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A renormalization-group treatment of the tricitical behavior of a d -dimensional metamagnet in a
magnetic field is presented. For small € =4 — d > 0, the tricritical behavior is described by
competitions between pairs of Gaussian-like and Ising-like fixed points. Despite the increased number of
independent interacting fields, we find that the metamagnetic tricritical exponents maintain their
classical values for d > 3, with logarithmic corrections in three dimensions. The conclusions thus agree
with those of Riedel and Wegner for an intrinsically simpler model appropriate to He’-He* mixtures.
The effect of an ordering field is analyzed, and Ising exponents are found on the “wings” of the

tricritical point.

I. INTRODUCTION

An ideal metamagnetic crystal is made up of
identical plane layers of spins with uniaxially aniso-
tropic ferromagnetic coupling between spins with-
in each layer but relatively weak antiferromagnetic
coupling between adjacent layers. In zero external
field, a metamagnet behaves as an anisotropic
(Ising-like) antiferromagnet. The corresponding
antiferromagnetic transition remains continuous
(i.e., of critical character) in a small enough ex-
ternal field H. However, for sufficiently large
fields, the transition becomes first order. The
change-over from continuous to first-order transi-
tion occurs at the tricritical point, ! (H,, 7;). Con-
siderable interest attaches to the behavior of a
metamagnet in the vicinity of the tricritical point
and, in particular, one would like to know the val-
ues of the corresponding tricritical exponents.!

Riedel and Wegner®?® have discussed a single-
component spin model which provides a reasonable
description of He®-He* mixtures in which a tricriti-
cal point is also observed. Using a renormaliza-
tion-group approach*® they conclude that for spa-
tial dimensionalities exceeding d =3 the tricritical
point of their model is fully classical, i.e., in ac-
cord with a Landau-type phenomenological theory
with exponents® o, =3, B,=1, ¥ =1, 0,=5, etc.

At d =3 they find the exponents retain their classi-
cal values but with logarithmic corrections to the
critical behavior of most quantities. (For d<3
nonclassical tricritical exponents appear® but we
shall not be concerned with this region. )

The Hamiltonian needed to describe a metamag-
netic system is appreciably more complicated than
that considered by Riedel and Wegner. In the first
place there is the spatial anisotropy implied by the
layer structure. In the second place, in the pres-
ence of an external field H (which is vital to the ob-
servation of a metamagnetic tricritical point) there
are essentially two nonequivalent classes of spins
(since H acts oppositely on ferromagnetic layers
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oriented in opposite senses), In particular, if a
staggered ordering field A, which is oriented “up
on alternate layers and “down” on the interleaving
layers, is introduced there is no question as to the
inequivalence of the two sets of layers. This in~
dicates that a proper renormalization-group analy-
sis of a metamagnet, which is the aim of the pres-
ent work, should allow for two independent local
spin fields, or, equivalently, consider a two-com-
ponent (or # =2) spin field. To omit this precaution
may lead one to overlook ordering effects associated
with the sublattice difference by averaging them out
in the initial renormalization stages. The proper
treatment might well lead to nonclassical tricriti-
cal exponents for d=3 in contradistinction to the
results of Riedel and Wegner. Indeed, the two-com-
ponent Baxter-like model treated by Wilson and
Fisher* resembles the system we will analyze here
and does exhibit nonclassical tricritical behavior
for d< 4 (with Ising, or n=1, exponents).

In the Sec. II we discuss the Hamiltonian of a
metamagnetic system in a form suitable for a re-
normalization-group analysis. In particular we
consider a d-dimensional system with identical,
ferromagnetic (d — 1)-dimensional layers coupled
in the remaining dth direction by antiferromagnetic
interactions. As usual, *® continuous, Ising-like
(n=1) spins with s* and s® weighting factors are
utilized. However, the distinctions between ad-
jacent sublattices is retained. By iteration of the
renormalization-group transformation for small
€=4-d>0, with suitably chosen, distinct rescal-
ing factors for the different field components, it is
shown that many terms in the full Hamiltonian be-
come thermodynamically irrelevant. After a suf-
ficient number of iterations, these variables may
thus be neglected and a simple picture emerges.
Contrary to the expectations aroused by the Baxter-
like model, however, the tricritical behavior is
described (in zero staggered field) by a competition
only between pairs of Ising-like and Gaussian fixed
points. The calculations then indicate that the tri-
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FIG. 1.
metamagnet.

Lattice structure of a d~dimensional layered

critical exponents retain their classical values
down to d=3; no new nonclassical tricritical be-
havior is found! Indeed, an explicit partial trace
over the renormalized Hamiltonian leads to a re-
duced Hamiltonian of just the form considered by
Riedel and Wegner.

It is straightforward to extend the analysis to in-
clude the staggered field. This then shows that the
critical points remaining on the “wings” of the full
phase diagram! have Ising-like character; this re-
sult is, perhaps, not surprising but has not pre-
viously been established.

