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A renormalization-group treatment of the tricitical behavior of a d-dimensional metamagnet in a
magnetic field is presented. For small e = 4 —d & 0, the tricritical behavior is described by
competitions between pairs of Gaussian-like and Ising-like fixed points. Despite the increased number of
independent interacting fields, we find that the metamagnetic tricritical exponents maintain their
classical values for d & 3, with logarithmic corrections in three dimensions. The conclusions thus agree
with those of Riedel and Wegner for an intrinsically simpler model appropriate to He'-He' mixtures.

The effect of an ordering field is analyzed, and Ising exponents are found on the "wings" of the
tricritical point.

I. INTRODUCTION

An ideal metamagnetic crystal is made up of
identical plane layers of spins with uniaxially aniso-
tropic ferromagnetic coupling between spins with-
in each layer but relatively weak anMerromagnetic
coupling between adjacent layers. In zero external
field, a metamagnet behaves as an anisotropic
(Ising-like) antiferromagnet. The corresponding
antif erromagnetic transition remains continuous
(i.e. , of critical character) in a, small enough ex-
ternal field H. However, for sufficiently large
fields, the transition becomes first order. The
change-over from continuous to first-order transi-
tion occurs at the tricritical point, (H„T,). Con-
siderable interest attaches to the behavior of a
metamagnet in the vicinity of the tricritical point
and, in particular, one would like to know the val-
ues of the corresponding tricritical exponents. '

Riedel andWegner ' have discussed a single-
component spin model which provides a reasonable
description of He -He mixtures in which a tricriti-
cal point is also observed. Using a renormaliza-
tion-group approach ' they conclude that for spa-
tial dimensionalities exceeding d = 3 the tricritical
point of their model is fully classical, i.e. , in ac-
cord with a Landau-type phenomenological theory
with exponents' o, = —,', P, =-,', y, =1, 6, =5, etc.
At d =3 they find the exponents retain their classi-
cal values but with logarithmic corrections to the
critical behavior of most quantities. (For d&3
nonclassical tricritical exponents appear but we
shall not be concerned with this region. )

The Hamiltonian needed to describe a metamag-
netic system is appreciably more complicated than
that considered by Riedel and Wegner. In the first
place there is the spatial anisotropy implied by the
layer structure. In the second place, in the pres-
ence of an external field H (which is vital to the ob-
servation of a metamagnetic tricritical point) there
are essentially two nonequivalent classes of spins
(since Bacts oppositely on ferromagnetic layers

oriented in opposite senses). In particular, if a
staggered ordering field H~, which is oriented "up"
on alternate layers and "down" on the interleaving
layers, is introduced there is no question as to the
inequivalence of the two sets of layers. This in-
dicates that a proper renormalization-group analy-
sis of a metamagnet, which is the aim of the pres-
ent work, should allow for two independent local
spin fields, or, equivalently, consider a two-com-
ponent (or n =2) spin field. To omit this precaution
may lead one to overlook ordering effects associated
with the sublattice difference by averaging them out
in the initial renormalization stages. The proper
treatment might well lead to no~classical tricriti-
cal exponents for d) 3 in contradistinction to the
results of Riedel and Wegner. Indeed, the two-com-
ponent Baxter-like model treated by Wilson and
Fisher resembles the system we will analyze here
and does exhibit nonclassical tricritical behavior
for 0& 4 (with Ising, or n=l, exponents).

In the Sec. II we discuss the Hamiltonian of a
metamagnetic system in a form suitable for a re-
normalization-group analysis. In particular we
consider a d-dimensional system with identical,
ferromagnetic (d —1)-dimensional layers coupled
in the remaining dth direction by antiferromagnetic
interactions. As usual, ' continuous, Ising-like
(n= 1) spins with s and s weigl;ting factors are
utilized. However, the distinctions between ad-
jacent sublattices is retained. By iteration of the
renormelization-group transformation for small
e =4-d&0, with suitably chosen, distinct rescal-
ing factors for the different field components, it is
shown that many terms in the full Hamiltonian be-
come thermodynamically irrelevant. After a suf-
ficient number of iterations, these variables may
thus be neglected and a simple picture emerges.
Contrary to the expectations aroused by the Baxter-
like model, however, the tricritical behavior is
described (in sero staggered fieM) by a competition
only between pairs of Ising-like and Gaussian fixed
points. The calculations then indicate that the tri-
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FIG. l. Lattice structure of a d-dimensional layered
metarnagnet.

critical exponents retain their classical values
down to d=3; no new nonclassical tricritical be-
havior is found. Indeed, an explicit partial trace
over the renormalized Hamiltonian leads to a re-
duced Hamiltonian of just the form considered by
Riedel and Wegner.

It is straightforward to extend the analysis to in-
clude the staggered field. This then shows that the
critical points remaining on the "wings" of the full
phase diagram' have Ising-like character; this re-
sult is, perhaps, not surprising but has not pre-
viously been established.

