of all internal
vertices. Evidently the embedding constant for
the two-rooted single bond K,' is simply (K,', 2;
R„R,) = A(R, —R,), for all Z. (In the terminology
of Ref. 36 this embedding constant may be regarded
as a "free lattice constant" since, in contrast to
the definition of "weak lattice constants, " distinct
vertices of G(~) need not be embedded in distinct
vertices of Z. )

The calculation of the embedding constants need-
ed for evaluating (s-,sR) in zero field (above T,) has
been considered in detail by Jasnow. " However,
since the odd semi-invariants vanish when I.=II =0,
only graphs with internal vertices of even degree
and external vertices of odd degree are then re-
quired. For the present work graphs with all ver-
tex degrees must be included. The calculations
are simplified, however, by noting that the skele-
ton graph G~, derived from G~ by replacing all
multibonds by simple bonds, has the same lattice
constant as G~ . Furthermore, if G~ is the union
of disjoint connected components G(11, G2P2, . . . ,
the embedding constant for G(~) is just the product
of the separate embedding constants for the con-
nected components. We have thus needed to con-
sider a total of 124 two-rooted and one-rooted con-
nected skeleton graphs.

Further economy results from a simple lemma
which follows directly from the definition (6.11),
namely: if G~ =G' UG' U. . .UG' U. . . can be
dissected into a set of connected two-rooted graphs
G' with disjoint sets of internal vertices, then

(G~~~, 2; R„.. . R ) = Q (G '~, 2; R „R,),

gw, , (R, , R,.),
(i g)Ri

(6.is)

where the summations run only over the coordi-
nates R,. of the internal points of G~~~ (the root-
point coordinates being held fixed), while s(G~~~)

is the symmetry number" of G ~ .
For a given lattice 2, the expression for the

total weight can be simplified for a graph of /(G ' )
bonds to

W(G~~~; R, , . . . R~)

(6.16)

where there the sum runs over the coordinates
R„=R„,. = R, , . . . , of each root point which is not
also a root point of G ' . In an extreme case the
components G@~ will just be simple bonds K,'~ and
then (6.16) reduces to (6.15). More generally they
will be two-pieces" of G i' .

The number of graphs needed can be greatly re-
duced by introducing renormalized semi-invariants
M„(K, L). To define these we first introduce a
series of functions E (K; M„M„.. . ), the renor-
malized self -energies, defined graphically by

= (G~~~, g; R„.. . R)K'~a (6.i4) E (K; M~, M„. . . ) = Q W(G ~'~),

~(i)

(6.1V)

where the "embedding constant" is defined by

(G, 2; R„.. . R,) = Q II &(R —R,. ) . (6.15)
R,. (i g)

where (a) the sum now runs only over those singly
rooted linked graphs in which the root point has
degree nz, and which contain no articulation
points, "and
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(b) the graph weights are given by (6.13) or
(6.14) except that the vertex weight of a.n internal
vertex of degree n is now M„(in place of M„')
while the root point is assigned weight unity. (We
have departed from the customary notation where
the nth-order renormalized self-energy is de-
noted by G„.) The renormalized semi-invariants
are now defined implicitly by

M„(K, L) = exp g E (K;M„VI2, . . .. ) dL'

x Mo(L )
I '=L

(6.18)

1(R) =C(R)-

+K Q I'(R") a(R" —R')C (R' —R) .

On taking Fourier transforms this becomes

(6.19)

e(k) =I/i(k) = Ic(k)]-'-K g 8" ' ", (6.20)

If the graphs are ordered according to their num-
ber of bonds and one recalls (6.11), it is not hard
to see that these equations may be solved recur-
sively to yield the renormalized semi-invariants
as power series in K with coefficients which are
polynomials in the bare semi-invariants M„'(L).
In practice we compute the bare semi-invariants
as power series in y. The descriptions of all the
self-energy graphs of l lines, including their sym-
metry number, and the degrees of each vertex are
then read into a program which performs the in-
version and computes the renormalized semi-in-
variants as power series in y and K.

The renormalized semi-invariants could now be
used to compute the averages (s ) by modifying the
definition of the vertex weights and restricting the
summation in (6.10) to linked graphs with no artic-
ulation points. " In particular, in the sum for I'(R)
disconnected graphs cancel between (s-, s~) and

(so)(s~). Thus one requires only the single vertex,
which contributes M, 5-, ~, and those two-rooted
graphs whose derived graphs are stars. "

However, the number of graphs needed to com-
pute I'(R) can be reduced considerably by defining
the function C (R) to be the sum of only those con-
tributions to I"(R) where the associated graph G~'~

has no cut edge" (removal of which would decom-
pose G"' into two disconnected components still,
however, linked through the roots). Note that
C (R) includes a. contribution from the single ver-
tex. A little consideration shows tha. t 4 (R) must
satisfy the equation" "

which may be inverted finally to yield

e(R) =C(R) -Ka(R),
where

(6.21)

C(R) = dkeik '
R/C, (k (6.22)

U= --,'qZII (6) + (s-,)'j . (6.24)

Series for these quantities are available"' and
have provided an important check of our results.

VII. SERIES ANALYSIS

A. Critical points and exponents

In this section we analyze series for moments
of the correlation function, etc. , below T, in zero
field, i.e., along the phase boundary, and;at T, as
a function of field, i.e., on the critical isotherm.
We test the scaling predictions for the exponents
v' and v', and, assuming the scaling values for
these exponents, we estimate various critical
amplitudes. In addition we discuss the true range
of correlation below T„and test strong scaling
and the spherical symmetry of the correlation
function as T- T, —.

In all the analyses we use the exact value

in which the wave-vector integral runs over the
appropriate Brillouin zone. Thus, knowledge of
C (R, K, L) is sufficient to yield the inverse corre-
lation function 8(R, H, T), and C (R) may be gene-
rated as a sum of connected, two-rooted graphs
with no articulation points and no cut edges.

We have utilized an enumeration" of all graphs
of up to nine lines needed for the self-energies
E and the function C (R) on loose-packed lattices
(i.e. , with no triangular subgraphs); there are
287 singly rooted graphs, contributing to E, and
954 doubly rooted graphs contributing to 4 (R),
corresponding to the 124 skeleton graphs mention-
ed above. This then yields the expa, nsion (6.3) to
order A' which is sufficient to obtain the coeffi-
cients c» in (6.2) complete for k ~ 7 for the sc and

square lattices and for k ~6 for the bcc lattice. "
This corresponds to all configurations of 8 and 7
overturned spins, respectively. The series in u
for y =1 were extended, as mentioned, by using the
direct enumeration method. In this way, 13 terms
in powers of u were obtained for the sc lattice, 16
for the bcc, but only six for the square lattice. "
The results are tabulated in Appendix A.

Once the series have been generated there are
several checks available. The expansion for the
susceptibility can be calculated from

)t. = I/~(o) = I'(o) (6.23)

and the energy per spin, U, is given by
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u, = 3 —2v 2 = 0.1715728. . . , (7.1) come

for the critical point of the square lattice, ' and
the estimates

A, (u) =[),(T)/aj'= Q A., „u", (7.6)

u, =0.411985+ 14 (sc),

u, = 0.532789 a 26 (bcc),

(7.2)

(7.3)
p, , (u) =g m, „u".

n=o
(7.'7)

found by Sykes et al."b'for the sc and bcc lattices.
The uncertainties in these values (quoted in units
of the la.st decimal place) will not affect any of our
numerical work to within the precision available.
As regards the exponents, all the values

P= 8, y=y'=lc,

v= v'=1, q=-,', (4=2), (7.4)

may be regarded as exact for the two-dimensional
Ising model. ' For the three-dimensional lattices
we will adopt

P= —,', , y=y'=1-,', 5=5, v=v'= —,', =0.6428. . . ,

q =—,', = 0.0555. . . , (d= 3) . (7.5)

B. Phase-boundary exponents and amplitudes

On the phase boundary the series for the squared
correlation length and the correlation moments be-

The value of y quoted has been established numer-
ically with considerable certainty, '" "but the
scaling equality y =y' has remained in some
doubt. '" A recent study by Gaunt and Sykes" of
the diamond and fcc lattices concludes that the data
are not inconsistent with the equality but one must
then recognize the presence of additional, weaker
singularities in X, (T) below T, (probably coincident
with the critical singularity) which lead to "appar-
ent exponents" with higher values in the range
1.28-1.31. However, Gaunt and Sykes, confirm the
value'b P=+8, which, together with the estimate'b
of u (=—,') above T„cofnir ms scaling and leads to
the prediction for 6 given in (7.5). This in turn is
consistent with the numerical evidence" (although
earlier analysis" suggested a somewhat higher
value). The estimates for v and q are those of I,
which were quoted with uncertainties of +0.0025
and +0.008, respectively. These values were found
consistent with longer series" on the bcc and fcc
lattices by Fisher and Jasnow. " However, Moore,
Jasnow, and Wortis" "by studying a series of
higher a.nd lower moments (including nonintegral
orders), concluded that a best overall scaling fit
for the fcc lattice could be obtained with a value of
v lower by —,

' to 1%. Use of such a, lower estimate
for v (and, through scaling, for v') would lead to
amplitude estimates differing from those we find
by 1 or 2/o, but would not significantly alter our
main conclusions.

The coefficients X, „and m, „, m4 „and m, „are
presented in Tables IV and V.

As is mell known, the expansions in M for the sc
and bcc lattices do not converge up to the critical
point z, . Consequently, in estimating critical be-
havior one must rely on Pade approximant tech-
niques. ' ' ' In pa.rticular we have studied Pade
approximants to the exponent series

2v'*(u) = (u, -u)(d/d'u) l», (u), (7.8)

evaluating at u =7g„which provide estimates for
2 v', and the corresponding estimates for 2 v' + y'
obtained from the V,,(u) series. Selected diagonal
and near diagonal Pade approximants are exhibited
in Table VI. From these it is evident that the bcc
data are very poorly converged; one can conclude
little more than that 2v' proba, bly lies between 1.2
and 1.4 while 2v'+y' is between 2.4 and 2.7. For-
tunately the sc approximants are more regular and
we may conclude

2 v' = 1.285 + 20 (sc),
2v'+y' = 2.54 + 4 (sc) .

(7.9)

(7.10)

These values may be compared with the scaling
expectations following from (7.5), namely, 1.2857
and 2.5357, respectively. The agreement is good
although the uncertainties are significantly larger
than a.bove T, . It is interesting that the estimates
(7.9) and (7.10) together indicate a central value
y' —-1. .25 in agreement with scaling, rather than
1.30, which the direct series for y, tend to suggest
(as mentioned above). The uncertainties, however,
are still rather large.