II. METAMAGNETIC HAMILTONIAN

We consider a system made up of continuous,
Ising-like or single-component (z=1) spins each
- associated with a spin weighting factor®®

e —exp(— 457 = fyst = fysb = e u). (2.1)

The spins are located on the N sites, ﬁ, of a d-di-
mensional lattice. Our interest centers on the case
of a tetragonal lattice which is composed of (d—1)-
dimensional layers. It is convenient to write d~1
=d’. In each layer we suppose sites are separated
by nearest-neighbor vectors 9, of length Iﬁl |=a,
(see the diagram in Fig. 1). Corresponding spins
in adjacent layers are taken to be separated by an
orthogonal nearest-neighbor vector 5; of length

I't">l |=a,. All sites are equivalent under trans-
lations generated by 6, and the '5”. However,
for the reasons explained in Sec. I, we will label
the layers alternately a and b (see Fig. 1); the
sublattice of a sites will be denoted A, and of &
sites, B.

We are interested in a system in which the cou-

pling between spins in the same sublattice (in par-
“ticular within each layer) is predominantly ferro-
magnetic, while the coupling between sublattices
(in particular between adjacent layers) is pre-
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dominantly antiferromagnetic. On such a sys-
tem we wish to impose a uniform field H which,
for small values, should merely shift the zero-
field antiferromagnetic transition. However,
when H is large enough, it is expected to produce
tricritical behavior and then a first-order transi-
tion as the temperature 7 varies. The appropriate
ordering field (at least for small H) is the stag-
gered magnetic field A', which acts equally but
oppositely on the two sublattices 4 and B. For
theoretical convenience, however, we transform
this system into one in which all the interactions
are predominantly ferromagnetic, by changing the
sign of each spin s(R) lying on one sublattice. This
does not, of course, alter the partition function or
free energy. The magnetic part of the Hamiltonian
may then be written

K== 2R ~R)s@s®)
R,R’

- HZ eiforBg(R) —H*Zs(ﬁ), (2.2)
R R

where we take the origin of R on an asite, while

Ko=70,/a? (2.3)
is the reciprocal vector corresponding to the dis-
placement between the two sublattices. The cou-
pling J(R - R’) may now be taken as (predominantly)
positive, i.e., ferromagnetic. The total effective
Hamiltonian is

J_C{S(ﬁ)}="5cint/kBT—ZW[S(ﬁ)] , (2.4)
R

and the trace operation required to calculate the
partition function Z(7, H, H"), from ¢* is simply
integration over each s(R) from — to «,

It is evident from (2. 2) that when H' and H are
nonzero, the spins on the two sublattices are in-
equivalent. Thus we now implement a scheme de-
signed to retain the distinction, in accordance with
the philosophy explained in Sec. I. To this end we
define sublattice delta functions by

AR)=1, 2,R)=0 if RCA4,

(2.5)
A,R)=0, A,R)=1 if RC B,
and write
S(R) = 5,(R)AR) + 55(R) A, [R) . (2.6)

This definition of the new spin variable sa(ﬁ) leaves
it undefined when RCB; for convenience we then as-
sume that s.(R) vanishes identically—likewise for
sy(R) when RC A. The total Hamiltonian (2. 4)

then becomes
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ff‘c-;- 20 {Baal® = R[5 R)5aR") + 8,R)55 @]+ Ko (& = R 5,(R)5, @) + 5, @)so®N]}

&, B

;[ a(R) _sb(R) LT Z a(R +Sb(R) "'—Z { a(R) sb(ﬁ)]z} "f4 ; {[Sa(ﬁ)]‘i'{“[sb(ﬁ)]‘l}; (2- 7)

t_ gt - -

where L'=H /kBT, L—H/kBT, and St(q) Z ezq R a(R)A (R)isb(R)Ab(R)]

e e a e (2.10)
Kqo(R —=R") =Kp(R —=R') =J (R =R")A,R)AR)/ k5T, where § runs over a half-size Brillouin zone of

(2.8) N, =3N points (N being the total number of spins)
Kab(ﬁ _ﬁ,) =Jab(§ —ﬁ')/kBT specified by
- = - o Q) [=7/a, |di|=7/2a,. (2.11)
=J(R =R")A,(R)A,(R')/R5T. (2.9)

The wave-vector components d, are parallel to the
layers, while q, is directed perpendicular to the
layers (i.e., parallel to SL). The inverse trans-
formation to (2.10) is