II. METAMAGNETIC HAMILTONIAN

—H e'"o' s R —II~ s R, (2. 2)

where we take the origin of R on an a site, while

2
ko

——m5, /a~ (2. 3)

is the reciprocal vector corresponding to the dis-
placement between the two sublattices. The cou-
pling J'(R —R'} may now be takeri as (predominantly)
positive, i.e. , ferromagnetic. The total effective
Hamiltonian is

dominantly antiferromagnetic. On such a sys-
tem we wish to impose a uniform field H which,
for small values, should merely shift the zero-
field antiferromagnetic transition. However,
when H is large enough, it is expected to produce
tricritical behavior and then a first-order transi-
tion as the temperature T varies. The appropriate
ordering field (at least for small H) is the stag-
gered magnetic field II~, which acts equally but
oppositely on the two sublattices A and B. For
theoretical convenience, however, we transform
this system into one in which all the interactions
are predominantly ferromagnetic, by changing the
sign of each spin s(R) lying on one sublattice. This
does not, of course, alter the partition function or
free energy. The magnetic part of the Hamiltonian
may then be written

R„4= ——Z Z (R —R ')s(R)s(R')
R, R'

We consider a system made up of continuous,
Ising-like or single-component (n=1) spina each
associated with a, spin weighting factor '

e =exp(--, s -f4s -f,s —~ ~ ~ ).-m(s) 2 4 6 (2. 1)

The spins are located on the N sites, R, of a d-di-
mensional lattice. Our interest centers on the case
of a tetragonal lattice which is composed of (d-1)-
dimensional layers. It is convenient to write d —1
=d'. In each layer we suppose sites are separated
by nearest-neighbor vectors ~ of length I &~( I =a(~

(see the diagram in Fig. 1). Corresponding spina
in adjacent layers are taken to be separated by an
orthogonal nearest-neighbor vector 6, of length

l &, l =a&. AQ sites are equivalent under trans-
lations generated by 6, and the 5„. However,
for the reasons explained in Sec. I, we will label
the layers alternately a and b (see Fig. 1); the
sublattice of a sites will be denoted A, and of b

sites, B.
We are interested in a system in which the cou-

pling between spina in the same sublattice (in par-
ticular within each layer) is predominantly ferro-
magnetic, while the coupling between sublattices
(in particular between adjacent layers) is pre-

X (s (R)) = —& 4 at/&a T-Z w [s (R)j, (2 4)

and the trace operation required to calculate the
partition function Z(T, H, H ), from e is simply
integration over each s(R) from —~ to ~.

It is evident from (2. 2) that when Ht and H are
nonzero, the spins on the two sublattices are in-
equivalent. Thus we now implement a scheme de-
signed to retain the distinction, in accordance with
the philosophy explained in Sec. I. To this end we
define sublattice delta functions by

rh, (R) =1, bt, (R) =0 if HCA,
(2. 5)

~.(R)=0, n, (R)=1 if Rc H,

and write

s(R) =s,(R)h, (R)+s~(R)6,(R) . (2. 6)

This definition of the new spin variable s,(R) leaves
it -undefined when RCB; for convenience we then as-
sume that s, (R) vanishes identically —likewise for
s, (R}when R C A. The total Hamiltonian (2.4)
then becomes
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K =—Z (K„(R—H')[s, (R)s,(H') + sb(R)sb(R')] + K,„(R—H')[s, (R)s„(R')+ sb(R)s, (R')]j
R yR'

+LQ[s,(R) —sb(R)]+L" 2 [s,(R)+sb(R)] ——Q Qs, (R)] + [sb(R)] } f~ -p f[s,(R)] + [sb(H}] ], (2. 7)
R R R R

where I.t = H t/ks T, L = H/ks T, and

K„(R—R") = Kbb(R —R') =J(R —R') h, (R)A, (R')/ks T,
(2. 8)

K b(R —R ) =7 b(R —H')/ks T

= J(H —R')h, (R)A (bH')/k sT. (2. 9)

The equality of K«and E,, stems from the transla-
tional invariance of the Hamiltonian when II~ = H = Q.

For simplicity, terms of order higher than s,
arising from the weighting function in (2. 1), have
not been indicated. The significance of these terms
will be discussed later.

In order to diagonalize the quadratic part of the
Hamiltonian (2. 7) we define the transformed spin
variables s,(q) and s (q) by

m/a„,
J
q, i(m/2a„.

