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The distribution function for static electric field gradients arising from a random distribution of point
defects in a crystal is studied. Results are obtained which include the magnitude as well as angular,
concentration, and sample shape dependences for field gradients due to low concentrations of different
types of point defects. The induced changes in frequency and time-domain spin-resonance line shapes
are particularly simple if the only effect of the field gradients is to locally shift the spin energy levels.
In this limit different types of defects cause characteristic line-shape changes which should be
distinguishable.

I. INTRODUCTION

The effects on nuclear spins from electric field
gradients arising from point defects have been
treated by several investigators. ' However, these
treatments have not included an analysis of the an-
gular dependence, concentration dependence, and
magnitude of the effects arising from different types
of point defects. In this paper we shall analyze the
ways in which random distributions of different
types of point defects change nuclear-spin line-
shape functions. In some cases we predict that
these changes depend upon the shape of the sample.

The task of calculating the effects of point defects
on nuclear spins can be divided into two parts. The
first part is finding the distribution of electric field
gradients which arise from the point defects. This
paper will be primarily concerned with obtaining
this distribution function for small concentrations
of defects. The second part of the problem is using
the distribution function to find the changes in the
nuclear-spin line-shape functions. For a small
concentration of defects the changes are simple if
the only effect of the electric field gradients is to
shift the spin energy levels. In the present paper
we shall work only in this limit.

In the remainder of this introduction we shall re-
view some pertinent aspects of the theory of quad-
rupole splittings. In Sec. II we obtain a general
expression for the distribution function of electric
field gradients for various types of point defects at
low concentrations. Section III contains a more de-
tailed discussion for direct quadrupole fields arising
from charged defects, induced quadrupole field
gradients arising from charged defects, and elec-
tric field gradients arising from strains propagated
by elastic forces.

Electric field gradients couple to the nuclear
spins via the electric quadrupole Hamiltonian. '
With an external magnetic field Ho acting on the
spins, the first-order energy shift, of the mth spin
level arising from the electric fieM gradients is

E = [m' ——,'I(I+ i)]h(d,

A = eQ' /4I(2I l)5'. -
In this equation the y, are the direction cosines of
Ho with respect to the coordinate system of the crys-
tal lattice, Q' is the nuclear quadrupole moment
including the Sternheimer antishielding factor, and

V;& = ()2V/sx, Bx&, w. here V is the electric potential.
It is assumed that the Zeeman splitting of the spin
levels is large enough compared to the 4E so that
first-order perturbation theory is sufficient.

In this paper we shall assume that the only effect
of the electric field gradients is to shift the spin
energy levels and that the intrinsic spin decay rates
are not changed. This is, of course, not true in
general but it is a good approximation if the l 4E /
@l are small compared to the intrinsic decay rates.
Under this assumption the spectral shape function
G((d) can be written as

G((d) = p e g((d —a (d),

where g((d) is the spectral shape function in the ab-
sence of the electric field gradients. The c 's and
a 's are different for electromagnetic (NMR) tran-
sitions, nuclear-acoustic-resonance (NAB) Am = 1
transitions, and NAB ~m =- 2 transitions. Their
values for different spin systems have been listed
in various places' ' and will not be repeated here.

If a distribution of (d's is given by p((d), where
p((d)d(d is the probability that (d lies between (d and
~+dw, then the observed spectral shape function
in the frequency domain is the convolution

G(~)=I fc dv)(v)g((u-a„~).

The corresponding spectral decay function in the
time domain is
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G(t)=pc g(t)q(a t), (4)

where G(t), g(t), and Q(t) are the Fourier transform
of G(~), g((d), and P(~), respectively.

Even when the spectral weight function does not
take such a simple form, a calculation of P((d) or
Q(t) is the first step in obtaining such functions.
The formalism applies to electronic spins as well
as nuclear spins with appropriate changes in nu-
merical factors.