The equality of K,, and K, stems from the transla-
tional invariance of the Hamiltonian when H'=H=0.
For simplicity, terms of order higher than s‘*,

rising from the weighting function in (2. 1), have
arising from the weighting e.1, NCIES I

not been indicated. The significance of these terms "8 (Q)"'S @ )N, RC 4,

will be discussed later. . (2.12)
In order to diagonalize the quadratic part of the s(R)=N;! Ze"“'R[&(a) -5.(Q)], RC B,
Hamiltonian (2.7) we c_l_efine the transformed spin a
variables §,(q) and §_(q) by so that the Hamiltonian can be written as
]
=N Z {11 - R(@)8@)3, (- @) +[1 - K@)IZ@)3(- )} + 2273,(8) + 2L5.(0)
SIADD ZZ [5.@)8.@)8@ N8~ G -7 -8 +68,@8,@)5.@N5.(-3-& -&")
T w
+8(Q)8.(4)8.@N8.(-a-T -T")]. (2.13)
[
Note that H and H' (= L, L") now couple only to a low-momentum expansion of the quadratic terms
zero-momentum spin components. The trans- in (2.18) as
formed interactions are defined b; 5 > ,
1o¢ Ineractions an v 1-R,@=(T = To)/ T+ (j'd/ksT)d}
R(@) =Ku(q) £ K, 2.14 .
() = Kae(Q) »(@), ( ) +(54a%/kyT) g2+ , (2.18)
where " - .
N D 1-K(Q=(T-T.)/T+(jlal/ksT) 4%
K, = TRE R
wl@ =g ¢ T Ha(R), (% kD) e+, (2.19)
a P - where
Rop(@ = 20 €T R, (R) . (2.15) - s s
7 ksTy=J(0) and k,T.=J(0)-27,,0). (2.20)
It is not hard to show that Thus T, is the usual mean-field critical tempera-

AN > A 4 iem ture; but note that for ferromagnetic interplanar
K(q)=J(q)/ksT = (ks T) Z: e'""J(R), (2.16) couphng one has J,,(0)>0 so that 7,> 7..
R It is instructive at this point to specialize to the

where J(R) i§ ‘the original spin-spin coupling in case, indicated in Fig. 1, where there are only
¥ iue. In addition; one has nearest-neighbor interactions of strength J; in the
Ao oA A - layers but first- and second-neighbor interactions
kg T = - 2. .
5 TE(Q) =J(q) = 2/5(a) , .17 of strengths J, and J{, respectively, perpendicular
where J,;(§) is defined in analogy to (2.16) but in to the layers. One finds

terms of J,,(R)[see (2.9)]. . .
For interactions of finite range we may now make J(0)=2(d'dy +JL+J1), Jg5(0)=2d, (2.21)
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and
(2.22)
(2.23)

From this it is clear that we may expect the coef-
ficients j", j*, and j. to be positive (as usual).
However, the coefficient 7! entering in (2. 19) may
be of either sign., While the possibility of a nega-
tive sign is, at first sight, surprising, it does not
violate the stability of the Hamiltonian with respect
to §_(§)f1uctuations since there is a finite momentum

j'=d, jt=di+4JdL,
]'E=Jn, ].J.':-JJ.+4J1-
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cutoff. Furthermore, the coefficient j: will be
shown in Sec. IV to correspond to a strongly irrele-
vant variable.

Finally, in order to put the Hamiltonian in a
form convenient for renormalization group calcula-
tions, we rescale the spins by writing

§@ = (ks /5 "} %0
A I 2v1/ 2 (2.24)
5.(q) = (kp T/j .ai) G2, *

The Hamiltonian then becomes

— 1 1
=3 j_(afl +qf+1q3)0 300,23 -5 J“ (72 + g%+ (g 3)05, 305, 3+ Py 0y, 5+ 10,5
q q

= J_ L J_“ (21101, 301, 301,30+ 01, -G e+ + 201204, 301, O, @0+ O, <=t + U202, 302, 02, 3¢ 0, wieitwit*) 5
qa aq q

where [; here denotes a;* N3'y;, while

vy=kg(T - Tp)/j"a%, vy=ky(T=T.)/j a2,
(2. 26)
Ky =j'a/i"al, Kky=j'a%/j'al, (2.27)

hy=VZ H/ (ks T a2 | y= V2 H (ky Tj'af*?) /2,
(2.28)

uy =305 f4 (ks T/5")2 ,
u1p =300 falls T35,
Uz =%aﬁ'4f4(ks T/]'I-I-)z .

