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Tests of strong scaling in the three-dimensional Ising model
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We study numerically the amplitudes Z*(R) of the ~hT/T, ~' variation in the spin-spin correlation

functions (sos R), of three-dimensional Ising models in zero field above and below T, . By allowing for

reasonable correction terms to the asymptotic behavior E (R) —EgR/a)~, where a is the lattice

spacing, we find consistency with the strong-scaling prediction f = (1 —a)/v —d + 2 —g 0.31, and

reasonable agreement with universality and a-expansion estimates of the amplitudes Eo.

It has been shown, in various ways, ' that the
temperature dependence of the basic order corre-
lation function G(R, T} and, correspondingly, of its
Fourier transform G(k, T) must mirror that of the

energy or entropy. Specifically, as the tempera-
ture approaches its critical value T, the correla-
tion functions on the critical "isochore" (or in zero
"field" ) at fixed R or fixed k, should vary as I f l

t

where t=(T —T,)/T, (and n is the specific-heat ex-
ponent~). The presence and magnitude of this

I t I term are important for interpreting a vari-
ety of experiments, including the temperature de-
pendence of electrical resistivities through mag-
netic critical points' and the variation of critical
light, x-ray, and neutron scattering at fixed wave
number.

In this note we study the amplitudes of this sin-
gular term for three-dimensional Ising models
above and below T,. We show that they are con-
sistent with "strong-scaling"'8 and universality
expectations, and agree moderately well with re-
cent renormalization-group calculations. 's (A
previous study above T, had suggested that strong
scaling was violated. )

For an Ising system with spins sa =+ 1 at lattice
sites 8 we may write

G(R, T) = (sos-„) = G, (R) v E'(R)
~

t
i

+ ~ ~ ~, (1)

as T- T, *, where we assume equal specific-heat
exponents, a. ' = n. 7 {Note that no contribution of
the form I t I

~ should appear although at first sight
one might be expected to arise from the long-range
order (sos„-)=(se) - [Me(T}] .)

The scaling hypothesis~'~'8 for the correlation
functions (in zero field) in the critical region can
be expressed asymptotically as

G(R, T) = (a/R) '"D'(R/$t), (2)

where a is the nearest-neighbor lattice spacing and

~,(T)=f,"/I i I' (3)

is the second-moment correlation lengths'~'s (and
we may assume v = v'). Alternatively one may
write '8

G(k, T) = G(0, T)D'(Ir'$', ) . (4)

According to the "strong-scaling" hypothesisg, 8, s

the asymptotic forms (2) and (3) should extend to
describe the fixed R (or fixed k) variation (1): if
this is so one must have' '

D'(x') = De'"/x' "+D't "/~"'+ ~ ~ ~,

as x , with

g =(1 —rt)/v —2+2 —t) . (6)

where & is a nearest-neighbor vector. As T- T, —

this ratio should approach E (R)/E (&). We have

found that the apparent convergence of direct Pade
approximants to the series for h, (R) = $(H, T, —)

Thence, for the amplitudes in (1), one obtains the

prediction

E'(H) = Ee(R/a)', (7)

as R/a-~. Adopting the values ""o =-, , t'=I4,
and r)=ILs for d=3 gives /=~~=0. 306. A different
choice of estimates for v and g yieMs & =0.33:
the difference is probably indicative of the confi-
dence level of the exponent estimates.

The predictions (6) and (7) were first investi-
gated in detail by Ferer, Moore, and Wortis, who

extrapolated the high-temperature series for (sestet)

on the fcc Ising lattice to determine E'(R) for val-
ues of (R/a) up to 11. From a plot vs log(R/a}
they concluded g = 0.47+ 0.06 (T~ T,), in apparant
violation of the strong-scaling prediction (6).

We have recently calculated and studied' the cor-
relation functions for the sc and bcc Ising lattices
as a function of both magnetic field and tempera-
ture, and have, in particular, obtained low-tem-
perature, zero-field series in powers of u=e ~

to order u" and u", respectively. To study the
amplitudes E (R), below T„we may first differ-
entiate the series for (sesn) with respect to T (or
u} in order to sharpen the singularity and remove
the leading temperature-independent term in (1).
We have then formed series for the ratio

dG(R, T) dG(&, T)
dT dT
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(R/a)'

2

3

5
6
8
9 (300)

9(22~)
10
11
13

Simple cubic
8;(B) $, (B)

1.264+ 3
1.375+ 3
l. 445+ 8
1.52+1
1.554+ 5
1.67+1
l. 68+ 1
1.72+ 5
1.73+ 5

1.77+4
1.81+5

1.20+1
1.44+2
1.59+3
1.71 + 5
1.78+ 8

1.85+9

Body-centered cubic
(a/a)' b;(B)

1-,' l. 1354+ 5
2 —,
' 1.270+ 5

3-', 1.346+ 20
4 1.373+15
5-,' 1.47+ 2

63 1.51+2
1, 52g2

8 l. 563+ 10
9 1.576+ 35

10-', 1.61+4
12 1.63+ 3

TABLE I. Estimates of $~(B)=E (B)/E (6).
tainties refer to the l.ast decimal place quoted.

[(R/a) -e ]
2

I
I

T&T
—8

4 6 8 IO I2
i 0.7

- 0.4

TABLE II. Correlation amplitude estimates (see Befs.
9-11 and 13),

lattice

Ii 8)
E'(6)
D =D'(0)
f~

sc

3.16 +18
1.987
0. 3071 +15
0. 4783 +4

bcc

3.23 +14
2. 010
0.2557+ 9
0.4446 + 4

fcc

3.24+ 9
2. 005
0. 2426+5
0. 4337+ 4

is surprisingly good up to (R/a)3=13. (The usual
interfering, low-T singularities seem to be sup-
pressed in forming the ratio. ) Our estimates are
collected in Table I. They may be supplemented
by the estimates'0' ' for E'(5) collected in Table II.