II. DISTRIBUTION FUNCTION

In this section we derive the distribution function
for electric field gradients arising from a single
type of point defect. Consider a lattice with N
points and cN randomly distributed defects of the
same kind where e(r, ) is the contribution to &

[(see Eq. (1)]at the origin from a point defect at r,
The value of due to all of the defects is

(() = g su&(r ),

which has the proper normalization.
For concentrations c much less than 1, this re-

duces to the more familiar expression"

t)(t)=e px[ gc(e "&' "—1))
& 0|

We note that if only a few nearest neighbors are
included in the lattice summation, then Q(t) equals
1 plus terms of order c. Thus for very small con-
centrations any short-ranged effects from the de-
fects are insignificantly small and Q(t) is domi-. '

nated by the long-range part of (d(r). , This fact is
partially obscured by the fact that all of the finite
moments of P((d) are dominated by the first few
neighbors. Thus, except for insignificantly short
times, the finite moments of P(cu) give a very poor
picture of ((](t). Since effects of any reasonable
magnitude come from the far neighbors, the lattice
is well approximated by a continuum. To an excel-
lent approximation for c «1, Eq. (11) can be writ-
ten as

where the prime on the summation over lattice sites
n means that only those lattice sites with defects
are summed over. The probability that ~ lies
between ~ and w+dw is

q(t) e cz(t )-

l(t)=pf 0 r(1 —e "'""),
(12a)

(12b)

p(e) ZC(e-Ze(r. )t]l,

where the summation denoted by k is over all pos-
sible defect configurations. It is most convenient
to normalize P((()) later.

By expressing the 6 function as an integral we
obtain

P(&c) Q dt e"'exp —i Q [&c(r,)t]"' '), (7)
0t

where 5 (k) equals 1 if the site (z is occupied in the
configuration k and is zero otherwise. Now note
that

+exp —z g [~(r )t]'I'")
l
=g,g exp (""I'"~"'

at ) a 'e

However, because the distribution is random, the
probability for occupation of a given site is inde-
pendent of the occupation of all other sites and thus
the expression in Eq. (8) is proportional to

where p is the density of lattice points per unit vol-
ume for the impurity under consideration and the
integral is over the volume of the crystal.

If it is desired, the effects of the first few neigh-
bors can be included by adding the appropriate term
to I(t). They will have the effect of producing an
oscillatory noiselike contribution of order c to Q(t).
Similarly, an impurity whose (()(r) cuts off expo-
nentially will have very little effect on p(~). These
effects are rather obvious because if only a few
spins are perturbed, the signal cannot change much.

In order to proceed further it is necessary to
assume a functional form for &(r). In this section
we consider only the form

~(~) =g(Q)/~",

where g(Q) is a real function of only the solid angle
Q and n is a positive number. In general I(t) will
have a real part I, (t) and an imaginary part I2(t).
By expressing the volume integration as an angular
integration times a radial intergration and making
the substitution x = r ", one obtains

II[(l —c)+ ce '"'"~"] dx1 (t) = pJdtt \, , [1 —coo(dtx) ],J o fix
(14)

By expressing the product as the exponential of a
sum of logarithms we obtain

OO

p((d) =, dt Q(t)e'"',

t)(t)=exp(g)c[1 —c(1 —e "&" ")]),

where a =3/n. This expression is convergent if
e & —,', which we now assume to be the case. The x
integration is in standard integral tables and yields

I (t) = [vp lt I
/2nV(1+ n) sin( —vrn)] Jl dQ lg(Q) I,

o. =3/n, n &-,'.
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I2(t) = [pl"(1 —n) sin( —,
'

nm)/3]

x dQ gQt z(gQt),

n=3/n, n &3,

where e(x) is + 1 ifx &0 and —1 if x &0.
Even if fdtlg(fl) is zero, I,(t) is not necessarily

zero. In fact if g(Q) is proportional to any zonal
harmonic except ones with f = 1, I,(t) will be nonzero.
However, since Iz(t) is an odd function of t, p(~) is
real. In addition G(t) given by Eq. (4) is real since
for every set (a„,c ) there is another set (- a, c„).