For the square lattice the series are too short
to ana. lyze for v' and, in any case, there is essen-
tially no doubt that the value v' = 1 is exact for all
moments, especially in the light of the recent ana-
lytical work of Barouch, McCoy, and Wu. "

Accepting the exponent values (7.4) and (7.5),
amplitude estimates may be obtained as usual by
evaluating direct Pade approximants to amplitude
functions such as

(7.11)

at u =~, . Convergence for the sc lattice is quite
good: thus for m, *(u,)/u,', sample approximants
are [3/3] =0.4664, [4/4] =0.4684, [4/5]=0.4686,
[5/4] =0.4690, [4/6] =0.4689, [5/5] =0.4682, [6/4]
=0.4696, from which we adopt the estimate 0.4688
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TABLE IV. Coefficients for the expansion of A2(O, T)
on the phase boundary. (Coefficients of lower order than
exhibited vanish identically. )

sc
~2, n+2

bcc
3A2 n +3

7
8
9

10
11
12

1
9

71
542

3705

1
-1
10

—14
85

-169
884

-2390
10 212

-30 594
116134

4

0
56

-120
152
488

-2096
4308
1440

—28 008
80 868

—54 976

+7. As might be expected, estimates for m4 and

m, are subject to larger fractional uncertainties.
Considering the poor behavior of the bcc exponent
estimates, the amplitude estimates are moderately
well converged; however, the apparent precision
is appreciably worse than for the sc lattice. De-
spite their shortness, the square lattice series
yield estimates of quite good consistency. Cor-
responding "best" approximants for A, (0, T)
= ($,/u)' below T, are listed in Appendix B.

The resulting estimates for the correlation
length amplitudes f, , have already been presented
in Table I. The corresponding estimates for m, ,
m4, and m, are listed in Table VII. Also shown
in the table are estimates for m, , which is just

the susceptibility amplitude C, and the recently
calculated exact value for the square lattice. "
Comparison of the latter with an estimate based
on our short series indicates an inaccuracy of
about 9% whereas internal evidence suggests an
uncertainty of only 4 or 5/0. The corresponding
values of C' are listed in Table I, where the sc
and bcc estimates are taken from Sykes et al."
The ratios C'/C are also shown in Table I; it is
interesting to note that the estimates 5.06 and 5.01
for sc and bcc lattices, respectively, are lower
than the original estimates of Essam and Fisher '
(namely 5.40 and 5.19, respectively) and are also
in much better agreement with the expectation of
universality. (The Essam-Fisher value of 5.14
for the fcc lattice is probably also subject to re-
vision in the light of longer series. 4') It is evi-
dent from the definition (2.12), that the three am-
plitudes f, , m, , and m, are not independent. Our
separate estimates satisfy the required relation
to well within the uncertainties quoted.

c2 41 c4 64& c6 2304 (d = 2),
1 1 1

C2 61& C4 —
1201 C6 5040 V4 ~)

(7.12)

the parameters Z„Z„may be expressed as the
limiting critical values of the functions

C. Shape and symmetry of critical scattering

The expansion coefficients Z4, Z„.. . , etc. , of
the inverse scaling function, 1/D(x', z), defined in
(5.26) are a direct measure of how far the scatter-
ing line shape differs from a pure Lorentzian form
D= (1 +x') ', as predicted by Ornstein-Zernike
theories, as the critical point is approached. In
terms of the coefficients

TABLE V. Expansion coefficients for the correlation moments on the phase boundary. (Coefficients of lower order
than exhibited vanish identically. )

Square
m2 n+3 m4, n+3 me n+3 m2, n+5

Simple cubic
m4 me

Body-centered cubic

2, n+7 9 4, n+7 27m', n+7

16 16 16
272 560 1520

3248 11312 51 632
32 768 169088 1 146 752

299 072 2 124 992 19 797 824

24
—24
528

-960
8496

-21 312
125 904

24
—24

1008
-1824
23 952

-59 712
460 848

24
—24

2544
4 704

94 032
-238 464
2 417 520

96
—96

0
2880

-6144
5376

57408

288
-288

0
16320

-33 792
26 304

500 160

864
-864

0
122 688

—248 832
170 304

5 694 096

7
8
9

10
11
12

-380 016 -1401 168 -7496 016
1 813 416 8 059 080 52 263 240

-6 046 440 -27 451 752 -182 890 536
25675200 133 273 248 1 021 855392

-200 064
318720
758496

-4 698 048
10 947 744

1 699 776

—1 640 064
2 449 920
9944 640

-M 186 176
114527 712

92 047 680

-18 824 064
26 273 280

173 798 208
-824 103 360
1 712 345 760
2 854 380 480
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c4$.4(H) T)
c,p, ,(H, T)A, (H, T)

c.p, ,(H, T)
c,p, ,(H, T)A,'(H, T)

(7.14)

(7.15)

TABLE VI. Estimation of 2v' and 2v'+y' for sc and
bcc lattices.

In principle, it follows that g4 and g, can be
estimated from the values of f, , m, , m, , and m, .
However, it is found that Z, (and even more so,
Z, ) are of such a small magnitude as to be signif-
icantly smaller than the cumulative uncertainties
coming from the original amplitude estimates. Ac-
cordingly series were formed directly for Z, (0, T)

.and Z, (0, T) below T, . Various direct pade approx-
imants to these series for the sc lattice are shown
in Figs. 1(a) and 1(b). The convergence away from
T, is quite good but the functions decrease so ra-
pidly as T- T, that the resulting fractional uncer-
tainties are still very large. For the bcc and
square lattices the convergence is much less satis-
factory. Nevertheless, rough estimates of p4 may
be made. These estimates are collected in Table
VIII together with the values of g,' and g,' following
from the approximants developed in Parts I and II
for the critical isochore [but not based on direct
series extrapolation of Z, (0, T), etc. ]. Also in-
cluded are estimates made below for Z4. %ithin
the uncertainties, the figures for bcc and sc lat-
tices are consistent with the expectations of uni-
versality, i.e. , lattice independence. However,
the central bcc estimate for Z4 is of opposite sign
to that for the sc lattice t In view of the large bcc
uncertainties we discount this sign difference. The
variation above T, represents a slight ayparant
lack of universality in the scattering approximant
parameter p, introduced in 1 [see (5.29) above]
Despite the large uncertainties it seems clear that
the deviations from Lorentzian behavior on the

phase boundary (and critical isotherm) are an or-
der of magnitude larger than above T, on the cri-
tical isochore.

According to general scaling ideas the scattering
intensity should become spherically symmetric in
momentum space (or in real space) as the critical
point is approached, despite the anisotropy im-
posed by the lattice structure outside the critical
region. In I this point was investigated above T,
by examining suitable ratios of the expansion co-
efficients of the Cartesian correlation moments

„(H, T) = g (x/a) (y/a)~ (z /a) "I'(R, H, T),

r(g+-,')r(~+-,') r(-,'a +-,')
(7.18)

The normalization of S(f,g, h) is such that the
ratio has the value unity for any spherically sym-
metric correlation function. (We restrict atten-
tion to three dimensions since exact results are
available which confirm isotroyy for the square
lattice. '" "

In Fig. 2 some direct Pade approximants to the
expansions of various symmetry ratios are plotted
for the sc lattice from 30% below T, to 30% above

T, . Above the critical point all the ratios converge
rapidly to unity as T- T, so confirming the expect-
ed isotropy. Indeed the critical point estimates
deviate by only 0.3% or less. Below T, the situa-
tion is similar: apart from the (6, 0, 0) ratio,
(which is probably inaccurate close to T, ) the con-

(7.16)

where R= (z, y, z). An alternative approach adopted
here is to examine these moments as a function of
temperature (for H=0). More specifically we de-
fine the scattering symmetry ratios

S(f,g, h) = p, , „(H, T)/p, ,„(H, T)o'(f, g, h),

(7.17)

where, in terms of the gamma function 1 (z), we
have

[I-/M]

[1/1]
[2/2]
[3/3]
[3/4]
[4/3]
[3/5]
[4/4]
[5/3]
[4/5]
[5/4]
[6/3]

1.290
1.2998
1.1935
1.2562
1.2397
1.2936

{-7.014)
1.2838
1.3009
1.2842
1.2842

2.741
2.1104
2.5243
2.5312
2.5310
2.5484
2.5215
2.5495
2.4646
2.4548
2.5691

Simple cubic
2v' 2 v' +p'

[2/2]
[3/3]
[4/4]
[4/6]
[5/5]
[6/4]
[4/7]
[5/6]
[6/5]
[7/4]

1.176 2.526
1.3268 2.2423
1.2144 2.0326
1.2267 2.3814
1.1987 2.0368
1.3356 2.3717
1.4050 2.7125
1.1524 2.4296
1.0207 2.4259
1.8758 2.6756

Body-centered cubic
[I /M] 2v' 2v'+y'

sq sc bcc

mp =C 0.025 536 9. . . 0.209
+0.003

0.197
+0.002

m2

m6

0.003 24
+0.000 08

0.003 58
+0.0004

0.071 49
+0.0001

0.0876
+0.002

0.225
+0.012

0.0599
+0.0006

0.064
+0.001

TABLE VII. Amplitudes on the phase boundary.
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0 0.3 G.4
I

T/Tc
0;5 0,6 0.7 0.8 0.9

I ~ I 1 I
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7/Tc
0.5 0.6 0.7 0,8 0.9

0 4. -
ZO 0

Gt
0

l

0.1

I

0.2
I

0.3
I
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0-

0
I

0.2 0.5

pIQ. 1. pariatjon of (a) Z4(O„T) and {b) Z6(0, T} below T~ for the sc lattice according to various Pade approzimants,
indicating the deviations from Lorentzian line shape.

vergence to unity is within 0.6%. However, it is
notable that the growth of asymmetry away from
T, is much more rapid below T„an aspect of the
scattering which should be susceptible to experi-
mental test.

D. Strong scaling in zero field

(sos~)=1;(R)+E (K) gati' + ~ ~

(Note that no co~tributio~ of the form It I'~ should

appear although at first sight one might be expect-
ed; this can indeed be checked explicitly for the
two-dimensional Ising models where (t ~'

should, of course, become tin ~t ~

'. ) according
strong scaljng hypotheses2& ~2 25 the amp]j

tudes E (R) should vary as

(7.19)

(7.20)

with the relation

As explained in Sec. VB, the correlation func-
tion in zero field for fixed R (or its Fourier trans-
form at fixed k) is expected" "to exhibit a singu-
lar variation of the form It~' " as T-T, In ac-.
cord with scaling, we may take the specific-heat
exponents in three dimensions as a = n' = 8. Fol-
lowing Part I we thus write for below 7,

$(R, T) = —(s;s~) (sos q). (7.22)

The differentiation removes the constant term in

TABLE VIII. Parameters Z» measuring deviation
from Lorentzian line shape.