The final form (2. 25) of the Hamiltonian re-
sembles the anisotropic XY (or z=2) model treated
by Fisher and Pfeuty” and by Wegner.® However,
they discussed only the case of vanishing fields
hy, iy~ 0. Note that z; now describes the staggered
or ordering field of the original metamagnet, while
hy is proportional to the original uniform field
which is expected to bring about the tricritical be-
havior. Note also that if the system exhibits meta-
magnetic ordering tendencies so that jab(5)>0, then
the inequality 7 <%, follows (since, as explained
before, T,>T7.). Hence, as discussed by Fisher and
Pfeuty,” the system will cross over rapidly to Is-
ing-like (#=1) behavior when %, =k, =0. For our
purposes, however, it will be essential to investi-
gate effects of the terms 7,0, and 7,0, for finite %,
and %,, Indeed, if we did this with neglect of the
momentum squared (or gradient) terms in ¢, we
would just maximize 3¢ which would amount to a
classical or Landau-type treatment of the problem.
This in turn would lead to a phase diagram with a
tricritical point exhibiting classical exponent val-
ues. The renormalization group treatment, of
course, allows for the momentum dependence (i.e.,

(2.29)

(2.25)

!

the gradient terms) and determines which variables
are relevant and which irrelevant. Dimensionality-
dependent corrections (if any) to the classical ex-
ponent values are expected to emerge from the cal-
culation.

III. RENORMALIZATION-GROUP TRANSFORMATION

Before undertaking a renormalization of the
Hamiltonian (2. 25) we make two transformations.
First, in order to remove the spatial inhomogeneity
represented by the coefficient «, in (2. 25), it is
convenient to rescale the momentum variable in
the direction perpendicular to the layers according
to qpx{” 24.. To keep the resulting coefficient of
¢° equal to unity, the spins o0;,5 and 0, 3 must like~
wise be rescaled by a factor i, The effect is
then to replace «, in (2. 25) by

K=Ky/Ky. (3.1)
As a matter of fact, the parameter x, corresponds
to a mavginal operator which can change the sym-
metry of the critical scattering from “spherical”
to “ellipsoidal.” This can, indeed, already be seen
in the exact solutions of the anisotropic square-lat-
tice Ising model.® However, we are not here in-
terested in this effect, so we will, via the rescaling
device, ignore it. Furthermore, in the interests
of simplicity we will write subsequent expressions
as if «; =1 (which is, of course, perfectly possible).
The second transformation is to make a shift of
the spin variables 0y,3 and 0, 4 so as to eliminate
the linear, or external, field terms in the Hamil~
tonian, This amounts to defining new spin variables
which are chosen to vanish at the “classical” mini-
mum of the Hamiltonian, Thus on putting
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01,§= 01,3+ NoM; 05,4,

02,a=62,3+NaM265.53 (38.2)

and neglecting a spin-independent term, the Hamil-
tonian becomes

— 1 I - - - -
3C="é‘f_[("’u + 02)010'1 +27150,05+ (Vo + Qﬁ + ’“1%)02(72]
q

—L _L(W1U1010‘z TUW02020
avaq
+ W30 1 0305 + W, 5,0,54)

- J, j: J: , (4416161610
a”q "q

+ 2 1501010305 + U 3302050503), (3. 3)

where the momentum-conserving subscripts a, - E,
q’, —q—q’, etc., have been omitted in the inter-
ests of clarity. Note that in the three-spin terms
wy and w, label the terms even in 6y, ,,while w; and
w, label those odd in G, ,. The elimination of the
terms linear in G,,, and 0,,, is subject to choosing
M, and M, as the unique roots of

du 1, My My +4uy M3 + Myvy =hy (3.4)

Qu 1, MEMG + 40y M3 + My = oy '

which go linearly to zero with %, and %,, respective-
ly. The new interaction parameters are then given
by

1 =7+ 120, M2+ du, M2, 9y, =8u, My M,
7’2227’2+127/22M§+4u12M%, (3' 5)

wy =4u My, Wy =4usp M,

(3.6)

wy=4u oMy, wy=4uy M, .

These various relations would, of course, be
altered if we had explicitly carried along the six-
spin terms in the original spin weighting function
" (2.1) instead of dropping them in (2. 7). However,
it is clear that we could, by making a shift, still
obtain a Hamiltonian of the form (3. 3) except that
five~spin and six-spin terms would enter. How-
ever, we expect these to be thermodynamically
irrelevant.

The thermodynamic limit may be taken by letting
N, =4N- whereupon the sums [; become the inte-
grals (2m)™ [d%g. These momentum integrals run
over the “rectangular” Brillouin zone (2.11) (re-
scaled as explained above). This zone may be re-
tained formally for most of the renormalization-
group arguments developed below although for tech-
nical reasons it may be useful in explicit calcula-
tions to approximate it by a “spherical” zone
al=m/a , with some suitable mean lattice spacing
a. We will do this where convenient.

The tricritical point is expected to be in the plane
hy =0 (i.e., H'=0) where M, =0. The only field
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then acting on the system is %, which corresponds
to the original uniform field H acting on the meta-
magnet, which is the situation of experimental
interest. Accordingly, we consider this case first.
Many terms in (3. 3) now vanish; in particular we
have 7, =w; =w, =0 so that the only parameters

are 7y, ¥gp, K, wy, Wy, and the u;;. Furthermore,
etc., which are odd in ¢, must also vanish iden-
tically.