The wave-vector components q are parallel to the
layers, while q, is directed perpendicular to the
layers (i.e. , parallel to 5,). The inverse trans-
formation to (2. 10) is

(2. 11)

s.(R}=N,'Q e" "[s„(q)+s (q)],

s, (R)=N, ' Qe "'"[s,(q) —s (q)],

RCA,

RCB,
(2. 12)

so that the Hamiltonian can be written as

s,(q ) =—2 e" ' "[s,(H)b„(R) + sb(R)hb(R)],
(2. 10)

where q runs over a half-size Brillouin zone of
N, =-,'N points (N being the total number of spins)
specified by

K= —N, p ([1 —K,(q)]s(q)s, ( —q)+[1 —K (q)]s(q)s (-q)I+2L s.(0)+2Ls (0)

—2f~N, ' P PP [s,(q)s, (q')s, (q")s,(-q —q' —q")+6s,(q)s, (q')s (q")s (-q —q' —q")
~l

qual

+s (q)s (q')s (q"}s(-q-q'-q"}]. (2. 13)

(2. 14)

where

K„(q)=Z e" "K„(R),
R

Note that H and H (~ L, L ) now couple only to
zero-momentum spin components. The trans-
formed interactions are defined by

K,(q) = K.,(q) + K.,(q), + (j 'a, /ks T) q2+ ~ ~ ~,

1 —K (q) =(T T)/T+(j a~/ks T) q—
~

+ (I a i/k T) gsg + ' ' '
q

(2. ie)

(2. 19)

a, low-momentum expansion of the quadratic terms
in (2. 18) a,s

1 —K,(q) = (T —To)/T+ (j tP„/ksT)q „

p

K„(q)= e" "K„(H) .
R

(2. 15)
where

ks To ——Z(0} and ks T = Z(0) —2J,b(0) . (2. 20)
It is not hard to show that

K,(q) = J(q)/ksT= (ks T) ' Q'e"'"Z(R}, (2. 16)
R

where J'(R) is the original spin-spin coupling in
X„t. In addition; one has

k, TK(q) =Z(q) -2Z.„(q), (2. 17)

where J„(q) is defined in analogy to (2. 16) but in
terms of J„(H)[see (2. 9)].

For interactions of finite range we may now make Z(0) = 2(d' J„+J,+ J„'), Z„(0)=28, (2.21)

Thus To is the usual mean-field critical tempera-
ture; but note that for ferromagnetic interplanar
coupling one has Z„(0))0 so that T,) T .

It is instructive at this point to specialize to the
case, indicated in Fig. 1, where there are only
nearest-neighbor interactions of strength J'i in the
layers but first- and second-neighbor interactions
of strengths J, and Z,', respectively, perpendicular
to the layers. One finds
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j = Jii, j = Jj+4J&,

Jii p j JJ + 4Jj ~

(2.22}

(2.28)

From this it is clear that we may expect the coef-
ficients j", j", and j to be positive (as usual).
However, the coefficient j' entering in (2. 19) may
be of either sign. While the possibility of a nega-
tive sign is, at first sight, surprising, it does not
violate the stability of the Hamiltonian with respect
to s (g) fluctuations since there is a finite momentum

s (q}=(~2,T/j"a'„)"'o, ; .
(2. 24)

The Hamiltonian then becomes

cutoff. Furthermore, the coefficient j' will be
shown in Sec. IV to correspond to a strongly irrele-
vant variable.

Finally, in order to put the Hamiltonian in a
form convenient for renormalization group calcula-
tions, we rescale the spins by writing

s.{q)=(0 T/j "a'„)'/ o,, ;,

a 3 & 3 a(rl + cf ti + ~10 J )ol, ~ ol, -g 2 (r2+ 1 ~~
+ 26 &}o2,go2y-q+ 1 ly5+ 2 2s0

a 11ol,col, e' o4 i"ol, -a-P7' -a" + 22c 12o1, gaol. P o2, e"o2, -i-I' -Pi" + lc 22o2, P2, c' o2, q"o2, -a-c'-q" ) ~

a a a

where f, here"denotes a„2 N2'g;, while

r, =/22(T- T,)/j "a'„, r, =us(T- T„)/j"a'„,
(2. 26)

IC1=2 a~/j airy IC2=j-ai/j aii, (2. 27)
—~2 ~&/(y Tj "a4+2)1/2 Il ~2 Jf/(y Tj '~aII+2)1/2

(2. 28}

IC11=~2aii 'f4(/22T/j")',

IC 12
———', aii" f4(ks T) U "j ") ',

+22 2 all f4(~B TIP )

(2. 29}

The final form (2. 25) of the Hamiltonian re-
sembles the anisotropic XF (or n=2) model treated
by Fisher and Pfeuty' and by %egner. s However,
they discussed only the case of vanishing fields
h„/12-0. Note that Il, now describes the staggered
or ordering field of the original metamagnet, while

Q is proportional to the original uniform field H
which is expected to bring about the tricritical be-
havior. Note also that if the system exhibits meta-
magnetic ordering tendencies so that J,', (0) &0, then
the inequality r, & r2 follows (since, as explained
before, To& T ). Hence, as discussed by Fisher and
Pfeuty, the system will cross over rapidly to Is-
ing-like (n= 1) behavior when Ill =112 =0. For our
purposes, however, it will be essential to investi-
gate effects of the terms h, o, and III2o2 for finite /I,

and A~. Indeed, if we did this with neglect of the
momentum sciuared (or gradient) terms in 2, we
wouM just maximize X which would amount to a
classical or Landau-type treatment of the problem.
This in turn would lead to a phase diagram with a
tricritical point exhibiting classical exponent val-
ues. The renormalization group treatment, Qf

course, allows for the momentum dependence (i.e. ,

the gradient terms) and determines which variables
are relevant and which irrelevant. Dimensionality-
dependent corrections {if any) to the classical ex-
ponent values are expected to emerge from the cal-
culation.