0.000 108 0.13
+0.07

0.075
+0.020

-5.25x].0 8

0.000 55 0,013 0.039
+0.00015 ~0.005 ~0.005

{-5~2)x10 6

+0.003

0 000 71 0 016 0 017
( 9

+0.00015 *0.030 ~0.020

Using our accepted exponent values predicts &

=0.3056 for d = 3. Completely analogous conclu-
sions naturally hold above T, where the point was
first investigated in detail by Ferer et gl." From
an analysis of the fcc series for (s;s~) = I'(R) for
(R/a) values up to vll they concluded that (=0.4 7'

*0.06. This is apparently at variance with the
strong scaling prediction (7.21).

To study the question below T, we have formed
direct Pade approximants to the series for

&=(1 —n)/v —tf+2 —q. (7.21)
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E (5) = 3.16+ 0.18 (sc), (7.23)

which simply reflects the amplitude of the spe-
cific-heat singularity, we find for the amplitude
in (7.20) the result

E, = 3.91+0.25 (sc) . (7.24)

Together with the amplitude data in Table I this
leads to the estimate

D„,/D„= -0.99 z 0.07 (d = 3), (7.25)

for the corresponding scaling function coefficients
defined in (5.27). The ratio D„',/D may likewise
be estimated as 1.74+5 which compares satisfac-
torily' with the recent e-expansion calculation of
Fisher and Aharony.

E. True range of correlation

As indicated in Sec. IID the true range of cor-
relation $-, in direction e may be found from the
location of the singularity of I'(ke) which lies near-
est the real k axis. This singularity is generally
expected to be a simple pole. ' Accordingly, we
expect yc-, = 1/(; to be given by the closest zero of
the equation

(7.20) and so, as T- T„ this function should ap-
proach the ratio E (R)/E (5). In fact, we find the
apparent convergence for $, (R) surprizingly good
up to (II/a) = &13. (The technique may also be
tested above T, ).

Our detailed findings will be reported else-
where. " The main point is that it is unreasonable
in any test of scaling not to allow for some correc-
tions to the expected asymptotic form; this is
particularly important when, as in the present
case with (A/a), the accessible range of the vari-
able is restricted. On making such allowance" we
find, in fact, that the data both above and below T,
are consistent with the strong scaling prediction
(7.21). We content ourselves here with reporting
that if we adopt the estimate"

where the upper limits I, J, and N clearly depend
on the number of available terms of the 8(R) ex-
pansion. Quite generally for Ising models, the
only nonzero coefficient of the form a„pp is appp.
This means that the expansion for cosh'-, a is of
the form

p -p
m =u' y' cosh~-, a = g g b„.u" y"', (7.30)

i=p j=p

with bpp&0. The exponents i', j', g, and h, depend
on e and on the lattice and are in general nonin-
tegral. The equation determining z-, may finally
be written

n='p

0
u ' "y ' "a„(u, y)se" =0. (7.31)

t.2
Symmetry
Ratio

~f,g, h&T'

- I.2

This can be solved iteratively to determine the co-
efficients k, , in (7.30). By way of illustration of the
form of the expansion, we mention that g =A. =1 for
(1, 0, 0), (1, 1, 0), a.nd (1, 1, 1) directions on the sc
lattice, and for the (1,0, 0) direction on the bcc lat-
tice. However, for the square lattice g =2 and k =1
for both (1, 0) and (1, 1) directions, while for the
(1, 1, 1) direction on the bcc lattice g = 1, and k = —,'.

To determine the number of terms in the (u, y)
expansion of the effective reduced second moment
A,'(e; H, T) [defined in terms of cosh', a through
(2.15)] that can be found from a given number of
terms of the expansion 8(R) is a little tricky. In
practice this is best determined by careful inspec-
tion. Part of the difficulty is that below T, there
is no clear-cut graphical prescription for expand-
ing g(R).

We have derived the effective reduced second
moment series in zero field on the sc lattice for
the two directions

[I (ke)] '=e(ke) =0.
This can be written

(7.28)

8(0) + g cosh[g-, (e ~ R)]e, (R) =0,
R~p

(7.27)

which, in terms of the truncated (u, y) expansion,
can be expressed as 0.9 - 0.9

Q a„(u, y)(cosh'-, a)" =0,
n=p

with

(7.28)
0.8

0.7 0.8 0.9
,

0.8
l.2 t.5

I
a„(u, y) = Q pa„„u'y',

j=p j=p
(7.29) FIG. 2. Pade approximant estimates for symmetry

ratios for scattering from the simple-cubic lattice.
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e, =(1,0, 0) and e, =(1, 1, 0)/W2

with the results

A,'(e„0, T) =u' —u'+10u4

—14'�'+ 93@' —201M' + ~ ~

(7.32)

(7.33)

ponent of the leading confluent correction singu-
larity. As we will see, various competing singu-
larities play a dominant role in the extrapolation
of the series on the critical isotherm.

Direct plots of the ratios p,„fA;j=A.', „/x', „,
show large oscillations, of the order +2 to 5% for
sc and bcc, and +20% for the square lattice. Es-
timates of the exponent 2 p.' based on the linear
extrapolants

+9 u —13 M +7 4 ll 5
16 32 (7.34) 2v„'= 1+ (n+ ~)(p,„—1), (7.37)

By comparison with the data in Table IV one sees
that A2 for the axis direction e„ is identical to
A, up to order M', which is the fourth nonzero
term. (It also agrees up to order y' in the field
expa, nsion. ) By contrast the corresponding expan-
sions above T, in powers of v = tanhK, agree up
to order v", the ninth term. (See Sec. 8.3 of I.)

Furthermore, the coefficient of g' in A,' differs
by less than 0.01% from that in A, . This indicates,
as concluded in I, that the true and second moment
correlation lengths are almost identical in magni-
tude in the critical region above T, . Below T„
however, the coefficients of u' in A, and A,' al-
ready differ by 10%, while those of u' differ by
19/o. Correspondingly, we must expect the ratio
$;/$, =f/f, to deviate more significantly from unity
below the critical point. Since there are only two
nonzero terms in the difference A,' —A„we cannot
estimate the ratio with any real conviction. How-
ever, if we use the approximant A,'/A, = 1
+8u'/(1+3u) we find f /f, =1.02. This agrees
better than could be expected with the estimate
following from the overall approximants to the
scattering developed below (see Sec. Vill).

F. Critical isotherm exponents

The series for the square correlation length and
the correlation moments on the critical isotherm
can be obtained by setting u =u, in (6.1) which leads
to

(7.35)

for various values of the shift c, lead only to the
conclusion that 2p' lies between 0.8 and 0.9 in
three dimensions. However, use of the means of
alternate ratios for the sc lattice suggests 0.84
+0.03. By taking the square root of alternate ratios
the square lattice series indicate 2p' =1.00+0.05.
These rather rough estimates are to be compared
with the scaling predictions following from (2.29)
and (2.24), namely,

2 p ' = —,'~ =- 1.0666. . . ,

y' =—"= 0 9333

2v' = —,', = 0.8228. . . ,

y' =-', =0.80,

(7.38)

(7.39)

Although not inconsistent with scaling the results
are not very encouraging. The ratio plots for the

p„, series display less oscillation, but for all
three lattices the corresponding exponent estimates
lie some 5 to 7/o above the scaling predictions.

Selected Pade approximants to exponent func-
tions analogous to (7.8) are displayed in Table XI.
The results for the square lattice, from which we
conclude, say, 2p'=1.05+0.02 and 2p'+y'
= 2.02 + 0.04, are in reasonable agreement with the
scaling predictions (7.38) (which yield 2v'+y' =2).
However, both the sc and bcc data suggest 2 p'
=0.86 +0.01 which appears to be significantly high-
er than the scaling prediction. The estimates for
2v'+y' are somewhat more erratic but suggest
a value exceeding 1.70, whereas scaling predicts
2v +y —1.62.

p, (y) = P m', „y" .
n=2

(7.36)
TABLE D:. Coefficients A~2 „ for the expansion of

A&(II, T ) in powers of y.

The coefficients A,', „and m', „, m4 „, and m', „are
presented in Tables IX and X. Since the series in
powers of y for all ferromagnetic Ising lattices
converge right up to the critical value y=1, it is
possible to apply both ratio and Pade approximant
techniques in the analysis of the series. Among
the former we have used a method of Gaunt to
estimate exponents, and a new method, described
in Sec. VIIQ, to estimate amplitudes and the ex-

0.142136
0.112847
0.142 551
0.114514
0.151314
0.114719
0.150398

sc
2, n

0.099 804 8
0.085 651 8
0.085 160 8
0.077 246 3
0.077 137 5
0.073 329 5
0.072 543 9

bcc
332 „

0.282 643
0.234 055
0.226 093
0.209 510
0.205 512
0.197 562
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TABLE X. Expansion coefficients for the correlation moments on the critical isotherm. (Note that yegg f ~g p P.)

C
m2, n

Square
C

m4, n
Cm6 C

RZ 2

Simple cubic
C

SZ4
Cm6 3m) ff

Body-centered cubic
9m4 „27m6 „

0.066 945
0.125 332
0.187572
0.243 820
0.310193
0.365 815
0.430 258

0.066 945
0.277 577
0.606 531
1.067 036
1.685 660
2.421 330
3.326313

0.066 945
0.810434
2.832 318
6.750 887

13.357 342
23.31607
37.547 04

0.167 497 0.167497
0.320 924 0.655 263
0.459 546 1.396 593
0.583 309 2.350 466
0.700 214 3.489 396
0.809 035 4.789 143
0.913371 6.240 476

0.167497
1.725 150
5.785 198

13.158 168
24.469 485
40.216 609
60.847 793

0.546 602
0.982 522
1.350348
1.677 718
l.984 224
2.270 141

1.639 805
6.037 434

12.226 037
19.843 268
28.718493
38.699 102

4.919416
47.775 028

151.680 924
329.598 463
591.857 057
947.048 991

ur=(1+5)y/(1+by) . (7.40)

This takes the point y=1 to se =1 but removes y
= -1 to su, = —(1+6)/(1 —5). As b increases from
0 to 1, and so, goes from 0 to -~, the oscillations
in the ratios of the so expansion quickly damp out.
In three dimensions the oscillations become quite
moderate for Q =2 or gg, = -3 and this value was
adopted for subsequent analysis. For the square
lattice 5 yy or ZU y 10, was found satisfactory.
Figure 3 shows the estimates of 2v' following via
(7.37) from the slopes of the corresponding ratio
plots for the transformed A; series. Note the
scaling predictions are marked by an arrow. Evi-
dently the transformed series are consistent with
scaling although their behavior is not very regular.
One might indeed be tempted to choose a somewhat
higher estimate such as

2v' =0.835 a 0.020 (d= 3) .

At first sight these results for d=3 seem to in-
dicate a rather clear violation of the exponent re-
lation (2.29) derived from scaling. However, we
are not inclined to take them at face value. Gaunt
and Sykes, "in their study of the magnetization on
the critical isotherm, concluded that there were
important confluent singularities at the critical
point with a rather small, and hence more dis-
turbing, exponent value. We will reach similar
conclusions below, for the correlation moments.
Such singularities are well known to slow the con-
vergence of Pade approximants and we believe they
are the cause of the apparent discrepancy with
scaling. To study this issue more closely we re-
turn to the ratio approach, which is slightly less
sensitive to such singularities.

