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The correlated-effective-field theory of many-body magnetism, introduced by the author in an earlier

paper to describe the equilibrium properties of magnetic ions with complicated level structure, is

extended to discuss spin dynamics in a similar context. The method goes beyond the random-phase

approximation by incorporating a measure of spontaneous. fluctuations in a manner which ensures

self-consistency with respect to the fluctuation-dissipation theorem. After a formal derivation of
equations defining mode frequency dispersion and scattering strength, the method is used to discuss the
problem of singlet-ground-state ferromagnetism. The singlet-triplet model is discussed in the

paramagnetic phase and the soft mode on approach to the Curie temperature is shown to be a
zone-center zero-frequency electronic mode. A more realistic model involving a singlet-ground-state ion
in a cubic-crystal-field environment is also investigated to explore the manner in which excitations

between excited crystal-field levels interact with excitations out of the singlet ground state as the
temperature is raised. Numerical calculations of frequency dispersion and mode strength are performed

as functions of temperature, and quantitative results for the correlated-effective-field and random-phase

approximations are compared for both the singlet-triplet and cubic-crystal-field problems.

I. INTRODUCTION

In an earlier paper~ the present author discussed
the difficult many-body problem of describing mag-
netic systems containing ions of complicated level
structure at temperatures for which thermal energies
are comparable with exchange energies and crystal-
field splittings. Such systems, involving signifi-
cant thermal population of excited-orbital crystal-
field levels, are difficult to treat theoretically ex-
cept in a local-effective-field approximation. Un-
fo rtunately the standard local-field approximation,
which is molecular-field theory for equilibrium
properties and the random-phase approximation
for dynamics, takes no account of spontaneous
fluctuations and is therefore numerically very crude
in any situation for which cooperative effects are
impo rtant.

In Ref. 1 we discussed the statics of a self-con-
sistent local.-field theory which goes beyond the ran-
dom phase to incorporate at least some measure of
spontaneous fluctuations. This was accomplished
by noting that the random-phase approximation vio-
lates an important exact relationship (derivable
from the fluctuation-dissipation theorem) between
static susceptibility and static two-spin, or more
exactly two-moment, correlations. By introducing
a simple measure of correlations into the definition
of a "correlated effective field" it proved possible
to determine the latter unequivocally by forcing
consistency with the exact fluctuation restraint.

In this paper we shall extend the equilibrium cal-
culation outlined in the earlier paper~ and discuss
spin dynamics in the correlated-effective-field
(CEF) approximation. This is accomplished by cal-
culating the linear response of the correlated equi-

librium configuration to a small time-dependent
perturbing magnetic field. The method is to be
compared with the "random-phase approximation"
(RPA) which describes a linear response of the mo-
lecular-field equilibrium configuration. As in Ref.
l, we shall discuss a paramasnetic phase (for which
the theory is simpler) but do not wish to imply that
the CEF method is incapable of describing an or-
dered configuration. ' On the other hand, at low
temperatures, for which the equilibrium configura-
tion involves ions which are predominantly in their
ground states, conventional spin-wave theory is
well defined for describing all excitations from the
ground state, and excitations between excited levels
are extremely weak.

One set of magnetic problems in which excita-
tions between excited levels play an important role,
and for which the conventional mol. ecular-field RPA
hybrid theoretical approximation has been used with
less than wholly satisfying results, is that of the
rare-earth singlet-ground-state ferromagnets. '
For a recent review see Birgeneau. ~ In particular,
controversy surrounds the question of the character
of the soft mode in these systems and there is poor
agreement between RPA theory and the temperature
dependence of the Inagnetic excitations. Although
the dynamic theory as developed in this paper will
not be restricted to singlet-ground-state situations,
we shall cast it in the conventional rare-earth sym-
bolism in order to facilitate an examination of the
singlet-ground-state problem as a simple numeri-
cal application in the later sections. We shall es-
tablish, for example, that the soft mode in the sin-
glet-triplet model is the zero-frequency electronic
triplet-triplet excitation at long wavelengths. We
shall also compare numerically the CEF and RPA

11



SPIN DYNAMICS IN MULTILEVEL MAGNETIC SYSTEMS

dispersion and mode-strength relations and their
temperature development for the full cubic level ex-
citations in a more realistic structural situation.