III. RENORMALIZATION-GROUP TRANSFORMATION

Before undertaking a renormalization of the
Hamiltonian (2.25) we make two transformations.
First, in order to remove the spatial inhomogeneity
represented by the coefficient Icl in (2. 25}, it is
convenient to rescale the momentum variable in
the direction perpendicular to the layers according
to q&~&&~~ q, . To keep the resulting coefficient of
q equal to unity, the spine o, ; and o; & must like-
wise be rescaled by a factor Icl/~. The effect is
then to replace Ic2 in (2. 25) by

IC = IC2/IC1.

As a matter of fact, the parameter &, corresponds
to a marginal operator which can change the sym-
metry of the critical scattering from "spherical"
to "ellipsoidal. " This can, indeed, already be seen
in the exact solutions of the anisotropic square-lat-
tice Ising model. However, we are not here in-
terested in this effect, so we will, via the rescaling
device, ignore it. Furthermore, in the interests
of simplicity we will write subseguent expressions
as if Ic, -=l (which is, of course, perfectly possible).

The second transformation is to make a shift of
the spin variables o& & and oa & so a,s to eliminate
the linear, or external, field terms in the Hamil™
tonian. This amounts to defining new spin variables
which are chosen to vanish at the "classical" mini-
mum of the Hamiltonian. Thus on putting
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Crl ~
-—Crl ~+NCM~50 ~,

cra ~
——cra ~+N~M26O ~, (S.2)

and neglecting a spin-independent term, the Hamil-
tonian becomes

I ~let 4' 2X=- $('Y(y + ((( )0')0 g+ 2'Tg 02'g 02+ (t'22+ tg((+ Kgg)0202]2

~Ot i\t PV

~1+1.+1+2 + ~2CraCra+2

+ 2020'( (T202+ 2'04 0'(T(0y')'

4Q 12MgM2 + 4Q )1,Mi + Mg, rg ——h~,
2 3

4Q»M, M, + 4uaaM2+ Ma~a = I „2 3
(3 4)

which go linearly to zero with h, and II2, respective-
ly. The nem interaction parameters are then given
by

(Qg g Og (Tg 0)0'g'
a

+ 2M1201010202+ +2202020202} y (3 3)

where the momentum-conserving subscripts q, —q,
q', —q —q', etc. , have been omitted in the inter-
ests of clarity. Note that in the three-spin terms
Ãg and $62 lRbel the tel ms even in cd qpvhlle Ã3 Rnd

m4 label those odd in cr&, . The elimination of the
terms linear in cr &, and cra, is subject to choosing
M1 and Ma a,s the unique roots of

then acting on the system is ha which corresponds
to the original uniform field II acting on the meta-
magnet, which is the situation of experimenta, l
interest. Accordingly, we consider this case first.
Many terms in (3.3}now vanish; in particular we
have r» = zv3 = M4 =0 so tha. t the only para, meters
a,re r&» xaa, Ic, so&, sea, and the Q;&. Furthermore,
any fifth-order terms like 0~cr~cr~cricr» 0 ~crig lcracra

etc. , which are odd in o» must also va.nish iden-
tically.

To generate the renormalization-group recursion
relations, we now assume, as usual, that the non-
quadratic parts of the Hamiltonian are small and
calculate by perturbation theory. ' A new, re-
normalized Hamiltonian K' is generated from 3C

by choosing a, rescaling factor b&1 and integrating
out all spin variables o j,- and c.a,- of momentum
such that b q lies outside the original Brillouin
zone. We will indicate wave vectors in this outer
momentum shell by a, superscript &. A rescaling
of momentum space by the factor b, a,nd of the
spins by factors e& and ea which, in contra, st to
previous work we will allow to be distinct, results
in a Hamiltonian of the same form as R (allowing
for higher-order terms). The recursion relations
give the values of the renormalized interaction
parameters.