The existence of the large oscillations in the
ratios indicate the presence of strong nonphysical
singularities near y= -i. This is confirmed by the
Dlog Pade analysis, and Gaunt and Sykes ' ob-
served similar singularities in the magnetization
series near y = -1.25 for d = 2, and near y = -2 for
d=3. Such singularities can be removed further
from the circle of convergence by application of
the Euler transformation

There is little point in quoting a similar estimate
for d= 2 since the scaling prediction is almost
surely correct there; certainly the data of Fig. 3
give no cause to doubt it. The transformed u',

series for the square lattice again support the
scaling prediction 2v'+y'=2 within 1%. The
transformed p.', series for d=3, however, still
tend to indicate higher values of 2p' but now by
only about 3 or 4/o. (The Euler transformation
has, not unexpectedly, relatively little effect on
the Pade approximant analysis. )

The transformed A; and p, ', series may also be
studied by examining the expansion coefficients of
the corresponding logarithmic derivatives. Since
yc =so, =1, the coefficients of these series should
approach 2v' and 2v'+y', respectively. In fact
these coefficients vary rather slowly, e.g. , for
the sc y(d/dy) lnA; series, from 0.924 at n =2 to
0.863 at n =6. This behavior clearly indicates a
confluent singularity at y = yc =1. If the exponent
of this singularity were known, the coefficient
limits could be estimated by plotting versus the
appropriate power of 1/n. Unfortunately, the
series themselves do not seem long enough to in-
dicate this reliably without other assumptions
(see below). If the coefficients are simply ex-
trapolated versus 1/n the exponent estimates ob-
tained again lie 3 or 4/q above the scaling predic-
tions.

[1/1] 1.0307 1,9617
[1/2] 1.0402 1,9956
[2/1] 1.0401 1.9941
[2/2] 1.0279 1,9174
[1/3] 1.0849 2,0734
[3/1] 1.0835 2, 0672
[2/3] 1.0555 2.0286
[3/2] 1.0545 2 0256

0.8967
0.8617
0.8583
0.8637
0.8639
0.8650
0.8626
0.8619

3.7784
1.7608
1.7555
1.7435
I.7494
1.7461
1.6888
1.7461

0.8659 1.6905
0.8551 1.7077
0.8547 1.7054
0.8560 1.7122
0.8561 1.7128
0.8562 1,7133

TABLE XI. Selected Pade approximant estimates of
exponents on the critical isotherm.

Body-centered
Square Simple cubic cubic

/~] 2&c 2&c+~c 2&c 2&c+&c 2&c 2&c+&c
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1/n
0.5 0.4 0.3 0.2 0.1 0

I ( I ) I J I ) I

square

1.04—

1.02—

0,88

0.86

0.84

2&n

and (1 —y)(p, ~/y')' ~" '"". The resulting esti-
mates are displayed in Table XII (where the un-
certainties quoted refer to the last decimal place).
The convergence of the approximants is not very
good as is indicated by the comparatively large
uncertainties shown (which, of course, refer
only to the apparent consistency of the extrapola-
tions and take no account of other sources of inac-
curacy). The appearance in many of the Pade ap-
proximants of close zero-pale pairs located near
y =1 is also indicative of the confluent singularities
discussed above.

A check on the reliability of the amplitude es-
timates for A;(H) and p, 2(H) ca.n be made via the
relations (2.12) and (2.13) which imply

0.82
m' = 2dC'(f')' (7.42)

0.86 — bcc

0.84 2&n

0.82—

0.80 t i&i I I

3 4 6 81020 30

FIG. 3. Estimates of 2v' following from ratios of the
transformed A2 series {a) for the square lattice and {b)
for sc and bcc lattices with ~=0. The scaling predictions
are marked by an arrow.

G. Amplitudes on the critical isotherm

To summarize the results of these investiga-
tions, it must be concluded (i) that scaling is con-
firmed in two dimensions but (ii) that most
straightforwa, rd methods of analysis suggest values
of 2v' and 2v'+ y' for d = 3 which somewhat exceed
the scaling predictions even though certain ratio
methods applied to the A; series are quite con-
sistent with scaling. However, the discrepancies
between the various approaches, and the evidence
for the presence of confluent singularities, lead
us to believe that the inconsistencies with scaling
should not be taken very seriously. In addition, it
must be noted that the present series are not very
long. Similar length series for the magnetization
originally lead to the estimate4' 5 =5.2 whereas
longer series obtained later" " lead to 5 =5, a
change of 4%.

gaunt" "has provided careful direct estimates of
the amplitude C' on the basis of longer series for
g, = p, p than available for A', and p, ', . These esti-
mates, which have a precision of better than 1%,
(see Table I), may be compared with values cal-
culated through (7.42) from m', and f;. In fact,
the values found from our Pade estimates fall
some 3, 8, and 8/o below the direct estimates for
the square, sc, and bcc lattices, respectively.
These large deviations cannot be considered satis-.
factory; they are, presumably, just another indi-
cation of the disturbing influence of the confluent
singularities. %e turn now to an alternative tech-
nique which specifically allows for such singu-
larities.

The expected asymptotic forms for g(H) and

lJ~(H) as H-0 may be written

g, (H, T, ) =f;a l P l (1 —e, lP l
~+ ~ ~ ), (7.43)

(7.44)

where p and o denote the exponents of the singular
corrections. On the grounds of universality one
would expect p = c (all p) and this will indeed be
confirmed numerically. In the case p =0 such a
singular correction has already been noticed by
Gaunt and Sykes, "in the susceptibility gp pp.
They argued for the relation g, =1 —(I/O) (=0.8
for d=3); however, o, could well be a distinct

TABLE XII. Summary of initial Pade approximant es-
timates of amplitudes on the critical isotherm. {The un-
certainties quoted are in the last decimal place. )

In estimating amplitudes on the critical isotherm
we will, as below T„assume the exponent values
predicted by scaling, given now in (7.38) and (7.39).
The amplitudes f; and m', have been estimated by
forming direct Pale approximants to the series
(1-3')(~2/3')' '" (1 -3')'" ~2/y (1 -y)" " u'/3

Lattice

sq
sc
bcc

f'C

0.235 + 2 0.0151 + Z 0.0147 +2 0.030 + 1
0.2545 + 5 0.0927 + 8 0.118 + 5 0.29 + 3
0.239 +2 0.081 +4 0.091 +3 0.21 +2
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TABLE XIII. Amplitudes and higher-order correction parameters on the critical isotherm.
(The uncertainties quoted refer to the last decimal place. )

Lattice f'C mC
2

)C
2

sq 0.233+1

0.257+2 0.56 i() 0.77+ 7

0.242 2 0.40'2~0 0.77 + 7

0.015 37 + 8

0 0997 ~20 3 6+48

0 0851 ~20 2 1+i05

0.77+ 7

0.77+ 7

"correction-to-scaling exponent. "
Various methods may be envisaged to obtain

estimates of p, o~, e'„ l~, f;, and m~ given the
(assumed) values of the domina. nt exponents v'
and y'. We have proceeded by forming the series

@[A,(ff, r, )/y]'~'"' = Q d„y",
n=j

(7.45)

2 (fe
)

1/ ee (7.47)

or, strictly, estimates for them. By (7.46) the
ratios of these differences should behave as

c„/c„,=1-p/n+ ~ ~ (7.48)

A plot of these ra.tios versus 1/n thus leads to a
'(first) estimate for p. Armed with this, a plot of
d„vs 1/n~ leads to an improved estimate off; and
the cycle can be repeated.

In practice we have worked with the Euler trans-
formed series for A; and p, ~ as discussed in tlute

previous section. This reduces the effects of the
oscillations. The initial ratio plots of the c,/c„,
are usually distinctly nonlinear so that only a

which behaves like (&;)'~" -
~h ~

' [and, analogous-
ly, (p, ,/y')'~'" '& ~]. Then, by substituting ~h j

---,'(1 —y) as H-0+ in (7.43), and using the binomial
theorem to expand in pow'ers of y, we see that for
large n the coefficients d„are expected to vary as

d„=2(f;)'"'(1—[e',/2~~'r(1 —p)]n ~ + ~ ~

(7.46)

Accordingly, a plot of d„vs 1/n~ should approach
linearity with a slope proportional to e', and an in-
tercept 2(f;)'~" at n = ~.

One m3y now plot d„against various trial powers
of 1/n and select the most linear graph to deter-
mine p, f;, and e', . The estimates for f; and
analogously m', obtained this way are an improve-
ment over the Pade results and yield estimates
for C' through (7.42) in better agreement with
Gaunt's results. Better results are obtainable,
however, by an iterative method in which one
starts with a first estimate of f;, obtained, say,
from the direct Pade approximants. One may
then form the differences

rough estimate of p (or o ) is possible. However,
after one or two more iterations good convergence
is obtained for the sc and bcc lattices w'ith sur-
prizingly linear final plots of d„vs 1/n~. The re-
sults obtained are listed in Table XIII. The dif-
ferences from the Pade estimates are appreciable
in m', and in m', . (The series for m', are too irreg-
ular to justify the detailed analysis. ) The derived
values of C' for the three-dimensional lattices
are still lower than the linear estimate but only
by 3 or 4% which is well within the cumulative un-
certainties.

Although the uncertainties in the estimation of
the exponents p and 0, for 4=3 are considerable,
the expectations of universality are confirmed both
with regard to lattice structure and to different
dependent function. The amplitudes e', and l; are
of similar magnitude on both sc and bcc lattices
but are not, of course, expected to be universal.
The large errors quoted for these amplitudes
arise from the fact that, through (7.46), the esti-
mates depend on the factors 1'(1 —p) and r(1 —o,)
which vary, very rapidly, for p and 0, near l.
Thus the uncertainties in the estimates of p and

0, propagate strongly into the estimates for e',
and l', .

The above procedures could not be applied to the
square lattice because the low-order terms are
too irregular. However, estimates of the leading
singularities could be obtained by plotting the co-
efficients of (A,/w)~"' and (p, /gg')'~'"'~'~ in the
transformed series versus 1/n; the last few points
on the plot show a clear trend which can be extrap-
olated to n = ~ with reasonable confidence. In fact,
as can be seen from Table XIII, the agreement
with Gaunt's estimates for C' is now within 0.25%
which is most satisfactory. (However, no esti-
mates of p, o2, e'„or l; can be quoted. )

Closed-form approximants for A, (H, T,) and
p, ,(H, T,), etc. , can readily be constructed from
(7.45), (7.46), and (7.43) by standard ratio tech-
niques. 'b Formulas for A, (H, T, ) on all three lat-
tices are given in Appendix B.