II. STATIC THEORY

Before studying dynamic linear response in the
CEF approximation we shall first outline the con-
cept of the correlated effective field and restate the
basic defining equations of static CEF theory in the
new notation. Let us consider a many-body Ham-
iltonian

K =P V„—2+8,,J, ~ J,. -P gz p. ~H~Z';, (2. 1)
i&j

~*,. = -„[V„., Z",.] —2P g, ,(Z',.Z,' Z,'Z', ), -(2.2)

where [, ] is a commutator, together with the two
equations resulting from the cyclic permutation of
x, y, z. In RPA this set of equations is closed by ap-
proximating all jth-site operators by their ensem-
ble averages. In CEF we write (2. 2) as

J";=(i/h)[V„,J';] —8,'k'„„+2',k,', (2 &)

introducing components k"„„(y=x, y, z) of a corre-
lated effective field defined by

k',.„=2+a „[(Z',)+ n" (Z', (Z',))], —(2. 4)

where n' are temperature-dependent correlation
parameters. In this manner the many-body prob-
lem is reduced to noninteracting form [i.e. , Eq.
(2. 3) now involves ith-site operators only]. In the
absence of applied field H; the ensemble averages
in (2. 4) vanish and, after properly symmetrizing to
render the observable J"; Hermitian, we find the
CEF equation of motion

in which U„is a crystal-field operator at the ith
magnetic site, ~;, an exchange parameter, g, an
angular momentum operator with J'; its z component,
and H; an applied field in the s direction. In con-
trast to the more general situatiop described in
Ref. 1, in which we allowed for a more generalbi-
linear exchange formalism and a crystal-field op-
erator of arbitrary complexity, we have hereadopted
an isotropic exchange form and shall later assume
U„.to be of sufficiently high symmetry to produce
an isotropic magnetic susceptibility (e.g. , cubic).
This allows for considerable simplification of the
formalism while still enabling us to discuss the
fundamental diffe rence of RP A and CEF and the ba-
sic problems of singlet-ground-state ferromagne-
tism alludedto in Sec. I. Generalization to an an-
isotropic situation is formally quite straightforward.

The equation of motion for angular momentum J;
in the absence of applied field H; is

~", =(i/&)[V„,~",] Q~„(n' n-')(~P;+~, Z', ),

(2. 6)
together with the cyclic permutations. This set of
equations of motion can be obtained in a formal
manner from an effective ith-site Hamiltonian

n'=Y q'(q)$(q) q" (q) 3(0), (2. 6)

in which

[q'(q)] '=kT —2[&(q) —n'8(0)](J':J')„(2.9)

where 8(q) is the Fourier transform with respect to
the lattice of the exchange 4;; and

(J":j')0 = ~ „J'„„J"„„2kTQ—"" ""-
~ (2. 10)

n mAn m n

where p„is the density matrix
e-'8„/ar -z„/ar

n

E„arethe eigenvalues of the effective Hamiltonian
(2. 6), and 2„"„is the matrix element (nl 8'~ m).

In a general anisotropic U„.environment, Eq.
(2. 6) defines three equations to be solved simulta-
neouslyforthethree correlation parameters /, n',
n', where directions x, y, z, diagonalize the sus-
ceptibility. The simplifications resulting from a
high-symmetry crystal field V„(suchas cubic) are
twofold. Firs'. , since n"=n'=z'= a by symmetry,
the self-'consistency condition (2.8) reduces to a
single implicit equation for correlation n. Even
more importantly, from a computational point of
view, the last term in (2. 6) now becomes equal to a
constant nZ(J 1)+g,g;, and can therefore be dropped
from statistical calculation. The eigenstates I n)
and eigenvalues E„aretherefore independent of cor-
relations in this high-symmetry situation and are

K,(eff) = V„—Q ~~;;n "(J";) . (2. 6)
j y

Solving for the eigenstates In) and eigenvalues E„
of (2. 6), the static susceptibility can then be derived
as a function of n' by including an infinitesimal
magnetic-field energy in the effective Hamiltonian
(2. 6) and using perturbation theory. The resulting
susceptibility . g (q), where q is a wave vector, is
directly related to static-moment correlations via
the fluctuation relation