The perturbation theory involves the two distinct
inverse Feynman propagators

&1,1= &g+12ulg &1+4ulaMa, &ia = «gaM&Ma,
2 2

2 2 (3. 5)
xaa = xa+12uaaM2+4u~aM&,

] 2G s (4 T's(. ~
e s }= 'T u +

2 2G, (q, r22, e„~)=r22+e2(q„+~@,),
(3. I)

zoi = 4u~aM2, zva = 4uaaM2,

Ã3 = 4Q yaM» 204 = 4Q pi My . (S.6)

These va, rious relations would, of course, be
altered if we had explicitly carried along the six-
spin terms in the origina. l spin weighting function
(2. 1) instead of dropping them in (2. 7). However,
it is clear that me could, by making a, shift, still
obtain a Hamiltonian of the form (S.3) except that
five-spin and six-spin terms mould enter. How-
ever„we expect these to be thermodynamically
irrelevant.

The thermodyna, mic limit may be taken by letting
2'N-~ whereu—pon the sums f; become the inte-

grals (2TT) "fd"q. These momentum i.ntegrals run
over the "rectangular" Brillouin zone (2. 11) (re-
scaled as explained above}. This zone may be re-
tRlned formally fox' IBost of the renormallzatlon-
group arguments developed below although for tech-
nical reasons it: may be useful in explicit calcula-
tions to approximate it by a "spheriea, l" zone
lq l

~ &/a, with some suitable mean lattice spacing
a. We will do this where convenient.

The tricritical point is expected to be in the plane
I2( =0 (i.e. , H =0) where M& ——0. The only field

in which, for reasons to be explained, we have al-
lowed for variable amplitudes of the q terms.
Typical graphs which arise from the u», u», and
u;,. vertices are shown in Fig. 2 where the propa-
gator Gl is indicated by a sobd line, while Ga is
denoted by a broken line.

As a result of integrating over spins in the outer
momentum shell, terms linear in cra„- Rre regener-
ated spontaneously. The graphs responsible for
this in leading order are shown in Figs. 2(a) and

(b). To retain zero h2, we accordingly make a
secondary shift of the cra - variable after each itera™
tion of the renormalization-group transformation
chosen to eliminate this new linear term. Thus
the recursion relations we mill now quote include
the effects of the momentum shell integration, the
spin resca, ling, and the secondary shift.

IV. RECURSION RELATIONS AND FIXED POINTS

We now analyze, in detail, the recursion rela-
tions for the case discussed above, of zero ordering
field. It will become apparent that the parameters
Qaa~ Qia~ and ZU2 aI'6 strongly irrelevant~ going to
zero rapidly as the renormalization process pro-
gresses. Consequently, we will here suppress the
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FIG. 2. Some of the graphs involved in the perturba-
tive calculation of the recursion relations. Solid lines
denote the propagator G1(q); broken lines, G2(q ) ~

precise dependence of the recursion relations on
these variables. The full recursion relations to
leading order are given for reference in Appendix
A . The essential features of the recursion rela-
tions to this order are given by

r 11 = C lb "[rll + 12A10ull —4A11&g

—2A10W 1/raa+ O(ula, Wl wa)],
2

r22 = cab [r?2 —2A20ml+ O(ula~ uaa w? wlwa)1,2 Ml 2

e,' =c', b " 'e, +O(zP„w, wa),

e,' = c',b ' 'e, + O(wa, , w, w, ),

K = K + O(ulay uaag wag wlwa)p
2

w,' = clcab [wl —12A20w, ul, +4Aalw,

(4 1)

(4. 2)
(4. 3)

(4.4)

+ O(wlu12& W2ulay Wlw2)] y (4. 5)

W2 c2b Iw2+3 A30wl+O(wauaa& wlula& way wlu22)] y
3 -2df Q 3 3

(4. 6)

To justify the order indicated for the error terms
here we must check that the contribution from the

graph in Fig. 2(d) is independent of qa in order
c, since this is the leading correction in (4. 3).
This is done in Appendix B.

Under the spin rescalings (4 ~ 11) and (4 ~ 12) most
of the terms in X become strongly irrelevant. In
particular taking u;; = O(e) and u); =O(vV) the re-
cursion relations for these strongly irrelevant
variables become

ea = b [ea+ O(e )],
) b 2+6/2[w + O(e3/2)]

(4 ~ 13)

(4 ~ 14)

uaa ——b "[uaa+ O(e )], ula = b [ul? + O(e )] .
(4 ~ 15)

We see, in particular, that the q dependence of the
a 2 propagator drops out so that

in which the superscript & indicates integration
over the outer d-dimensional shell as explained
previously. The factor 1/raa in the coefficient of
w', in (4. 1) arises from the secondary shift of the
spin va.riables (see Appendix A) ~

For vanishing sv1 and zo2 it is known that the re-
cursion relations have fixed points with u = O(e)
and r = 0(e). ' Inspection of the full relations in-
dic ates that the inf luence of so, and st becomes fe lt
when they are of order 0 e. This justifies the
orders of the terms retained in (4 ~ 1) to (4 ~ 9)~