To generate the renormalization-group recursion
relations, we now assume, as usual, that the non~
quadratic parts of the Hamiltonian are small and
calculate by perturbation theory.*® A new, re-
normalized Hamiltonian 3¢’ is generated from iC
by choosing a rescaling factor 5>1 and integrating
out all spin variables G,,; and &, 3 of momentum
such that bq lies outside the original Brillouin
zone. We will indicate wave vectors in this outer
momentum shell by a superscript >, A rescaling
of momentum space by the factor b, and of the
spins by factors ¢, and ¢, which, in contrast to
previous work we will allow to be distinct, results
in a Hamiltonian of the same form as 3 (allowing
for higher-order terms). The recursion relations
give the values of the renormalized interaction
parameters.

The perturbation theory involves the two distinct
inverse Feynman propagators

GII(G, Y11,€1) =7y +31‘12’ (3.7
Gél(a’ Vazy €2, K) =72t ez(‘]% + KCIE) ,

in which, for reasons to be explained, we have al-
lowed for variable amplitudes of the ¢ terms.
Typical graphs which arise from the w,, w,, and
u;; vertices are shown in Fig. 2 where the propa-
gator G, is indicated by a solid line, while G, is
denoted by a broken line.

As a result of integrating over spins in the outer
momentum shell, terms linear in G, ; are regener-
ated spontaneously. The graphs responsible for
this in leading order are shown in Figs. 2(a) and
(b). To retain zero 23, we accordingly make a
secondary shift of the 0,,; variable after each itera-
tion of the renormalization-group transformation
chosen to eliminate this new linear term. Thus
the recursion relations we will now quote include
the effects of the momentum shell integration, the
spin rescaling, and the secondary shift,

IV. RECURSION RELATIONS AND FIXED POINTS

We now analyze, in detail, the recursion rela-
tions for the case discussed above, of zero ordering
field. It will become apparent that the parameters
Uz, Ugp, and w, are strongly irrelevant, going to
zero rapidly as the renormalization process pro-
gresses. Consequently, we will here suppress the
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(a) (b)
(c) (d)

FIG. 2. Some of the graphs involved in the perturba-
tive calculation of the recursion relations. Solid lines
denote the propagator G;(§); broken lines, G,(d).

precise dependence of the recursion relations on
these variables. The full recursion relations to
leading order are given for reference in Appendix
A. The essential features of the recursion rela-
tions to this order are given by

711 =C20" vy + 12A0u gy ~ 4410k

- 2A10w§/7’zz + O(u 3, wywy)) s (4.1)

74y = C3b 7 5 — 2A501f + Oth 13 Uzz, W, wywy)],
(4.2)

e ll. = cib-d-zel + O(w?.’ w1wz), (4- 3)
e3=C30""%e, + O(w3, wyw,),
K" =K + Ot 13, gz, W, w1 05), (4.4)
wi =038 w, — 1245500, u 1y + 445 u}

+ Oyt 1, Wotk 15, wyw3)], (4.5)

A3 z-2d 3 \
wy=C30" w, +§-A30w§ + O(wWytt g5, Wit 15, W3, w1“zz)] ,
(4.6)
and

9 u 1= 36A20u§1 + 24A21“11w%

uly=Cib
= 4Aguf + O(uly, upw?)], (4.7
Uy = Efég b=3uy, +24A30”11w§ - 84y w}
+ Ot gt 1y, 3o, U yp0, ugowl, wiwd)] ,(4.8)
Ugy = C 301 gp — 240w}
+ Ouds, ufs, uipwi, uspw, w3)], (4.9)
where

— A9 o
Alm —Azm(7’11, Va2, €1, €2, K5 b)

>
-[le@e@", (4.10)

a
in which the superscript > indicates integration
over the outer d-dimensional shell as explained
previously. The factor 1/7,, in the coefficient of
w? in (4.1) arises from the secondary shift of the
spin variables (see Appendix A).

For vanishing w;, and w, it is known that the re-
cursion relations have fixed points with »= O(¢)
and 7= 0(¢).*® Inspection of the full relations in-
dicates that the influence of w; and w, becomes felt
when they are of order V€. This justifies the
orders of the terms retained in (4.1) to (4.9).

Normally the spin rescaling factors ¢; and &,
are chosen to keep the coefficients of qz, namely
e, and e,, constant and equal to unity,**™® If this
rescaling is used so that 7,> 7, = O(¢) as discussed
above, then, 7,, diverges when 7,, is at criticality.
In addition the propagator G, approaches zero.
Effectively this means that one loses control over
the G, spin variables. To avoid this we rescale so
as to keep 7, fixed in place of e, while keeping
e, =1 as usual. Consequently we choose

¢ =01+ 0(e?)],

Ca=0%"?1 1 Apquw?/ 755+ O(e?)].