~j./ I r
P & r(q) &&2 a, e3:o

& en&

0

&J;e ' ""'J@8)o, (2. 7|
where there are N magnetic atoms in the macro-
scopic lattice and where the ensemble average
( ~ ~ )o is with respect to the zero-field ensemble de-
fined by (2. 6). Equation (2. I) determines the cor-
relation parameters Q. completely in the form
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just the eigenstates and eigenvalues of V„.The
self-consistency condition (2.8) is correspondingly
simplified still further.

the fluctuation form

&d) =&~/, B llm tanh(E/2aZ)

III. DYNAMIC LINEAR RESPONSE

In the presence of a perturbing field H;'e '"' the
ensemble averages in (2. 3), (2. 4) are no longer
zero and the resulting effective Hamiltonian for the
ith site becomes

6 ~Q -eo

xS'(q, E)(E —w —ie) dE, (3. 7)

x„,(j,~) =p(&u) =Ng' p, 'z p„PlJ„'„l'
and for the noninteracting limit, using (3.8), gives

K,(eff) =V„—P Pn8;, (J';) -g,ps/';H e '"' (s. 8)

—2, a;,~l(«;& - ~(~;&), (3.1)

where we have used the symmetry condition cy'= cy,

and the second term on the right-hand side is just a
constant. The perturbing field at the ith site is
therefore

With an explicit form for p(&u) we can now use
(3.4) to calculate the dynamic susceptibility in the
correlated effective-field approximation for the in-
te racting-ion problem. Retaining the inf initesimal
in (3. 7), Eq. (3. 8) is more exactly written as

H;(eff) =H;e '"'+ —Q8- ;,((d', &
—n(J:&). (3.2)

I zPa

q'((u) =Ng~ p, '(B+iP),
in which

(s. 9)

We now define a linear response

Ng, p~(J', & =q'(~)H;(eff), (3. 3)

where p(e) is the dynamic response or susceptibility
in the noninteracting limit of zero exchange. Fou-
rier transforming with respect to the lattice we now

define a many-body dynamic susceptibility

.X(q, -) = Ng+ pe(J(q)&. /H'(q)e '"'

and

P =m~p„PlZ„'„tanh
n m

(s. 10)

=Ng', l 'P( )(Ng'. ~' 2P( )ls(—i) — &«1] ',

(s. 4)
where we omit any component notation on suscepti-
bility because of the isotropy condition.

Defining a time-dependent z~ correlation function
([J';(t),J';(0)],&, where [, ], is an anticommutator,
its Fourier transform with respect to both lattice
and time S'(q, ") is directly related to the dynamic
susceptibility via the fluctuation-dissipation theo-
rem

Ng~ p'S'(q, ")=m'coth(~/2kT) ImX(q, .), (3. 5)

where Im defines the imaginary part. For the non-
interacting case of zero exchange, the Heisenberg
operators J;(t) and Jf(0) are independent and the zz
time-dependent correlation function can be written
exactly in terms of the matrix elements J„'
=(nI J Im&, where Im& and In& are the crystal-field
eigenstates of the isolated magnetic ion. By direct
calculation we find

s'„,(j, (u) =~p„Y lz' l'[5(z„--~)+5(z +(u)],
n m

(3.8)

in which the subscript NI stands for noninteracting,
p„is the density matrix, and E„„=E„E.The-
corresponding dynamic susceptibility follows from

x [5(E„—~) —5(E„~~)],
where the 5 function 5(x) is defined by

(3.11)

7T

5(x) =lim
pX +6 (3.12)

Substituting (3. 9) into (3. 4) and using (3. 5), we find

S'(q, u)) =m 'coth((u/2kT)

x(P/[(1 —28.R)'+(h9„P)']], (3.13)

for the scattering function of the interacting prob-
lem, where

g„=g(q) —n8(0). (s. 14)

Now P is the sum of 6-function contributions and it
therefore follows that S'(q, e) is zero except when

24 8 =1. (3.15)

Written explicitly this is

2[&(~) —~a(0)]pp.E l~. l'

X tanh &m ~m

2k T E —Qp

(s. 18)

with solutions ~ =~(g), which define the propagating
excitation frequencies of the many-body problem in
CEF approximation. The mode strengths follow
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directly from (3. 13) as

in which

J g S '(q, e) d+ = 2N((J') ), (3.19)