Finally, we have used the method explained in
Sec. VIIC to estimate the limiting shape param-
eter Z4 on the critical isotherm. The results for
the three lattices have already been presented in



HOWARD B. TARKO AND MICHAEL E. FISHER

Table VIII. It should be borne in mind, however,
that the Pade methods used do not allow for a,ny
confluent singularities in g, (H, T,) as H 0.

H. Amplitudes above T,

The critical points (7.2) and (7.3) adopted in this
work for the sc and bcc lattices are taken from the
work of Sykes, Gaunt, Roberts, and Wyles" and
are based on the analysis of high-temperature-
series expansions of great length (to orders v

and u"' for the sc and bcc lattices, respectively).
These estimates differ from those used in Part I
by only 9 parts in 10' and 2 parts in 10' for the sc
and bcc, respectively. However, use of the re-
vised critical point estimates would lead to some
changes in the estimates given in I. While we may
still adopt the same critical point exponents (as
we have done) the various amplitude estimates will
be subject to some corresponding revision. Ac-
cordingly in Table I we have quoted for C' on the
sc and bcc lattices the estimates appearing in the
published paper by Sykes et gL, "~ which are 0.2/o
and 0.5%, lower than the va. lues implied (but not
explicitly stated) in I. We must expect that the
corresponding estimates of the amplitudes (f,')'
for $', ", which is asymptotically proportional to

y, (T), will be modified in a closely similar way.
Thus the value quoted in Ta,ble I for f,' are not
those implied directly by I (by taking F, ') but are
rather calculated by assuming that the values of
the ratio

(7.49)

remain the same a,s quoted in I (in Table VII).
While it would in principle be preferable to re-
extrapolate the high-temperature series using the
new critical points, the changes in the estimates
of f,' amount only to 0.1% and 0.27%%uo and are, in
any case, just about at the level of precision of the
estimates. Any changes due to re-extrapolation
are thus almost certain to lie well within the in-
trinsic uncertainties.

Since the universal ratio Q, defined in (5.23) in-
volves precisely the ratio (7.49) the values quoted
in Table I follow from I with the revised estimates
of D presented in II. Thus the values of the scaling
function parameter p, remain those found in II.

Unfortunately, it came to our notice after the
bulk of our calculations were completed that Sykes
et al"b had subsequently revised their estimates of
C' downwards by a further 0.02%%uo and 0.07% for sc
and bcc lattices, respectively. [The revised fig-
ures were presented in the "reprints" of the pub-
lished journa, l article. However, for consistency
with Eqs. (3.18) and (3.19) of the Sykes et al. re-

print, their Eq. (4.6) should read Ar=1.0583 (sc),
0.9861 (bcc).] The change in the sc estimate would
yield almost no differences in any of the figures
we have quoted but the revised estimate for the
bcc lattices would, if adopted, cause slight changes
in some of our results, e.g. , in Table II where the
parametric equation of state is compared with the
Essam-Hunter estimates. . However, these latter
estimates are in. turn subject to revision by virtue
of the altered figures for T„etc. Furthermore,
all changes would remain within the quoted un-
certainty limits. Thus it does not seem worthwhile
to recompute our estimates for f,', etc. , using
these latest estimates.

VIII. SCATTERING FUNCTION

In this section we summarize briefly the results
found and report on the final expressions for the
critical scattering intensity.

A. Summary

The analysis of the series expansions for the
correlation function I (R, H, T) has lead to checks
on the exponent values predicted by scaling. [See
Sec. IIE and (7.4) and (7.5).] In particular the re-
lation p= v' was confirmed to within 2% for the sc
lattice. The bcc and square lattice data yield less
precision but are also consistent. Most direct
estimates on the critical isotherm in three dimen-
sions yield estimates some 3 or 4/o higher than the
prediction v'= v/P5. More detailed analysis, how-
ever, reveals the presence of important confluent
singularities (Secs. VII F and VII G) which disturb
the convergence of simple estimation procedures.
It is concluded that the data, are not actually in-
consistent with the scaling prediction. For the
square lattice the scaling relation for p is veri-
fied to within 1/o.

Accepting the scaling predictions for the expo-
nents [specifically with v= v'= —,', and q= —,', in three
dimensions; see (7.4) and (7.5)] estimates of cri-
tical amplitudes were obtained on the phase bound-
ary below T, and on the critical isochore. Most
of the amplitudes (which are defined in Sec. IIE)
are listed in Table I. Explicit approximants for
the reduced susceptibility or zero angle scatter-
ing y, (H, T), and for the second moment correla-
tion length $, (H, T), on the three basic critical
loci are listed in Appendix B. The expressions
given there for the critical isotherm also take ac-
count of the confluent critical singularities, al-
ready mentioned, which play a significant numeri-
cal role outside the immediate critical vicinity.

The estimate for the critical amplitudes enable
one to test the universality of the scaling functions
for the susceptibility, correlation length, and cri-
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TABLE XIV. Summary of universal amplitude pa-
rameter estimates [see (4.5), (4.21), (5.11), (5.23),
Tables I and VIII].

Parameter Mean field

c+/c-
q gc g/(8 6 -&C+)&/&

f&/f~
q Q+ (fg /f +)2-7}/gC

q, = g(f+)2-~/C+
Z4
f+/f+
f ~A
f'/f'

37.693 562
0.880 23
3.22
2.88
0.413 79
0.13
1.000 054
1.61

5.03
0.899
1.96
1.21
0.899
0.0133
1.0003
1.0069
1.0035

2
1

v2
1
1
0
1
1
1

(8.2)

where D(x', z) is the line-shape scaling function
[and 0 =mH/k~T„ I = (T —T,)/T, ]. The variable z
can equally well (and, in practice, more use-

tical scattering. Specifically, various amplitude
ratios are found (within the uncertainties} to take
universal values independent of lattice structure.
The estimates adopted for these universal com-
binations are summarized in Table XIV. (The un-
certainties to be attached to these estimates can
be gauged from Table I.) Comparison with the
mean-field values, also listed in Table XIV, re-
veals significant differences, many not previously
known quantitatively.

The parameters C'/C and Q, serve as a check
on thermodynamic universality. Through the uni-
versal "cubic model" parametric equation of state
introduced in Sec. IV [Eqs. (4.6)-(4.9), (4.15),
(4.17), (4.19), (4.20) and Table III], one can then
derive the a,symptotic behavior of y, (H, T) in the
whole critical region; tests of this representation
of the equation of state against previous estimates
for higher field derivatives are very encouraging.

The parameters f,"/f, and Q, likewise provid-
a check on the universality of the second moment
correlation length $, (H, T). This, in turn, can
then be represented asymptotically throughout the
critical region by using the cubic equation of state
and the quartic pa, rametric form (5.9) with con-
stants given in (5.3) and (5.12). While detailed
tests of the field dependence have not been per-
formed we believe the accuracy of this represen-
tation should be good.

The scattering intensity I(k) relative to the non-
interacting intensity I,(k) can, restating the con-
clusion of Sec. VB, now be written asymptotic@By
in the scaling form

I(k)/Io(k) = I"(k, H, T) =@~(H, T)D(x, z), (8.1)

as T-T„JI-O, and kg 0, with scaling variables

fully) be replaced by the parametric variable 8
used in the equation of state (specifically, say,
in the cubic form referred to above). The param-
eter Q, checks the universality of the line-shape
scaling function in the limit of large g. In this
limit its behavior is specified by (5.21)—(5.25)
with (5.9) and (4.17), in order to reproduce the
critical point variation

I (k)/I, (k) = I"",(k) = D/(ka)' ", (ka-0). (8.3)

The asymptotic spherical symmetry embodied
in the dependence only on the scalar variable z
was established in Sec. VII C. However it was
found that anisotropy in the scattering, reflecting
the lattice structure, sets in much more rapidly
below T, than above T,. For small g the line-
shape scaling function varies as

D(x', z) =1/[1+x' —g, (z)x'+ ]. (8.4)

B. Scattering approximants for three dimensions

The preferred approximant for the three-dimen-
sional lattices is, restating (5.38),

x l —g+g ln
21n(u 1+—,'gx'

(8.5)

The parameters p, A, and &u are to be universal
functions of 8 (or equivalently of z =h/~ t

~

8~), in
terms of which g(6) is given explicitly by (5.39)
[which ensures the small x normalization implied
by (8.4)]. In addition, to satisfy (8.3), p, z, and
&u must be related to D„(6), defined in (5.25) with
(5.9) and (4.17), by the expression (5.40); this '

The universality of Z, (z), which represents the
first deviations from the Ornstein-Zernike form,
was also tested in Sec. VII C. Although only poor
precision is attainable (see Table VIII) one may
reasonably adopt, for g, below T„ the values ex-
hibited in Table XIV.

The accuracy of the representation (8.1) outside
the immediate critical region [i.e. , for finite
(T-T, ), H, and k, ] may be improved by replacing
k in the definition (8.2) of x by the effective, lat-
tice-dependent wave vector K(k) defined in Part I
Eq. (2.2). However, for higher accuracy, further
field- and temperature-dependent modifications
would be needed to D(x', z}, which have not been
studied here. (See I for results above T, with
H=O. ) The form of the sealing function D(x', z}
was discussed in further detail in Secs. V 8 and
VC. We turn now to the application of the approxi-
mants suggested there.
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TABLE XV. Parameters for scattering approximants in three dimensions [see (8.5)].

g= ~, y =0.149, cu =18.288, g (0) =1.00062/[1 —0.16868K,(8)l.

0 0.2 0.4 0.6 0 = 0.8224 0.85 0.90 0.95 1.0

0 0.0422 0.2049 0.7554
0 0.668 0.4640 1.649 4.481

13.265 1.9367 0.4870 0
4.895 5.780 6.702 7.618

equation may be solved explicitly for A. (8). As ex-
plained in Sec. VC, the approximant (8.5) displays
a dominant pair of poles at x =rig ' ' which are al-
ways expected to be present. In addition, at the
"two-particle" singularities at +2ig 't', the ap-
proximant introduces the expected logarithmic type
singularity; this, however, should be absent in
zero field above T„so that we require A. (8) -0 as
8-0. In this limit (8.5) reduces to the Fisher-
Burford (FB) form found to be successful in I. The
remaining singularities at x=+i@ ' and +2iwg ' ',
should lie no closer to the real axis than at +3ig ~',
and represent, in approximation, the infinite set
of "multiparticle" singularities which should occur
at ~nip ' ' with n = 1, 2, 3, . . . .