(4.11)
(4.12)

To justify the order indicated for the error terms
here we must check that the contribution from the
w? graph in Fig. 2(d) is independent of ¢2 in order
¢, since this is the leading correction in (4. 3).
This is done in Appendix B.

Under the spin rescalings (4.11) and (4.12) most
of the terms in 3¢ become strongly irrelevant. In
particular taking u;; = O(¢) and w; = O(V¢) the re-
cursion relations for these strongly irrelevant
variables become

es=b"2[e,+ 0(?)], (4.13)

wg =2y + 0(?)], (4.14)

Ugp=0"*"[ug+ O(c 2)], Uz = b'2+e[u1z +0(€%)].
(4.15)

We see, in particular, that the ¢ dependence of the
0, propagator drops out so that

Go(Q)~1/755. (4.16)

It follows from these relations that after a sufficient
number of iterations I, the original Hamiltonian

(3. 3) (with 7,5 =w; = w, =0) becomes renormalized

to the form

_ 1 - -
chz"‘j (7’11+qz)0101 —%’szf 0202
2J)3 i

= f, L Ul"ﬂa‘”uj_f 5 01010104,
q qll d al all

(4.17)
where we have dropped the tildes from the ¢, vari-
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ables since these are unshifted when %, =0, and
where, as before, we omit the momentum conserv-
ing subscripts. As explained, 7,, is held fixed in
this Hamiltonian, so that only 7y, w,, and u,
change under further iteration. Truncated at order
€ their recursion relations are then

711 =b%(ry + 124,01, — 64,02/ 75,), (4.18)
wy = b2 (wy ~ 1245041411 + 5Agqw3/ 735), (4.19)
uy =b(uy 364420“%1 + 24Aao”11wi/7’za

- 44500t/ 75,) . (4. 20)

In deriving these relations we have set d=4 in all
the integrals A;, and used (4. 16) in (4. 10) to ob-
tain A;,=4,0/75. To simplify further we define

(4.21)

where the last parts of the formula serve as a re-
minder that w; vanishes if the original field H van-
ishes, and has an initial value proportional to A,
The recursion relations may then be written

x =w3/vy~ ME~H?,

1= b2[7’11 +124,0(7r 1) uy = 6419(n,) &), (4.22)

and
Butyy =uy1 (€ Inb — 36 gt 1y + 24 A50x) ~4A50x%,  (4.23)
dx=x(c Inb—24A455u,, +10450%) . (4.24)

These relations have a structure quite similar
to those for the Baxter-like anisotropic XY model
analyzed by Wilson and Fisher.* The last pair of
relations determine the fixed points; the correspond-
ing Hamiltonian flows in the (u,, %) subspace are
sketched in Fig. 3. To order ¢ the fixed points
are found to be

(@) #3,=0, x*=0 (Gaussian),
®) ufi=%e¢, x*=0 (Ising-like), (4.25)
(¢) ufi=%%, x*=+< (Ising-like),
(d) uf,=%8, x*=%€ (Gaussian-like),
where
€=elnb/Afy(7y, =0, e;=1)=Ke, (4.26)

in which K is a constant independent of & but de-
pendent on the shape of the original Brillouin zone.
The corresponding eigenvalues A; =b% and eigen-
vectors ¥ ; of the linearized recursion relations

l:“{l]‘u;kz] [ u11"u1*1]
=L,
X —x* x —x*
are given in Table I.

The fixed-point values of »*follow from (4. 21)
and thence, by linearization in the standard way, °

the critical exponent v may be found to order ¢
(see Table I). By (4.11) it follows that n=0(¢?2),°

(4.27)

DAVID R. NELSON AND MICHAEL E. FISHER 11

b Ve —w2ie 2
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u, /€

FIG. 3. Fixed points and Hamiltonian flows in the
(w43, %) subspace with x=w}/7y,.

The terms Gaussian, Gaussian-like, and Ising-like,
describing the fixed points above, indicate that the
exponents found (at least to order €) are the same
as those of the normal Gaussian or Ising-like Hamil-
tonians, 4°

To interpret these results we assume initially
that #,,>0 (as follows from the definitions). For
zero uniform field, H, one has x=0; the fixed
point (b) is then stable [in the(x,,, x) plane] and
controls the critical behavior, which is Ising-like
(n=1), as expected. For small field H and, hence,
small initial x there is a crossover to the fixed
point (¢). This fixed point is stable whenever

(4.28)

i.e., for small enough fields H, At first sight a
crossover for small fields is surprising since the
critical behavior is still expected to be Ising-like.
However, since the exponents for fixed points (c)
are still of Ising character this expectation is con-
firmed despite the change of fixed point. (In case
our original spins had #=2 or more components,

a genuine crossover would occur here. %)

On the borderline x =3u,;, which determines the
tricritical field H,, the fixed point (d) is stable and
determines the #ricritical behavior. For slightly
smaller initial fields H the behavior crosses over
to the Ising-like fixed point (c); But for larger
fields, x > 3u,,, there is a “critical run away’*
leading to negative values of #,;. In this circum-

2 1
X=w3/ Vs <z,
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Fixed points, eigenvalues A;, and corresponding eigenvectors

571 for the recursion relations (4.22) to (4.23). Also given is the exponent
v to O(€). Note that  is defined in (4.26) and 7=0(c?) at all fixed points.