The CEF approximation therefore defines many-
body excitations of infinite lifetime with dispersion
relations &u =e (q) given by the solutions of (3. 16) and
with strengths S(q, ~(q)} according to 3.17. The
correlation parameter n in these equations is de-
rived as a function of temperature from (2. 8). The
results have been derived for a system with isotro-
pic susceptibility but within this restriction can im-
mediately be applied to energy-level schemes of ar-
bitrary complexity. The equivalent random-phase
results are obtained by putting the correlation para-
meter equal to zero. Apart from its increased nu-
merical accuracy, one great advantage of the CEF
over HPA is that it obeys sum rules of the type

has pointed out that an intratriplet (electromc)
zero-frequency mode also has the correct group-
theoretical representation to be the soft mode and
should, at very least, be included self-consistently
in the dynamics of a satisfactory theoretical repre-
sentation of the phase transition.

Let us consider the CEF equations for this partic-
ular singlet-triplet model in the paramagnetic phase
for which the symmetry restriction imposed in Sec.
III is valid. %e may then study the phase transition
by approaching it from the high-temperature side
T —Tc. Fii-st we use the result for uniform static
susceptibility in the CEF approximation [Eq. (3. 16)
of Ref. 1] which, in the present notation, simplifies
to

x(q=o) =
kT —2g(0)(1 —u)(J': J') (4. 2)

where (J': J')0 has been defined in (2. 10). It di-
verges at the Curie temperature

kT =28(0)(1 —n )(J': J*),„,
where the subscript c refers to values calculated at
the transition temeprature. For the singlet-triplet
model we find

(J': J')0 = (2k TM~/h)F, + 2M/'2,
and hence allows for self-consistency checks to be
carried out during difficult numerical computations.

IV. SiNGLET-TRIPLET FERROMAGNET

in which

F, = (x —1)/(x+ 3), F, =1/(x+ 3), x =e (4. 6)

One problem which is immediately open to attack by
the above formalism is the singlet-triplet model for a
singlet ground-state fe rromagnet. ~~ The defining
Hamiltonian is (2. 1) where now the crystal-field
operator V, &

is assumed to have a ground singlet
eigenstate l G, 0) and a triplet excited eigenstate
IE, 1), IE, Q), lE, —1) at an energy & higher. The
nonzero elements of ang~lar momentum within and
between these states are

Using (4. 4) in (4. 3), the Curie temperature for the
singlet-triplet model is

k To =49 (0)(1 —nc)[(kTcM~F(, ,/6)+MqF2, ,].
(4. 6)

The correlation parameter n, is given by (2. 8) as

Z;8(q)/(», —2[8(q) - o,8 (0)](J'. J'&, ,j' g;8(0)/]kv; -2[8(q) —n, 9(0)](J*:J'), ,g '

(G, Q~J ~E, Q) =(E, 0~J'~G, Q) =M~,

(E, + 1
~

J') E, +1)=+M„ (4. 1)

which, using (4. 3), simplifies to

Z;&(q)/[~(0) —~(q)]' y;g(0)/[g(0) -a(q}]' (4. 8)

with similar expressions for J and J . For very
small values of 8(0}/& the system remains a para-
magnet down to absolute zero. Above a critical
value of this ratio, however, it undergoes a phase
transition at a Curie temperature Tc to an isotropic
ferromagnetic phase. '~

One of the major controversies surrounding the
model is the nature of the soft mode at the Curie
point. Published mean-field RPA calculations sug-
gest that the singlet-triplet mode does not go to
zero frequency at the transition for any wave vec-
tor. On the other hand, the isotropic nature of the
ordered phase implies the existence of a long-wave-
length zero-frequency (Goldstone) mode correspond-
ing to the rotation of the magnetic moment. Smith '

a value which is indePendent of the level structure
and depends only on the topology of the lattice.
Thus, contrary to earlier suggestions in the litera-
ture, there is (at least within the CEF approxima-
tion) nothing anomalous about the static correla-
tions near a singlet-triplet transition. The values
@~=0.256, 0. 282, 0. 341 for the nearest-neighbor
exchange fcc, bcc, and sc lattices, respectively,
are exactly those which would be predicted within
the CEF approximation for the equivalent simple
Heisenberg models. This equivalence, however,
does not extend to temperatures other than T = T~.