Unfortunately the data derived by series analysis
in Sec. VII are not nearly extensive enough or suf-
ficiently accurate to warrant the full freedom re-
maining in (8.5). In addition to the value of the ex-
ponent g, we may utilize the data for Q, and p4 in
Table XIV. One might also use Z4 and Z4 but these
are not known with sufficient independent reliability
to be worthwhile. The same applies to g, , etc.
For this reason„as mentioned in Sec. VC, we will
hold p fixed at the value required on the critical
isochore (8=0). This should be quite satisfactory
since, in any case, owing to the smallness of q
the effects on D~(x2, 8) of changes in P will be
slight. Now consider the remaining parameters ),
and cu'. one can easily see that the mixing param-
eter A. must play a major role as 0 varies from 0
to 1 since it determines the relative amplitude of
the second singularity and can respond directly to
the variation of D(8) in (5.40). On the other hand
the approximant is fairly insensitive to the value
of ~. Accordingly we have fitted A. and (d at 6) =1
to g, as well as 'D(8); then, for general 8, we
have held co fixed at the value found and simply
solved (5.40) for A, (8). The resulting values of p
and &u, g(8), and a short table of A, (8) are present-
ed in Table XV.

From this table we first note that p
' &6 and

2~ &8, so that the additional weak singularities do
indeed lie beyond the "three-particle" branch
point. Secondly, from the values of P we can ob-
tain, as explained in Sec. IID and VC, estimates

0 0.6
1.3

1.5 2
X

3 4 5 7 ~

E-1.258

1.2 n
D (x}

Do(X }
+1.122

1.0

0.8—

1.000
T&Tc

~0.925
O.Z.

l
I

07 & I i I & I & I i I & I & i g I i I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X2/(p+ x2}

FIG. 4. Plots of approximants for the scaling functions
&(x2) for the critical scattering reduced by the zeroth-
order approximant Dp(x ) = (1+ Px2) ~, on the criti-
cR1 1sochore (T&T&) cr1tlcRl isotherm p =- +&) Rnd
phase boundary (T&T,), for three-dimensional lattices.
The dashed line, which meets the right-hand ordinate
axis only Rt D/IJp =0, represents the Ornstein-Zernike
approximation. The dotted curves below T derived from
the ad koc approximant (5.33) with 0.= 2 g (see text).
The variable x /(3+ x ) is introduced purely for graphi-
cal convenience.

for the relative amplitude of the true or exPonen-
tiat range of correlation The. ratio f/f, above

T, is extremely close to unity as already observed
in I (although the present numerical estimate for
d=3 supercedes that reported in I). Below T, the
deviation from unity is an order of magnitude
larger, but still amounts to less than 1%. The val-
ue found is also in quite reasonable accord with
the rough direct estimate, f /f, =1.02, made in
Sec. VIIE. In this connection it must be realized
that the deviations of the ratios f/f, from unity are,
even optimistically, subject to uncertainties of 30
to 40% since they derive numerically rather direct-
ly from the corresponding Z, (8) estimates (see
Table VIII).

In order to appreciate the nature of the scatter-
ing intensity predictions following from (8.5) the
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p"=4g', which ensures that the second pair of
singularities occurs at the expected two-particle
branch points (relative to the single-particle poles
at x=ai ~x, ~). From the value of g follows the
ratio f'/f; quoted in Table XIV. This deviates
significantly from the mean-field value but great
reliability cannot be placed in the precise value.
The residual singularities in (8.6) are located, for
the values (8.7), at +3.08i [x, (

and +10.69i ~x, (. It
is evident from Fig. 6, which is again a plot of
the scaling function D(x') reduced by D, (x'), that
the deviations from Ornstein-Zernike behavior
exceed 10%%uo even for x as small as 2.8. If suitable
two-dimensional experimental systems can be
found (e.g. , absorbed submonolayers) such large
deviations should be relatively easy to detect.
(Note that the vertical scale in Fig. 6 is com-
pressed by a factor of 4 relative to Fig. 4.)

On the critical isochoxe helot T, we adopt the
approximant (5.45), namely,

(1 + ~ i 2 2) q/a

tl —Z+z(1+ |)'x')"']' ' (8.8)

As explained in Sec. VC, this exhibits the correct
form of dominant square root branch points which

by choice of g', can be made to lie at the exactly
known positions. "" The normalization conditions
and the fit to D„' then lead to the parameter values

y' =0.441, x =0.3952, q' = 2.592. (8.9)

200

The consequent, exceptionally large value of the
ratio f /f, = g" ' shown in Table XIV seems to be
associated with the vanishing of the single-particle
pole in the two-dimensional scattering intensity on
the phase boundary (see Sec. VC). Regretably, the
present calculations do not indicate how rapidly the
ratio varies when a nonzero field is switched on.
The second pair of singularities of the approxi-
mant (8.8), with (8.9), lie about 3.65 times further
from the axis than do the dominant branch points.

As evident from Fig. 6 (which again supercedes
the figure in Ref. 9) the deviations from Ornstein-
Zernlike behavior are still larger below T, than
on the critical isotherm. Thus at x =2 the devia-
tions already exceed 30%%up. The dotted curve in
Fig. 6 is derived from the simple one-parameter
approximant Dc(x') [defined in (5.42) and intro-
duced in Ref. 9] which is fitted only to the value of
D„. The corresponding parameters ~ = 0.3933 and
g' =2.907, lead to the rough estimate f /f, =1.705.
Comparison with the best estimate in Table XIV
is most encouraging, considering the simplicity
of this approximant.

0 06
I

2.2-
1.5

I

3 4 5 7 m
+2.259

150

2.0-

1.8-

1.6-

1.4-
100

1.2—

1.0 1.000

0.8— 50

0.6-

0.4-
I

0 0.1

s I I I I I i I I I I I & I & I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X /(3+X )

FIG. 6. Plots of the reduced scaling function approxi-
mants for two-dimensional lattices on the critical iso-
chore (T&T ), critical isotherm (T = T ), and phase
boundary (T &T~). The dashed line represents the Orn-
stein-Zernike approximation. The dotted curve below
T, is calculated from the simpler, one-parameter ap-
proximant (5.41). Note the change of vertical scale
relative to Fig. 4.

0 s & I I I I I I I I I I

0.96 0.98 1.02 1.04 1.06
T/T,

FIG. 7. Variation of the reduced scattering intensity
with temperature for two-dimensional lattices according
to the asymptotic scaling approximants at fixed k„a =k,a.
Note that the small "shelf" just above T, on each curve
is an artifact of the approximant. The true behavior is
indicated by the dotted curve on the plot for k„a =0.07.
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TABLE XVI. Coefficients c'&& (R) in the expansion of the inverse correlation function, p(R),
in powers of u and y for the square lattice, where R=(x,y)a [see Eq. (6.2)].

(0, 0) (1,0) (2, 0) (1,1) (3, 0) (2, 1) (3, 1) (2 2)

0 0

1 0
1 1

2 0
2 1
2 2

3 0
3 1
3 2
3 3
3 4

4 0
4 1
4 2

4
4 5

5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7

6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8

7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10

0.25

1.5
—1

-0.25
0
0.5

3
-6

2

2
-1

—19.75
58

—60.5
28
-7.75

2

130
—473

654
-421

126
-23

10
—3

-876.25
3764

-6392
5298

—2014.75
104
162.5

54
8.5

6055
—29 972

60 590
-63 018

33 821
-6708
—1612

1008
-206

54
—12

0.25
-0.25

0.5
—1

0.5

5.5
-5.5

2.5
-0.5

9.5
—29

29.5
—8

4
2

—52,5
188.75

—244.5
117.75
13.5

—32.75
11.5
-1.75

319
-1349

2210
-1685

506.5
20
0.5

—31
9

—2062
10 088

-20 028
20 290.5

-10609.5
2440
—301

361
-232

60.5
—7.5

0
-0.5

3
-7.5
10
-7.5

3
-0.5

0

-22
48

-50
20

6
-8

2

—0.75
-20.5
124

—266
231.5

25
—227

206
-92.75

23.5
-3

—0.25
1

-1.5
1

-0.25

1

2
2

-3
1

13
-5

—21
31.5

—19
6

-1
22.5

—71
40
98

-154
61
22

-24
5.5

-121.75
436

-374.5
-423

916.25
—368
-317

386
-168

39
-5

0
0

-0.5
4

-14
28

-35
28

-14
4

—0.5

0
—0.25

1.5
-3.75

5
—3.75

1.5
-0.25

0
2

-11
24

—25
10

3

1

-0.5
-9.25
58

-122
93
47.5

-152
132
—60.5

15.75
—2

0
0

-0.25
2

-7
14

-17.5
14
—7

2
—0.25

-0.25
2

-7.5
18

-31.5
42

-42
30

-14.25
4

—0.5

As stressed before, none of the closed-form ap-
proximants developed here gives a correct repre-
sentation of the energy like singularity (-tin ct ~

for d=2) to be expected in the scattering function at
fixed wave vector as T- T, . In three dimensions
this defect is not easily detected numerically un-
less a very large scale is used. However, in Fig.

7, which exhibits I(k)/I, (k) vs T according to (8.1)
for fixed kg, the defect is apparent as a small
"shelf" on the plots just at and above the critical
point. This shelf is purely an artifact of our ap=
proximation procedures; the true variation should
exhibit a vertical slope at the critical point as in-
dicated roughly by the dotted portion of the plot for
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TABLE XVII. Coefficients cz& {R) in the expansion of the inverse correlation function, g(R), in powers of u and y
for the sc lattice, where R =(x,y, z) a fsee Eq. (6.2)].

(0, 0, 0) (1,0, 0) (2, 0, 0) (1,1, 0) (3, 0, 0) {2,1, 0) (1, 1,1) (3, 1, 0) (2, 1,1) (2, 2, 0)

7
7
7
7
7
7
7
7
7
7
7
7
7

0
1
2
3

5
6
7
8
9

10
11
12

0.25

2
-1.5
-2

3
-0.75

17
-39

24
1

~3

-156.75
492

—537
213

0.75
—12

1552
-6084

9066
-6121

1572
36

6
—27

—16 205.5
76 011

-142 715.25
133492
—60 825

8994
1291.25

120
—148.5
—14

175 820
-959 454
2 170 128

-2 587 816
1 683 453
—523 137

21 444
20 115
-405

226
-372

0
~2

0.25
-0.25

0.5
-1

0.5

—3.5
10.5

—11.5
5.5

-1
28

-100
133.5
-79

17.5
0

-260.5
1108

-1839
1440.5
-451.5
-50

63
-10.5

2621.5
-13015

26 181.5
—26 622

13263
—1672
-1143

398
-6
-6

-27 757
158 035

—375 527
474 174

—328 605.5
106 655.5

751.5
—8269.5
-266

941
-131

0
-1

0
—1

6
—15

20
-15

6
—1

0
16

-100
264

—380
320

-156
40
-4

0

-6.5
-159
1228

-3652
5825

-5354
2654
—388
—270.5

145
-22

0
0

-0.25
1

-1.5
1

-0.25

2
-8
12
-8

2

0

-19
84

-139.5
94

4
-42

22. 5

189.50
-937
1790

—1490
159
644

—462
106

3.5

—1962.5
10 868

-24 025
25 214
—8909.25
—6271

6948.5
—1403
--861.25

462
-60

0
—0.5

0
0

-1
8

-28
56

-70
56

-28
8

-1
0
0

0
—0.25

1.5
-3.75

5
-3.75

1.5
-0.25

0
4

-25
66

-95
80

-39
10
—1

0

-2.5
-34.75
295

-892
1409

—1233.5
506
50

-150.5
62.25
-9

0
0

—0.75
3

—2.25
—7.5
18.75

-18
8.25

—1.5
12

—49.5
39

132
—351

363
—183

36
3

-1.5
-154.25

697.5
-739.5

-1532
5063.25

—5811
3000
-204
-516.75

225.5
—28.5

0
—0.25

0
0

-0.25
2

14
-17.50

14
~7

2
-0.25

0
0

-1,25
8

-22
38

-59.50
98

—133
122
-69.25

22
—3

0
0

-0.25
2

-7.5
18

-31.5
42

-42
30

-14.25
4

-0.5
0
0

ha=0. 07. (This effect was not visible in the cor-
responding plots of I because of the smaller scale
used there. ) To correct the error one would have
to undertake further study along the lines indicated
in Sec. VIID where the strong scaling hypothesis

was tested in just this domain.
Finally it should be noted that Fig. 6 and 4 rep-

resent only the asymptotic scaling form (8.1) but
with y, (T) and $,(T, H) expressed through the rep-
resentations presented in Appendix B. Owing to
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TABLE XVIG. Coefficients cz&(R) in the expansion of the inverse correlation function,
p(R), in powers of u and y for the bcc lattice, where R=3 (x,y, z)z [see Eq. (6.2)j.