Normally the spin rescaling factors c, and c2
are chosen to keep the coeff icients of q, namely
e, and e2, constant and equal to unity. ' " If this
rescaling is used so that ra & r, = O(e) as discussed
above, then, ~22 diverges when ~» is at criticality.
In addition the propagator 62 approaches zero.
Effectively this means that one loses control over
the 0 2 spin variables. To avoid this we rescale so
as to keep ~22 fixed in place of e2 while keeping

e, = 1 as usual. Consequently we choose

c, =b ' [1+O(e )], (4 ~ 11)

c, = b' '/'[1+A„w', /r„+ O(e')]. (4. 12)

~ 4 -3dr 2 2
L+ 11 36&2P+ 11 + 24&21+»~ 1

Ga(ll) - 1/raa . (4 ~ 16)

—4Aaawl+ O(ula, ulaw1)],

u,'2 = c,ca b [u,a+ 24A30u»wl —8A31w1

(4. 7)
It follows from these relations that after a sufficient
number of iterations l, the original Hamiltonian
(3.3) (with rla =wa = w4 =0) becomes renormalized
to the form

+ ( laull&ula& lawlpu22wl) wlw2)] y(4 8)
"4 -3dr 4n 22

——C 2 b (n 22
—2A4Pm)

1
2 1(rll+ q )el+1 2 r22 cal?2

4w

whe re

A, =A', „(r», raa, e» ea, Kq b)

2 2 4xI+ O( aalu ulag ulaWly uaaWay Wa)J, (4. 9)
~1 '

' 0 10 102 +11 l (710 10 1017
«3I 4p pe

(4 ~ 17)
where we have dropped the tildes from the 0, vari-
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ables since these are unshifted when h, =0, and
where, as before, we omit, the momentum conserv-
ing subscripts. As explained, x» is held fixed in
this Hamiltonian, so that only x11, w1, and u1,
change under further iteration. Truncated at order
e their recursion relations are then

0.5

0.4
1'll = b (rll + 12 41ou 11 6Alolo1/o'22) ~

lvl b (~1 1 A201 11 + 6A20~1/ 22)

(4. 18)

(4. 19)
0.3

u ll b ( 11 86A20u 11 + 24A2ou ll ~ 1/+22

—4A2olol/t'22) . (4. 20)

In deriving these relations we have set d =4 in all
the integrals A, and used (4. 16) in (4. 10) to ob-
tain A, =A, o/r22 To .simplify further we define

0.2

x =

nial/l'22-

M2-H, (4. 21)
0.1

where the last parts of the formula serve as a re-
minder that so~ vanishes if the origina, l field II va, n-
ishes, and has an initial va, lue proportional to II.
The recursion relations may then be written «) 0 (b) O. t 0.2

r,', = b Io'1, +128,o(r»)u»-6Alo(rll) x], (4. 22) FIG. 3. Fixed points and Hamiltonian flows in the
(ups, x) subspace with x=ul1/%22.2

bu„=ul, (e lnb —36A2ou„+24A2ox) —4A2ox, (4. 23)

bx= x(e lnb 24A2oull +10A2ox) (4. 24}

(a) u*„=o,

ull =22~

(C) ull 9 6&

(d) ull = 4 6
&

where

x*=0

0

x*=&e
6

(Gaussian),

(Ising -like),

(Ising-like),

(Gaussian-like),

(4. 25)

e = e Inb/A2'o(r„= 0, e, = 1) = ze, (4. 26)

in which K is a consta, nt independent of b but de-
pendent on the shape of the original Brillouin zone.
The corresponding eigenvalues A& -—b & and eigen-
vectors y; of the linearized recursion relations

u 11 u 11

- x —xI

&ac

@11—Q11

- x —x+-~

are given in Ta,ble I.
The fixed-point values of r *follow from (4. 21)

and thence, by linearization in the standard way, '

the critical exponent v may be found to order e
(see Table I). By (4. 11) it follows that 1I = 0(e ).

These relations have a structure quite similar
to those for the Baxter-like anisotropic XP model
analyzed by Wilson and Fisher. The last pair of
relations determine the fixed point;s; the correspond-
ing Hamiltonian flows in the (u„, x) subspace are
sketched in Fig. 3. To order e the fixed points
are found to be

2/X = 'N 1/ 'V22 ~ 2 Q» ~ (4. 28)

i.e. , for small enough fields H. At first sight a
crossover for small fields is surprising since the
critical behavior is still expected to be Ising-like.
However, since the exponents for fixed points (c)
are still of Ising character this expectation is con-
firmed despite the change of fixed point. (In case
our original spins had ~ =2 or more components,
a genuine crossover would occur here. 'o)

On the borderline x = 2 u», which determines the
tricritical field H„ the fixed point (d} is stable and
determines the txicxitical behavior. For slightly
smaller initial fields II the behavior crosses over
to the Ising-like fixed point (c); But for larger
fields, x & —,'u», there is a "critical run away"
leading to negative values of u». In this circum-