The dynamics of the singlet-triplet model, and in
particular the role played by the intratriplet modes,
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FIG. 2. As Fig. l, but
for dispersion measured
along a [ill] direction.
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the model is defined as having k Tc = & which re-
quires different values of exchange in RPA and CEF.
Since &~=0.341 in CEF and zero in RPA we find
from (4. 6) that 8(0)«v =1.516 4(0)»„. More spe-
cifically, we have

8(0) =&/[1. 901M (1 —o. )]

for our case. Comparing the shapes of the disper-
sion curves we note that the monotonic decrease of
[100] curves with decreasing temperature predicted
by RPA does not hold in CEF. Another significant
feature of the RPA curves, the temperature inde-
pendence of the q= (—,

'
—,—,') hard mode, is also not

present in CEF. Quantitatively the CEF modes ac-
quire larger dispersions as the temperature is low-
ered but the zone-center energy gap at T = T~ is the
same (- 0. 607&) in both schemes.

The correlation parameter as a function of tem-
perature is plotted in Fig. 3 for the CEF approxima-
tion; it increases steadily as the Curie temperature
is approached. For the present case of nearest-
neighbor exchange it is not difficult to establish
from its definition that n is a measure of nearest-
neighbor correlations in the form

(4. 18)

anomaly is observed for hard-mode (i.e. , singlet-
triplet) strength at any wavelength or temperature.
It is apparent that the qualitative character of the
soft mode can be described in both approximations.
Quantitatively, however, only CEF is self-consis-
tent with respect to the fluctuation theorem and we

0.3

0.2

O. I

where i and j are nearest-neighbor sites.
Finally, the soft- and hard-mode strengths for

[100]dispersion branches are shown for RPA and

CEF approximations in Figs. 4 and 5, respective-
ly. In both approximations the divergence of the
long-wavelength electronic mode is evident whi'e L~o

0
I

FIG. 3. CEF correlation parameter n is shown as a
function of temperature t =AT/4 above the Curie tempera-
ture t=1 (a =0 in BPA).
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IO
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CT
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N p6$

O4-
SOFT MODE

0.2-

IO
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-I I

I.O l.4
I

l.8
I

2.2
t=kT/a,

I

2.6 3.0 3.4

Ol I I I

I.O 1.4 I.8 2,2 2.6 3.0 3.4 3.8
t= kT/b

FIG. 6. Separate contributions of hard- and soft-mode
strengths to the sum rule (4. 20) are computed in RPA and
CEF approximations together with their sum. The viola-
tion of this fluctuation sum rule by the RPA approxima-
tion and its validity in CEF theory are clearly displaved.

FIG. 4. Mode strengths SH(Q) and S&(q) from the sin-
glet-triplet (hard) and zero-frequency electronic (soft)
modes, respectively, are plotted as functions of tempera-
ture t =-kT/b, for several values of wave vector along a
I100] direction using the RPA approximation. Wave vector
is again measured in units of m/g. P [s,(q) + s, (q)] = x((J*)'), (4. 19)

can demonstrate this fact numerically by performing
the summation over the Brillouin zone appearing in
the fluctuation sum rule (3.19). For the singlet-
triplet model (3. 19) reduces to

IO4

IO' ..
(q„,o, o) CEF

where we have performed the 5-function integrations
over frequency dictated by (4.13). For our partic-
ular numerical model with equal matrix elements
M = M =M one obtains directly from (4. 1) the re-1

Msuit that the operator (J') is a constant equal to M .
Thus, sum rule (3. 19) for our particular case be-
comes

M '(s„(q)+s,(q))„=1, (4. 30)

10

where (~ ~ ~ )» implies an average over the Brillouin
zone. Computing this sum numerically within both
RPA and CEF, we obtain the results shown in Fig.
6 where we display separately the contributions
from the soft and hard modes as well as their sum.
We see that the sum rule is indeed satisfied by CEF
but is increasingly violated by RPA as the tempera-
ture is lowered towards the Curie point kT~ = &. In
addition to providing a check on the numerical com-
putation, the CEF verification of the fluctuation sum
rule confirms the validity of treating the electronic
triplet as the e- 0 limit of a triplet with an initial.
infinitesimal splitting &.