(0, 0, 0) (1,1,1) (2, 2, 2) (2, 0, 0) (2, 2, 0) (3, 1,1) (3, 3, 1)

0 0

1 0
1 1

2 0
2 1
2 2

3 0
3 1
3 2
3 3
3 4

4 0
4 1

4
4 4
4 5

6

5 0
5 1
5 2

5 3
5
5 5
5 6
5 7
5 8

6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10

0.25

2.5
-2
-4.75

8
-3
44

-100
56
12

—12

-513.5
1610

-1704
572
80.5

—30
—15

6605.5
-26132

38 876
-25 548

5943
44

408
—156
-40.5

-90127.5
428 334

-808 872
749 312

-325 320.5
37 870

7525
1356
417

-368
-126

0.25
—0.25

0.5
—1

0.5
—6.5
21,5

-26.5
14.5

70
-266

378
—232

39.5
15
—4.5

—845
3712

-6247
4651.5
—865.5
—766

387
-13.5
-13.5

11 056.5
-56187
114 027

-112 781
48 053.5

2332
—7399.5

69
904.5
-30
-45

0
45

27
—67.5

90
-67.5

27
—4.5

0

0
88.5

—547.5
1410

-1920
1419
-471
-30

60
—7.5
-1.5

-1.5
6

—9
6

-1.5
15

-60
87

-48

12
-3

—162.25
682

-979
302
611.5

-670
227
-2
—9.25

1924
—8980
14883
—7048
-8061
11484
-4039
-792

669
—8

-32

—0.25
1

—1.5
1

-0.25

2.5
—10

14.5
—8
-0.5

2
—0.5

-27.75
110

-127
—50
239

-212

4
—2.25

339.5
-1465

1880.5
674

-3986.5
3814

-1176.5
-282

217
—5

—10

0.25
-6.25
31.75

-73.25
91.25

-62.75
21.25
—1.75
-0.5
-5

122
—631
1484

—1858
1208
-262
-124

71
-2

0
-0.25
1.5

—3.75
5

-3.75
1.5

-0.25
0

0
5

—31
80

-109
80

-25

5
-1

0

the small ranges of ~T/T, and ka displayed, the
corrections to the leading behavior will, however,
be negligible on the graphical scale. Nevertheless,
as mentioned above, greater accuracy away from
the critical region can be obtained by replacing k

by the effective wave vector K(k).
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APPENDIX A: EXPANSION COEFFICIENTS

Values of the nonzero coefficients c„(R) in the
expansion (6.2) of the inverse correlation function,
6(R), are given in Tables XVI-XVIII: all the num-
bers presented are exact. We quote the values on
a set of topologically inequivalent sites. For a
given lattice, - Z, this is a minimal set of points
{S)such that the entire set of points of Scan be
generated by the group of homogeneous symmetry
operations of Zon{S). From these data the cor-
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TABLE XIX. Nonzero higher-order expansion coefficients q» (R) of the correlation func-
tion I'(R) for the square lattice.

2qk —E k E (0, 0) (1,0) (2, 0) (1,1) (3, 0) (2, 1) (4, 0) (3, 1} (2, 2) (4, 1) (3, 2)

8 12
8 11
9 13

10 15
11 17

36 24 12 16
2592 1584 704 1136
1200 780 384 560

352 240 128 176
96 68 40 48

192
96
32
12

8
512 16
284 8

96
28

128 192
64 128
24 48

8 16

32
20

8

relation function I"(R) and specifically, the coef-
ficients q»(R) defined in (6.1) can be calculated
completely for k «7 on the sc and square lattices,
and for k ~6 on the bcc lattices by using relation
(2.8). However, the low-temperature grouping in
powers of u is complete only up to n = —,'qk —l =3, 9,
and 14 for the square, sc, and bcc lattices, re-
spectively. The additional nonzero coefficients
q„(R) needed to complete the low-temperature ex-
pansion for I'(R) up to order rI = —', qk —l = 5, 12, and

15, respectively, are listed in Tables XIX-XXI.
These were evaluated directly using the techniques
explained in Sec. VIB.

Part I Egs. (9.12), (9.13), and Table XX, which
give explicit approximants for In[r, (T)/a], where
r, (T) is the effective interaction range (which
parameter has not been employed in this part).
The reduced susceptibility may then be obtained
from the relation (6.24) of I, na, mely,

X.(H, T) = (&,/r, )'-", (B3)

which, indeed, serves to define r, generally. Note
that the modified p, estimates reported in II do not
affect these results for $, and ~. However, these
expressions do utilize the critical point estimates,
(8.1) of I, na. mely,

APPENMX B: APPROXIMANTS FOR SUSCEPTIBILITY
AND CORRELATION LENGTH

v, =0.218150 u, = 0.411950 (sc),
= 0.156172, = 0.532676, (bcc), (B4)

In this Appendix we record closed-form approxi-
mants for the reduced susceptibility or zero angle
scattering intensity

X,(H, T) = q, (H, T) = I (0, H, T), (B1)

and for the squared second moment correlation
length

[(,(H, T)/a]' = A, (H, T) = p, (H, T)/2d p, (H, T), ,

(B2)

(defined as in Sec. II), on the phase boundary below

T, (H= 0), and on the critical isotherm (T = T,),
for the square, sc, and bcc lattices.

As regards the critical isochore above T, (H = 0),
explicit approximants for ln(g, a)' = -21n[$, (T)/a]
are given in Part I Egs. (9.3), (9.4), (9.8), and
Table V for square, triangular, sc, bcc, and fcc
lattices. These expressions may be combined with

~(s) =1.0161(1—s) '"+0.0590(1 —s) ""
+0.5610(1 + s)' "'+C, ,(s), (B5)

which differ from those adopted here"' [in (7.2)
and (7.3)] by 9 parts in 10' and 2 parts in 10', re-
spectively. For most practical purposes these
differences will have little effect, if in particular,
the values of v, following from (7.2) and (7.3)"'
are used in (9.3) and (9.4) gf I. IFor X,(T) an al-
ternative and more accurate procedure is to use
approximants developed by Sykes, Gaunt, Roberts,
and Wyles" [their Egs. I (3.12) and II (3.18)(3.19)]
whose critical point estimates we have adopted.
Unfortunately, the approximants quoted in the pub-
lished journal article are incorrect for the three-
dimensional lattices. They were, however, cor-
rected in the subsequent reprints and are restated
here for convenience:

TABLE XX. Nonzero higher-order expansion coefficients q&&(R) of the correlation func-
tion 1 (R) for the sc lattice.

2qk —l k l (0, 0, 0) (1, 0, 0) (2, 0, 0) (1,1,0) (2, 1,0) (1, 1,1) (2, 1,1) (2, 2, 0)

11 8 13
12 8 12
12 9 15

864
4508

960

416
1968
480

224
1016

256

16
168

32

120
560
144

8
80
16
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TABLE XXI. Nonzero higher-order expansion coefficients q&&(R) of the correlation func-
tion F(R) for the bcc lattice.

(0, 0, 0) (1,1,1) (2, 2, 2) (2, 0, 0) (2, 2, 0) (3, 1, 1)

2016 720 512 160

4', ,(s) = -0.6360 —0.4669 s +0.0200 s'

—0.0095 s' —0.0006 s' —0.0021 s'

—0.0004 s' —0.0009 s' —0.0003 s'

-0.0004 s -0.0001 s' -0.0002 s",

which reproduces the exactly known coefficients of
the low-temperature series and is consistent with
the amplitudes given in Table I. The appropriate
coefficients a, and b are presented in Table XXII
for sq, sc, and bcc lattices. Similarly we write

for the sc lattice, and

[~,(T)/a]' = A, (O, T)

=u " 'Pt(u)]'"/(u, -u)'", (B12)

(B7)

(B8)

g (s) =0.9660(1 —s) '"+0.1825(1 —s) '"
+0.5359(1+s)' o7'+4, ,(s),

4', ,(s) = -0.6846 —0.4732 s -0.0072 s'

—0.0125 s' —0.0023 s' —0.0037 s'

—0.0013 s —0.0014 s' —0.0006 s'

—0.0005 s —0.0002 s' —0.0001 s",

where the amplitude function is given by

B(u) = Q P,u' Q q u (B13)
g=0 m=0

Suitable coefficients p, and q are listed in Table
XXIII.