Fixed points  uf; x* r* Vi A2 ¥a v
(@) 0 0 0 10 T (0,1 3
— —Ad )€ . n
) £ 0 5(7213_:? @,1) %€  (0,1) F+i3e
- AL 07 - _
© R e R I R 5
) 17 e 0 @2 € 3 3

stance sixth-order terms in o, are required to sta-

bilize the Hamiltonian and a new rescaling is needed

to keep the mean magnitude of o, finite. This then
corresponds to the existence of a first-order tran-
sition since the sign of the mean value of o, will be
fixed by an infinitesimal ordering field &, (< H').
The exponents appropriate to the fixed point (d) are
the tricritical exponents. But as already explained
these are, for small ¢, just those of a Gaussian
fixed point, i.e., in accord with Landau theory.

To this point we have discussed the new fixed
points only to leading order. However, it is, in
fact, not hard to show that the fixed points (c) and
(d) must be Ising-like and Gaussian-like to all or-
ders in €. Thus the renormalized Hamiltonian
(4.17) is only quadratic in the spin variable o, and
there is no corresponding momentum dependence.
Accordingly, in the corresponding partition func-
tion we can explicitly integrate over all the o, 3 vari-
ables. Neglecting spin-independent terms this leads
to a reduced Hamiltonian

- 1, I A
&ea=-§£(711+qz)0101—uff_4‘ 010,00, (4.29)
q

3y "

with
(4.30)

which is independent of the original G, 3 spins. If

the six-spin terms in o, had been carried along they
would still appear here; they are specifically needed
for stability if w? > 27,,%,, when # becomes negative.
For it >0, 3,4 is a standard Ising-like Hamiltonian.
If # can approach zero it becomes precisely the tri-

= 2
U=ty = w1/27’zz,

critical Hamiltonian treated by Riedel and Wegner 23

Standard analysis shows that the tricritical fixed
point remains Gaussian down to three dimensions
where logarithmic dependences on H and 7 appear
in the critical behavior.

It is now evident that the crucial feature in our
whole calculation was the strong irrelevancy of the
parameters e,, w,, 15, and u,,, which followed from
(4.13) to (4.15). About the Gaussian fixed point,
(r§;=0, w} =0, uf; = 0) these parameters all remain
irrelevant for €< 2 (or d >2). Thus we are justified
in integrating out the ‘72,3 spin variables and using

the reduced Hamiltonian (4.29), down to three di-
mensions. Hence, we may take over the analysis
of Riedel and Wegner for the present model and
conclude that the tricritical behavior will be clas-
sical except for logarithmic corrections in three
dimensions.

V. EFFECTS OF THE ORDERING FIELD

We now discuss the full Hamiltonian (3. 3) which
includes the ordering field %, ~H'. The procedure
will follow that used in Sec. IV. Recursion rela-
tions are calculated recursively assumming u;;,
w;, and 7, are small. One might include #; in a
more general two-component propagator G;;(q) but
this proves unnecessary. As before, the spin re-
scalings are chosen to keep e, and 7,, fixed. Sec-
ondary shifts of both &, ; and 3, ; are now needed
at each stage of iteration. The parameters e,, w,,
u,,, and u,, are found to be irrelevant as before,
with (4.13) to (4.15) still applying. In addition we
find

wy = 6712 [y + O(€%/2)), (5.1)

so that wjy is also strongly irrelevant for small €.
After sufficient iterations, therefore, the renor-
malized Hamiltonian becomes

- 1
173

273
—w1ff 815162—14)4][616161
iJq' ¢
‘uuf,JlJ‘_ 01010703,

1Ja) g

We may now again integrate out the &, variables
which appear only quadratically to obtain the re-
duced Hamiltonian

- 1 - - - = -~
fC5d=—§J:(7+qz)0101‘wﬁﬁ,0101°1
q qvaq

—u'[‘[ﬁ 0,0,0,0y,
qva'Y q”

depending only on the G ; variables.
parameters are now

[0ryy+ G®) Gy Gy + 2715 5y Gy + 755 55 5y |

(5.2)

(5.3)

The reduced
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r=ry "”122/7’22, W =10y — W1 ¥12/72, (5.4)

while « is still given by (4.30). However, it must
be borne in mind that there have now been a series
of shifts in G, 3 in deriving (5.2). In these shifts
the original sixth-order term in o, j contributes
towards the value of u,, in (5.2) in such a way as
to preserve stability. Accordingly, we may as-
sume that # in (5. 3) is also positive even though
close to the tricritical point (which occurs when
M, =0) uis vanishing.