V. CUBIC-CRYSTAL-FIELD ENVIRONMENT

IO
1.0

I

I.4
I

I.8
I

2.2
t=kT/6

I

2.6 3.0

FIG. 5. As Fig. 4, but with calculations performed in
the CEF approximation.

The isotropic singlet-triplet model is often used
to approximate the more complicated electronic lev-
el scheme found in cubic rare-earth singlet-ground-
state ferromagnets. Thus, for example, the crys-
tal-field level schemes for Tm3' and Tb~' (J =6) and
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FIG. 9. Dispersion, along a [110]direction in the first
fcc Brillouin zone, of the lowest two finite-frequency
modes for several values of temperature kT/W as calcu-
lated in HPA.

FIG. 7. Energy levels of a J=4 magnetic ion in a
point-charge face-centered-cubic environment. The
arrows indicate the nonzero values of matrix elements of
J» between the states.

for Pr2' (8 =4) in cubic environment typically have
I', singlet lowest and I"4 triplet as first excited lev-
el, giving as a first approximation a singlet-triplet
model. The additional electronic levels at higher
energies are nevertheless not without important ef-
fects, particularly at higher temperatures, and in-
deed Holden and Buyers ' (using the RPA approxi-
mation) have explained an observed lack of r, -r, —
mode softening in Pr3Tl, as observed by neutrons,
by an interaction between the I', -I'4 mode and a
thermally populated I"4-I"3 excitation.

It is an advantage of the CEF method as outlined
in this paper that the full cubic-level problem is in
principle no more difficult to pursue than the sin-
glet-triplet model. Let us consider specifically a
cubic V, l in (2. 1) and J =4. In a cubic crystal field
the eigenstates are completely determined by sym-
metry and the eigenvalues E are also determined
to within an amplitude factor 8' and a parameter x
measuring the ratio of fourth- to sixth-order anisot-
ropy. Explicitly for J=4 the symmetry, energy
and eigenfunctions are

r„E= (-8O-52x) W,

g ) 71/23-1/22-1
~
0) ~ 51/28-1/22-1( ~4) +

~

4)).

r„E= (84+88x) W,

e) 71/28-1/22-1(
(
4) [ 4)) 51/23-1/22-1

(
0)

[r e)=2 / [2)+21
[
—2) ~ (5. 2)
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FIG. 8. CEF correlation parameter e as a function of
temperature kT/5'for the Tc = 0, J=4 face-centered-cubic
singlet-ground- state ferromagnet.

where we have written the wave functions in terms
of the eigenfunctions of J'. In P r3Tl the crystal-
field approximates that of a fcc lattice and the value



I, INES

IO Q

20

IO

0 0.2 0.4 0.6 0.8 l.0
qQ/(j2 rr)

1.2 I, R l.5

0
20

kT/ 0/

FIG. 10. As Fig. 9, but calculated in the CEF approx-
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FIG. 11. Temperature variation of the frequencies of
the two [110]modes of Figs. 9 and 10 at the wave vector
qg/~2 = 0. 5547r. Full curves represent the CEF a,pproxi-
mation and dashed curves the RPA approximation.

of x is thought to be close to that predicted by a
nearest-neighbor point-charge model, viz. , x
=- —0. BVV. The resulting sequence of energy levels,
and arrows representing the nonzero matrix ele-
ments of J' between the eigenfunctions (5.1)-(5.4),
are shown in Fig. V.

In this section we shall concentrate on the differ-
ences between the CEF and RPA theories for dis-
persion and mode strength of the finite-frequency
modes in this fcc J =4 model. For numerical com-
putation we have chosen the exchange to be just suf-
ficient to produce ferromagnetic order at T~ = 0, in
which case the present theory can be appbed at all
temperatures. This can be achieved in PrsTl by
magnetic dilution of Pl" with La to (Prp. ppLap. pg)pTl ~

Using the eigenstates (5. 1)-(5.4) and their respec-

FIG. 12. Tempera, ture variation of the scattering
strengths of the two I.110]modes of Figs. 9 and 10 at the
wave vector qg/W2 =-0. 5547t. Ful:I curves represent the
CEF approximation and dashed curves the 3,PA approxi-
mat'l. on.