The function h(R) may also be calculated above
T„but the resulting series converge very slowly
at T, and cannot be effectively extrapolated. This
is easily seen to arise from the strong competition,
for T& T„between the I t I

' term in (1) and the
following term, namely, Es(R)t. [This same com-
petition leads to the maximum2'~' in G(k, T) at
fixed k lying above but very close to T, . Below T,
the I t l' term is about 40% larger (see below) and
of the same sign as the linear term; so there is
no competition. ]

Plots of 1ng, (R) vs In(R/a)2, following Ferer et
al. , can be fitted moderately well by straight lines
and suggest f =0.39+0.04. This is similar to the
estimate of Ferer et al. and again disagrees with
strong scaling. However, it is unreasonable in
any test of strong scaling not to allow for some
corrections to the expected asymptotic form. Ac-
cordingly, in Fig. 1, the estimates for o;(R) have
been plotted vs ln[(R/a) —eo], which provides for
corrections to the asymptotic behavior of E'(R) of
relative order (a/R) . This is most reasonable
since nonmiversal corrections of just this order
are known rigorously to be present in G,(R) in two
dimensions [see, e. g. , Ref. 2, Eg. (5.6)]. It is
evident, from the figure [where the dashed lines in-

- 0.2

0
0

I I I

1
gn [(R/a) -eo]

2 2
I 0

FIG. 1. Logarithmic plots of the reduced amplitudes
b (B) of the energy singularity in. the correlation functions
G(B, T) vs t(R/a) —eo]. The dashed lines indicate the
slope corresponding to the prediction E (R) -R~, with
g =0.306,

dicate the asymptotic slope predicted by (6)] that
the sc da.ta with eo =1 and the bcc data with eo = —,',
are, in fact, quite consistent with the strong-scal-
ing expectations.

Figure 1 also includes the data above T, of Ferer
et a/. for the fcc lattice, together with our own new
estimates for the sc lattice (see Table I and Refs.
2 and 13), both plotted with eo=+, . These results
now also appear consistent with f = 0.306.

Values of eo of order unity, such as assumed
here, are certainly not to be considered surpris-
ing. Accordingly we conclude that the Ising-model
data both above and below T, are consistent with
strong scaling. More pessimistically one might
say that the range of R/a for which reasonably pre-
cise extrapolations may be made, is too small to
yield estimates of f with a confidence range of bet-
ter than +0. 15.

If we accept the fits exhibited in Fig. 1 we can
estimate the limiting a.mplitudes Eo in (4) from the
linear intercepts and the estimates (7) and (8). We
find

E, = 3.91 + 5 (sc), Eo = 3.64+ 6 (bcc),

where the uncertainties arising from those in Table
II have not been included and
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fg/fg = 2'(I+$E)+ O(e ) = 1.89, (12)

at c =1; this is 4/g lower than the series estimate'
mentioned above. Similarly the ratio of specific-

E;=2.76+6 (sc), E;=2.536+26 (fcc). (10)

The dimensionless ratios Q4 = Eo(fq)
" ' "/D,

where D =D'(0) is the critical-point decay ampli-
tude, are expected to be universal. '~ Using (9) and
the data ' in Table II, together with the universal
estimate f;/f, =1.96+2, leads to Q, =l. &7+10 for
the sc and bcc lattices, respectively. Above T,
we obtain Q;=3.29+7 and 3.35+4 for sc and fcc
lattices. In view of the uncertainties, the agree-
ment between the two pairs of values is surprising-
ly good.

The universal ratio D', "/Do =@4 of scaling func-
tion coefficients [see (5) above] can be obtained
from Q4 by multiplying by

I (2+ g)(sin —,'mg)/I'(I —q) cos—,'mq = 0. 52410 .
This gives the estimate Q4 =1.74 a 5, which may be
compared with the recent calculation of Fisher and
Aharony, who obtained

Q4 = D,'"/Do" = 1 + e + O(e ) = (y —1)/n+ O(e ), (11)

where e =4 —d. For d =3 dimensions we have a =1,
and predict Q4

= 2. 0. The discrepancy of about
12%%uz must be considered quite satisfactory since
the expansion is correct only to first order in &.

By comparison, theory predicts~4

heat amplitudes is given' as 2" n(1+a)+O(e ),
with n= 1 for Ising systems; this predicts A /A'
= 1.83, which is 14'%%uo higher than the estimate A /A'
=E (&)/ E'(6) =1.61+6, which follows from the data
of Table I.

It is natural to expect that the universal ratio
Eo/Eo should also equal A /A'. From the sc esti-
mates we find Eo/Eo= 1.42+ 13. The bcc and fcc
data can also be used if one computes (Q4/Q4)
x(f;/f, )" '~"; this yields Eo/Eo = 1.41+ 14. As
expected, universality is well confirmed but the
discrepancy of 14% from the central estimate
A /A' = 1.61 seems to exceed the uncertainties.
Possibly this indicates a more subtle departure
from strong-scaling behavior. On the other hand
it might mean that, despite the concurrence of the
different estimates for Q4 and Q4, the values found
for E'(R) at larger values of R are systematically
high or low, respectively, by 10 to 15%. In view
of our (unavoidable) use of Pads approximants for
extrapolation below T„and the likelihood of signif-
icant confluent singularities in $(R, T) there, this
possibility is hard to exclude.
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