Now for the reduced Hamiltonian (5. 3) to be at
criticality, the coefficient w = (H, H', T) must van-
ish and #=7%(H, H', T) must lie on the surface of
criticality, 5 which, neglecting higher-order irrel-
evant variables, we may write #=%,(x). These two
constraints determine a line of critical points in
the (H, H', T) space. In order ¢ these loci may be
found from the original Hamiltonian by applying a
Landau-type analysis; they are seen to form the
edges of the two “wings” in the full tricritical phase
diagram.! For € >0 the location of the wings will,
of course, shift but they will still be determined in
part by irrelevant variables. However, it is clear
from the single-component nature of JC,.4 that the
critical exponents on the wings must again be Ising-
like. It is also clear that the directions in (H,H',T)
space corresponding to relevant and irrelevant ei-
genoperators about this Ising fixed point will be
skewed!! relative to their simple directions which
are determined by the symmetry of the original
Hamiltonian alone when H=H'=0. We hope to re-
turn in the future to study these points, and in par-

ticular to determine the tricritical equation of state.
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APPENDIX A: LEADING RECURSION RELATIONS

We quote here the basic recursion relations for
the parameters »;;, w;, and u;; complete to orders
€, €2 and €, respectively, assuming 7;; = O(e),
w;=0("%), u;; = 0(). These complete the truncated
expressions (4.1) to (4.9) given in the text.

Before making the secondary shift discussed in
Sec. II, the renormalized interaction parameters
are given by

71 =C2 0™y +12uy, Ay +4ugp Agy - 4uP Ay, (A1)
V3= Ca 0™ (1yy + 12155 Ay + 41y, Arg — 182 Ag,
- %WfAzo)’ (a2)

w0y = 0% 85 2wy — 12w, 115 Agy — 1200, 111, Agg
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= 16w, w1 Ay +4ud Ay + 1202 wy Ayy), A3)

= _ A3 1-2d 4,3
Wy = Cy b4 (wy — 36w, Upp Agy — 4wy 15 Ay +5 W Agg

+36w3 Agg), (A4)
=& b3y - 36“?11420 - 4”?21402 +24uy, wf Ay,
+8u, wiA , - 4wt A,y), (A5)
2 2 2

—  _ a2 a27-3d
15 =C5 85 b7 U1p — 1200 115 Agy = 12055 1115 Agy

— 1608,A 1+ 8uyp wh Ay + 20, wE Agg +24u,, w2 Ay

+28upul A — 8wt Ay — T2ub Wi Ay,), (A6)
Uap = 85 b7 gy — 36UZy Agp — duuln Agy + 81, uf Agg
+216uy, wi A gy — 16205 Agy — 2wt Ayp), A7)

There is also a spontaneously generated field % ap-
pearing as the coefficient of the spin variable G, 3,

namely,
7=2,(3w, Agy +w, Ayp). (A8)

The various integrals A,, were defined inEq. (4.10).
To eliminate the linear term (A8), we make a
secondary shift in the spin &, ;. If we let
Gp,3~ Op,3+ NoM 55,3, (A9)

the final recursions relations for v;;, w;, and u;;
are then

Y1 =V + 2w, M+ 47, ME, (A10)
Vgp =Ty + 620y M +12705, M2, (A11)
wy =w, +41,, M, (A12)
Wy =10y + 4Ty M, (A13)
ui; =y (A14)

The term linear in G, ; is eliminated provided M
satisfies

7o+ 2755 M + 310, M%+ 431, M2 =0, (A15)

In the text, a spin rescaling is chosen such that
wy and uy, go rapidly to zero and 7,, remains con-
stant as one iterates. Thus, after many iterations
one can approximate M by

~ = /2F,. (A16)

Insertion of this expression into (A10)-(A14), plus
truncation of the irrelevant variables in the result-
ing recursion relations, leads to the equations
quoted in (4.1)-(4.9). The recursion relations
quoted in (4.3) and (4.4) for e,, e,, and k have not
been treated in detail here, but are adequate for
our purposes as given in the text.

APPENDIX B: MOMENTUM DEPENDENCE OF A FEYNMAN
GRAPH

We wish to show that the graph in Fig. 2(d) is in-
dependent of ¢? to zero order in €. Thus, we must
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consider the integral

> 1
0= f, G TG

(B1)

We may neglect 7, = O(¢) and consider the integral
in four dimensions. In the limit of small q we can
write

e B3 ak
1) =gz ) ik, a) (82)

with
Lk, q) - f sin®¢ do ®3)
4 24k 2qk cosf’
But this angular integral has the value
I,(k, q) = 3 7 min(g2, £°?), (B4)

which is independent of ¢ since & satisfies 7/ab< %
< r/a while we are only concerned with ¢ =<7/ab.
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