The terms Gaussian, Gaussian-like, and Ising-like,
describing the fixed points above, indicate that the
exponents found (at least to order e) are the same
as those of the normal Gaussian or Ising-like Hamil-
tonians. "

To interpret these results we assume initially
that u» & 0 (as follows from the definitions). For
zero uniform field, H, one has x=—0; the fixed
point (b) is then stable tin the(u», x) plane] and
controls the critical behavior, which is Ising-like
(n=l), as expected. For smallfield Hand, hence,
small initial x there is a crossover to the fixed
point (c}. This fixed point is stable whenever
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TABLE I. Fixed points, eigenvalues A&, and corresponding eigenvectors
y~ for the recursion relations (4. 22) to (4. 23). Also given is the exponent
p to O(e). Note that e is defined in (4. 26) and g=O(e ) at all fixed points.

Fixed points ul1 x*

0 0

yl y2

(c) (1, 2) -e (2, 3) m+I2e

(d) (j., 2) c (1, 3)

stance sixth-order terms in o., are required to sta-
bilize the Hamiltonian and a new rescaling is needed
to keep the mean magnitude of o, finite. This then
corresponds to the existence of a first-order tran-
sition since the sign of the mean value of o, will be
fixed by an infinitesimal ordering field h, (~H~).
The exponents appropriate to the fixed point (d) are
the tricritical exponents. But as already explained
these are, for small &, just those of a Gaussian
fixed point, i.e. , in accord with Landau theory.

To this point we have discussed the new fixed
points only to leading order. However, it is, in
fact, not hard to show that the fixed points (c) and

(d) must be Ising-like and Gaussian-like to all or-
ders in E. Thus the renormalized Hamiltonian
(4. 17) is only quadratic in the spin variable oz and
there is no corresponding momentum dependence.
Accordingly, in the corresponding partition func-
tion we can explicitly integrate over all the o.2», vari-
ables. Neglecting spin-independent terms this leads
to a reduced Hamiltonian

(Ty oy oy op~ (4.29)

the reduced Hamiltonian (4.29), down to three di-
mensions. Hence, we may take over the analysis
of Riedel and Wegner for the present model and
conclude that the tricritical behavior will be clas-
sical except for logarithmic corrections in three
dimensions.

V. EFFECTS OF THE ORDERING FIELD

We now discuss the full Hamiltonian (3.3) which
includes the ordering field h, -H~. The procedure
will follow that used in Sec. IV. Recursion rela-
tions are calculated recursively assumming u;, ,
w;, and x» are small. One might include x,2 in a
more general two-component propagator G„.(q) but
this proves unnecessary. As before, the spin re-
scalings are chosen to keep e, and x» fixed. Sec-
ondary shifts of both o., », and o2; are now needed
at each stage of iteration. The parameters e2, zv2,

u12& and u» are found to be irrelevant as before,
with (4. 13) to (4. 15) still applying. In addition we
find

(5.1)

with

2/u = ull —$01/2%2 (4. 30)

so that zv, is also strongly irrelevant for small &.

After sufficient iterations, therefore, the renor-
malized Hamiltonian becomes

which is independent of the original o2», spins. If
the six-spin terms in o., had been carried along they
would still appear here; they are specifically needed
for stability if sv, & 2~» u» when u becomes negative.
For ri & 0, R„d is a standard Ising-like Hamiltonian.
If u can approach zero it becomes precisely the tri-
critical Hamiltonian treated by Riedel and Wegner 2'

Standard analysis shows that the tricritical fixed
point remains Gaussian down to three dimensions
where logarithmic dependences on H and T appear
in the critical behavior.

It is now evident that the crucial feature in our
whole calculation was the strong irrelevancy of the
parameters e„u2, u», and u», which followedfrom
(4. 13) to (4. 15). About the Gaussian fixed point,
(r*, , = 0, w*; = 0, u,*, = 0) these parameters all remain
irrelevant for e & 2 (or d & 2). Thus we are justified
in integrating out the o2 - spin variables and using

JC, = —— [(r»+ q ) cr, o~+ 2r~z o, o2+ r~z o2 o2]
2

llhl—ZOl Crl Crl O2 —204
'

Ol Ol Ol
+ +Opa a

+ql~ goal

(5.2)

We may now again integrate out the ™o2variables
which appear only quadratically to obtain the re-
duced Hamiltonian

JC„,=-~ (i'+0 )IJ, ii, —N f 6, 0;ti,

l O1O1O1
I

q q, '.
(5.3)

depending only on the o, ; variables. The reduced
parameters are now
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2
r12/ r22 lU = W4 —W1 r12/raa (5.4)

while u is still given by (4. 30). However, it must
be borne in mind that there have now been a series
of shifts in o, ; in deriving (5. 2). In these shifts
the original sixth-order term in 0., ~ contributes
towards the value of u» in (5.2) in such a way as
to preserve stability. Accordingly, we may as-
sume that u in (5.3) is also positive even though
close to the tricritical point (which occurs when