On the critical isotherm (T= T, ) the ensceptibity
of the square lattice may be approximated by

for the bcc lattice. We have defined

s = v/v, = tanhK/tnnhK, . (B9)

0.1352'
xo(&, T.) = (1;i4ii.-+X'(v)

1 —gj

while in three dimensions the form

(B14)

On the phase boundary below T, we can write

Xo(T) =u"[X(u)] /(u, —u), (B10)

where q is the coordination number, while the
amplitude is represented by the Pade approximant

Xoy X,yo(, T)=(1 ), —
(1 )o „X(y),

where y' = 4, and

(B15)

)=0 =0
X(u) = Qa, u' Q h u (B11)

= 0.4350, = 0.6000 (bcc),

X;= 0.4530, X;= 0.9340 (ec),

(B16)

TABLE XXII. Nonzero coefficients a& and b for the approximant X(N) for the reduced
susceptibility below T [see (810) and (B12)].

a&

bcc
br

7
8
9

10
11
12

0.378 864
-3.525 03
10.3562

-10.6506
3.641 34

1
-8.047 22
17.4147
-3.654 42

-16.2533
12.7754

0.411985
-1.441 21
-1.146 49
-6.90747
-3.388 81
16.7603
1.823 62

-9.696 46
44.3908

1
5.925 48
1.999 92

-34.2948
-29.8931

61.6797
80.1663

-23.9523
-18.2269

0.532 789
2.518 95
5.267 34
0.556 291

-11.4943
-19.1338
-12.0624

-13.1656
57.6710
46.6145

—163.979
—155.531

1
6.604 77

22.2830
30.0673

-11.2566
-115.504
—127.713

—8.853 91
105.744

78.4168
4.769 68

-7.792 16
-1466.08
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TABLE XXIG. Nonzero coefficients p& and q for the approximants R(u) for the squared
correlation length below T, Isee (B12) and (B13)].

sc

0.171573
7.720 67

—10.705 46
6.793 91

0.411985
11.0636
30.6694
39.0192
16.6143

-S2.9380

1
30.0595

161.2060
351.3013
381.2285
30.40S3

0.666 393
1.205 32
3.645 94
1.13068

10.5505
9.200 45

-19.929 94

1
4.463 42

15.9468
26.8846
57.4373
72.9269

122.6957

while for each lattice X'(y) is a finite polynomial
which is chosen to yield the correct values for the
known expansion coefficients. Its coefficients, g„
are listed in Table XXIV. The complex form of
these expressions allows for the confluent critical
singularities discussed in Secs. VII F and VIIG.

0.1137@ 0.0173~
(1 )

16~15 (S17)

Similarly for the correlation lengths we may write
for the square lattice

TABLE XXIV. Nonzero coefficients x& and e& for the
polynomials X~ (y) and E (y) entering the approximants
for Zo and g& on the critical isotherm Isee (B14) and
(B19)l.

while in three dimensions

+0/ +1/
($a/&) (1 )2" —

(1 )o. o53

sq bcc
e&

1 -0.0175 0.0111
2 +0.0002 0.0088
3 —0.0118 0.0000
4 —0.0017 0.0037
5 -0.0058 0.0038
6 -0.0013 0.0000
7 —0.0043 -0.0003
8 -0.0022

0.7607 0.0597
0.0362 0.0004
0.0056 0.0002
0.0050 -0.0003
0.0005 -0.0005
0.0005 -0.0001
0.0001 —0.0005
0.0002

0.4693 0.0392
0.0305 0.0000
0.0031 -0.0010
0.0023 -0.0000
0.0000 -0.0007
0.0003 0.0002
0.0000

= 0.1036, = 0.0486, = 0.0047 (bcc),

Again, the functions E'(y) are polynomials whose
coefficients, e„are also listed in Table XXIV.

where v' = 72/175 = 0.4114. . . , and

I' ' = 0.1168, F;=0 0767 E' =0.0068 (sc),

*To whom reprint requests should be addressed.
A. Munster, Fluctuation Phenomena in Solids, edited
by R. E. Burgess (Academic, New York, 1965).

2Belevant reviews are: (a) M. E. Fisher, J. Math. Phys.
5, 944 (1964); {b) M. E. Fisher, Rept. Prog. Phys. 30,
615 (1967); (c) M. E. Fisher and D. Jasnow, The
Theory of Correlations in the Critical Region (Aca-
demic, New York, to be published).

3The theory of neutron scattering is surveyed by W. Mar-
shall and S. W. Lovesey, The Theory of Thermal Neu-
tron Scattering (Oxford U. P., 1971).

4M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583
(1967); note the corrections, etc., given in footnote
30 of Ref. 5. This is Part I.

~D. S. Ritchie and M. E. Fisher, Phys. Bev. B 5, 2668
(1972). This is Part II.

6L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amster-
dam 17, 793 (1914); Z. Phys. 19, 134 (1918); 27, 761
(1926).

~D. Jasnow and M. Wortis, Phys. Bev. 176, 739 (1968).
L. P. Kadanoff, Physics 2, 263 (1966).

9H. B. Tarko and M. E. Fisher, Phys. Rev. Lett. 31,
926 (1973). Note that there is a typographical error
in the last column of Table I; correct values for the
sq entries for n =7 and 8 are given herein in Table X.

~OD. S. Bitchie (private communication).
See, e.g. , B. Brout, Phase Transitions (Benjamin,
New York, 1965).

2B. J. Elliott and W. Marshall, Bev. Mod. Phys. 30,
75 (1958).

~3See H. B. Tarko, Ph.D. thesis (Cornell University,
1974).

4(a) P. Schofield, Phys. Bev. Lett. 22, 606 (1969); (b)
P. Schofield, J. D. Litster, and J. T. Ho, Phys. Rev.
Lett. 23, 1098 (1969); (c) B.D. Josephson, J. Phys.
C 2, 1113 (1969).

~~M. E. Fisher in Critical Phenomena, Proceedings of
the 1970 Enrico Fermi International School, Course
No. &1, Varenna, Italy, edited. by M. S. Green (Aca-
demic, New York, 1971), Sec. 3, p. 1.

~8B. B. Griffiths, Phys. Rev. 158, 557 (1967); see also
B. Widom, J. Chem. Phys. 41, 1633 (1964).



CRITICAL, SCATTERING. III. ISING MODEL BELOW AND AT T, 1253

~~(a) D. S. Gaunt and C. Domb, J. Phys. C 3, 1442
(1970); (b) S. Milo5evic and H. E. Stanley, Phys. Rev.
B 6, 986 (1972); 6, 1002 (1972); (c) R. Krasnow and
H. K. Stanley, Phys. Rev. B 8, 332 (1973).
P. G. Watson, J. Phys. C 2, 1883 (1969); 2, 2158
(1969); L. P. Kadanoff, Newport Beach Conference
on Phase Transitions, Jan. , 1970 (unpublished).

~9E. Brezin, D. J. Wallace, and K. G. Wilson, Phys.
Rev. Lett. 29, 591 (1972); Phys. Rev. B 7, 232 (1973);
G. M. Avdeeva and A. A. Migdal, Zh. Eksp. Teor. Fiz.
Pis'ma Red. 16, 253 (1972) [Sov. Phys. —JETP Lett.
16, 178 (1972)]; G. M. Avdeeva, Sov. Phys. —JETP
64, 741 (1973).

20J. W. Essam and D. L. Hunter, J. Phys. C 1, 392 {1968).
(a) G. W. Mulholland, Ph.D. thesis (Cornell University,
1973) (unpublished); (b) Gaunt and Domb (Ref. 17a)
mentioned the possibility of using higher-order poly-
nomials for m {&); (c) The quintic model has also been
considered by D. J. Wallace and R. K. P. Zia, Phys.
Lett. A 46, 261 (1973).
M. E. Fisher and A. Aharony, Phys. Rev. Lett. 31,
1238 (1973).
See also (a) M. E. Fisher in Critical Phenomena,
edited by M. S. Green and J. V. Sengers, NBS Misc.
Publ. No. 273 (U. S. GPO, Washington, D. C., 1966),
p. 108; (b) M. E. Fisher and J. S. Langer, Phys. Rev.
Lett. 20, 665 (1968).

24General arguments can be based on the operator pro-
duct expansion: L. P. Kadanoff, Phys. Rev. Lett. 23,
1430 (1969) and K. G. Wilson, Phys. Rev. 179, 1499
(1969); Phys. Rev. D 2, 1473 (1970).

~E. Brezin, D. Amit, and J. Zinn-Justin, Phys. Rev.
Lett. 32, 151 (1974).

~W. J. Camp and M. E. Fisher, Phys. Rev. Lett. 26,
73 (1971); Phys. Rev. B 6, 946 (1972); M. E. Fisher
and W. J. Camp, i&id. 6, 960 (1972); 7, 3187 (1973).

TT. T. Wu, Phys. Rev. 149, 380 (1966); H. Cheng and
T. T. Wu, Phys. Rev. 164, 719 (1967).
L. P. Kadanoff, Nuovo Cimento 44, B276 (1966).
R. Hartwig and M. E. Fisher, Advan. Chem. Phys. 15,
333 (1969).
C. Domb, Advan. Phys. 9, 149 (1960).

3~R. Brout, Phys. Rev. 115, 824 (1959).
G. Horowitz and H. C3jlen, Phys. Rev. 124, 1757 (1961).
F. Knglert, Phys. Rev. 129, 567 (1963).

34David Jasnow, Ph.D. thesis (University of Illinois,
1969) (unpublished); M. Wortis and D. Jasnow, Phys.
Rev. 176, 739 (1968).

3~K. G. Wilson (private communication).
36For a summary of the definitions we will use and some

of the more important theorems in the theory of graphs
the reader is referred to J. W. Essam and M. E. Fisher,
Rev. Mod. Phys. 42, 272 (1970).

37In independent calculations for the fcc lattice, Dr. D. S.
Ritchie has obtained six terms on the critical isotherm
and 21 terms on the phase boundary (private communi-
cation). Adopting a smaller value of v' than we do, he
reports fg+/f) =1 93 See also D S Ritchie and
J. W. Essam (Westfield College, London, preprint)
(to be published) .
(a) M. F. Sykes, J. W. Essam, and D. S. Gaunt,
J. Math. Phys. 6, 283 (1965); (b) M. F. Sykes, D. S.
Gaunt, P. D. Roberts, and J. A. Wyles, J. Phys. A 5,
624 (1972); (c) J. Phys. A 5, 640 (1972).

39C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961).
D. S. Gaunt and M. F. Sykes, J. Phys. A 6, 1517
(1973).

4~D. S. Gaunt and M. F. Sykes, J. Phys. C 5, 1429
(1972).

42D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J, W.
Essam, Phys. Rev. Lett. 13, 713 (1964).

43M. A. Moore, D. M. Jasnow, and M. Wortis, Phys.
Rev. Lett. 22, 940 (1969).

44M. Ferer and M. Wortis, Phys. Rev. B 6, 3426
(1972).

45For a recent survey of series extrapolation procedures
including Pade approximant techniques see D. L. Hun-
ter and G. A. Baker, Jr. , Phys. Rev. B 7, 3346 (1973);
7, 3377 (1973).

48E. Barouch, B. M. McCoy, and T. T. Wu, Phys. Rev.
Lett. 31, 1409 (1973).

4~J. W. Essam and M. E. Fisher, J. Chem. Phys. 38,
802 (1963).
M. Ferer, M. A. Moore, and M. Wortis, Phys. Rev.
Lett. 22, 1382 (1969).

4~M. E. Fisher and H. B. Tarko, Phys. Rev. 8 (to be
published).
H. Garelick and J. W. Essam, J. Phys. C 1, 1588
(1968); P. E. Scesney, Phys. Rev. B 1, 2274 (1970).

5iD. S. Gaunt, Proc. Phys. Soc. 92, 150 (1967).