tive eigenvalues as the Im) and In) and E and E„
of the theories of Secs. II and III we can immediate-
ly determine the matrix elements J' „and in partic-
ular the ensemble average (O': J')p of (2. 10). Using
(4. 5) for the Curie temperature Tc =0 gives

48(0)(1 —~,) =-,'-, IE(r.,) -E(r, )]=3.S92W (5. )

as the value of "critical exchange" just necessary to
produce ferromagnetism at absolute zero. Kith a~
= 0. 256 for nearest-neighbor-only fcc exchange in
CEF (and nc = 0 in RPA) we again see that a larger
exchange is predicted for the correlated theory.
Using (2. 8) we can now compute the complete tem-
perature dependence of the correlation parameter
in CE F; it is shown in Fig. 8.

Knowing the temperature dependence of e now al-
lows a numerical solution of (3. 16) to be obtained
for the excitation frequencies. The zero-frequency
te rm s do not contribute to the finite-f requency
solutions. At the lowest temperatures only the I"~-
I'4 excitation exhibits any dispersion. As the tem-
perature is raised, however, a significant interac-
tion develops between this mode and the I'4-I'~ mode
as the latter becomes thermally populated. At tem-
peratures up to 100W/0, where W-Bk in the Pr, T1
system, little dispersion or mode strength develops
for the higher-energy I 4-I'5 and I"z-I

5 modes and we
shall concentrate here on the mannex' ln which the
lowest two finite-frequency modes develop and in-
teract as a function of increasing temperature.

To be specific, we have computed the dispersions
along a [110]direction in reciprocal space (a direc-
tion which has particular significance in connection
with the PrpTl structure proper' ). The results for
the RPA and CEF calculations are shown respec-
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tively, in Figs. 9 and 10. The similarity of the two
sets of curves is evident but two significant differ-
ences are apparent; one is the greater dispersion
ot the I"~-I'4 mode at low temperatures in CEF and
the other the absence of a temperature-independent
point in the CEF curves such as occurs at qa = v2 w

in the RPA approximation (where a is cubic-unit-
cell dimension in real space). Quantitative differ-
ences can be displayed more graphically by taking
a representative wavelength, for which mode inter-
action is significant, and plotting the temperature
development of the frequencies and the associated
mode strengths [the latter calculated from (3. 17)].
We have chosen the wavelength which for Pr3Tl cor-
responds to 2 A, viz. , j~/~2=0. 554~, which satis-
fies the interaction criterion quite well (see Figs.
9 and 10). The computed temperature variations of
frequency and strength for this [110]mode are
shown in Figs. 11 and 12 where we display both the
CEF and RPA estimates.

At low temperatures the scattering strength is
dominantly in the I'~-I'4 mode; but this is the upper-
frequency mode in CEF and the lower-frequency
mode in RPA at this wavelength. As temperature
is increased the mode strength in the I'4-I'3 mode
rapidly increases and mode mixing becomes signifi-
cant. In CEF the upper-frequency mode retains a

dominantly I"&-I"
4 character at al1. tempe ratures with

mode strength decreasing monotonically with in-
creasing temperature. The lower mode retains its
dominant I"4-1"3 character throughout with mode
strength passing through a maximum at intermedi-
ate temperatures. In RPA the lower-frequency
mode is changed in character from 1",-I'4 to 1"4 I'3
as the temperature increasep, mode strength falling
steadily. The upper-frequency mode in turn changes
from I'4-1', to I'l-I'~ with strength passing through
a maximum.

The important point is that the differences be-
tween the two approximations are often more than
minor numerical deviations and it would be of con-
siderable interest to compare each in turn with ex-
periment. This will be attempted for the case of
(Pro, sLao ov)STl in a future publication although one
must bear in mind that neither approximation con-
tains any measure of linewidth and that, as a result,
boih methods fall short of an adequate description
of finite-temperature many-body dynamics in this
more demanding sense. Qn the other hand, there
should be some correspondence between experi-
mental frequency response peaks and the frequencies
and strengths discussed in this paper which might
allow for some estimate of the relative strengths
and weaknesses of the two approximations.
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