M, =0) u is vanishing.
Now for the reduced Hamiltonian (5.3) to be at

criticality, the coefficient w =w(H, H, T) must van-
ish and r =r(H, H', T) must lie on the surface of
criticality, which, neglecting higher-order irrel-
evant variables, we may write r =r, (u). These two
constraints determine a line of critical points in
the (H, H, T) space. In order 4 these loci may be
found from the original Hamiltonian by applying a
Landau-type analysis; they are seen to form the
edges of the two "wings" in the full tricritical phase
diagram. ' For & & 0 the location of the wings will,
of course, shift but they will still be determined in
part by irrelevant variables. However, it is clear
from the single-component nature of K„o that the
critical exponents on the wings must again be Ising-
like. It is also clear that the directions in(H, H, T)
space corresponding to relevant and irrelevant ei-
genoperators about this Ising fixed point will be
skewed" relative to their simple directions which
are determined by the symmetry of the original
Hamiltonian alone when H=Ht =0. We hope to re-
turn in the future to study these points, and in par-
ticular to determine the tricritical equation of state.

I6W1 u12 A 11 + 4W1 A21 + I 2W1 W2 Ala) I

"3 -2dr 4 3
zU2 c2 6 l,zU2 36262 up2Ap2 4zU1 u1p App +3 201 A3p

+ 36waA, 2),

u11 c1 (u11 11A20 u12 02 u11 w1 21

+ 8ula W1 A12 —41U1 Aaa) q

2 4

2 2 3d
u1p = c1 cp & (u12 —12u11u12App —12upp u12Ap2

(A3)

(A4)

(A5)

—16u,2A»+ Su, 2 sv, A2, + 72u, 2 zo2Ap3 + 24u» zv, A3Q
2 2 2 2

+ 24uaaw1 A1 —8W1 A21 —72W1 lU2 A12),

uaa = ca b '
(uaa 36"aaAoa —4u, aAao+8u, aw, Aao

+216uaa waApa —162waA04 —2W1A4p) &

(A6)

(A7)

There is also a spontaneously generated field h ap-
pearing as the coefficient of the spin variable 02;,
namely,

jl = Ca(3W2 A pl + W1A10). (A8)

02 ~-02 ~+XaM 6P ~, (A 9)

the final recursions relations for r«, M)„and u;&

are then

r11 r11 + 2]. ~+4u12 +~

r22 r22 62 ~ 12u22 M

1 1 u12 ~s

zo2 = ge2+4u22M,

(A10)

(A11)

(A12)

(A13)

The various integrals A, were defined in Eq. (4.10).
To eliminate the linear term (A8), we make a

secondary shift in the spin 02;. If we let
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APPENDIX A: LEADING RECURSION RELATIONS

We quote here the basic recursion relations for
the parameters r;, , m;, and u;& complete to orders

, and e, respectively, assuming r„=O(e),
lU, =O(e'~ ), u, &

——O(4:). These complete the truncated
expressions (4. 1) to (4. 9) given in the text.

Before making the secondary shift discussed in
Sec. III, the renormalized interaction parameters
are given by

The term linear in o2 -, is eliminated provided M
satisfies

A, +2r22M+3u»M +4u22M =0. (A15)

In the text, a spin rescaling is chosen such that
u2 and u22 go rapidly to zero and r22 remains con-
stant as one iterates. Thus, after many iterations
one can approximate 18 byI= —b/2raa (A16)

Insertion of this expression into (A10)-(A14), plus
truncation of the irrelevant variables in the result-
ing recursion relations, leads to the equations
quoted in (4. 1)-(4.9). The recursion relations
quoted in (4.3) and (4.4) for e„ea, and ll have not
been treated in detail here, but are adequate for
our purposes as given in the text.

~2r» = c, b (r»+12u»A, 0+4u, aApl 4 wlA11),

raa = Ca b (raa + 12uaaA01 + 4u12 Alp —18W2A02

(Al)
APPENDIX 8: MOMENTUM DEPENDENCE OF A FEYNMAN

GRAPH

—2~1A2o~~
~2 A

W1 —C1 Ca b (wl —121U2 u12Apa —121U1 u11Aap
We wish to show that the graph in Fig. 2(d) is in-

dependent of q to zero order in q. Thus, we must
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consider the integral with

(Bl)

We may neglect x, = 0(&) and consider the integral
in four dimensions. In the limit of small q we can
write

sin 6deI kq)= 3 p, qa+k'+2qkcos6

But this angular integral has the value

I,(k, q) = —,'~min(q ~, k ~),

(»)

(B4)

(B2) which is independent of q since k satisfies z/ab & k
~ w/a while we are only concerned with q ~ v/ab.
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