The case of n =3 (n =1) must be treated more
carefully. Re shall assume that the angular aver-
age of g(Q) is zero,

dAg(Q) = 0. (18)

In addition we exclude a small sphere of radius r0
about the origin in Eq. (12b). This is appropriate
because there are no neighbors at an arbitrarily
close distance to the origin. Eventually we let r0
-0 and the results are independent of r0 in this lim-
it. It is easiest to express Eq. (12b) as

I,(t) = p d'r[sin(gt/r') —(gt/r')]
0

The imaginary part of I(t), which is ignored in
most treatments, must be treated differently for
n &3, n= 3, and n &3. For n &3 there is no con-
vergence problem and by making the substitution
x = r " one obtains

t(t) pfdt=t —,.—,sts(dts).
" dx

0 nx

For n & 1 (n &3) this is a standard integral and yields

sample of arbitrary shape Iz(t) depends on the po-
sition of the origin in the sample

For n & 3 the situation is even more bizarre in
that Iz(t) depends not only on the sample shape but

is actually proportional to the dimensions of the
sample. We believe that such a situation is impos-
sible to obtain in a charge neutral system. This
point is further discussed in Sec. III.

Finally, in this section, we wish to point out that
a field gradient that goes as 1/r" will produce a
Q(t) that dies off exponentially as e " and a P(&v)

whose width is proportional to c, where n = 3/n.
In addition, the equations in this section are not

necessarily restricted to substitutional or vacancy
point defects. An interstitial impurity of a clump
of impurities will often produce (et(r)'s that are of
the form of Eq. (13) at large distances.

III. SPECIAL CASES

In this section we shall examine in detail some
specific types of point defects.

A. Simple charged impurities

In a charge-neutral system with only one type of
charged defect, the impurity charge must be
screened in some fashion. In some cases the
screening may be accomplished by conduction elec-
trons and in other cases the screening may obtain
via localized electrons. If the charge of the defect
is screened out exponentially in a few atomic spac-
ings, there will be very little effect on the quad-
rupole field distribution function. However, lattice
distortions associated with the defect may prop-
agate out as discussed in Sec. IIIC.

In many conductors an impurity of charge Ze is
screened by conduction electrons so that the elec-
tric potential at large distances is given by

+ p d'r(gt/r '),
V(r) Ze) cos(2kor)/4kt2r ', (21)

where the subscripts zero on a volume integration
implies the limiting procedure described above.
The first integral in Eq. (19) is convergent for
large x and can easily be shown to be zero using

Eq. (18). Thus we obtain

I,(t) pd'r [=g(fl)tlr ']. (20)

Superficially Ia(t) appears to vanish because of

Eq. (18). However, because of the long-ranged
1/r' factor in the integrand, it does not vanish.
Evaluating Eq. (20) is very much like evaluating
the demagnetization field in a ferromagnet. ' An

exact determination is possible only if the sample
shape is an ellipsoid and g(&) is proportional to
terms (3Q, Q, —f),,), where fl, are direction cosines
associated with the solid angle ~. Even in this case
I~(t) depends on the shape of the sample. For a

where k0 is the Fermi wave vector of the conduction
electrons and h is a dimensionless parameter which
depends on the screening model used. At large
distances this leads to electric field gradients

V, , (r) = — Ze/Q, &, cos(2k, r)/r ', (22)

where the ~,. are the direction cosines of x with
respect to the crystal axes. Because of the oscil-
latory behavior in r, this is not of the form of the
field gradient considered in Sec. II. However,
using Eqs. (1), (12b), and (22) we obtain

t(t)=pfd() rtdr{( —sxp{td(tt)sps(P)tsr)tt'r']),
0

(23)
g(Q) = QZe)d4(3y, .yj —5, ,)n,.QJ.

We cannot perform the radial integration in Eq.
(23) in closed form. However, we can obtain an
excellent approximation to it. The dominant con-
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1(t)= pJdA~I r'dr[( —J,g(A)t(r')),
0

(24)

where Jo is the zeroth-order Bessel function. The
w integration is now straightforward with the sub-
stitution r = x '" and yields

r(i) qJdn =—,'!g(n)~(

However, from Eq. (12), Q(t) is only significantly
altered if Ic&~~ or plgtl c ~&0, Thus the condition
that ko o»1 becomes k'Op»e . Since hop
-1 for most metals, this condition is easily satis-
fied for metals at low concentrations of charged
impurities.

The remaining angular integration in Eq. (25)
is proportional to

dn I3(y fI)' —1, (28)

which is easily performed by choosing y to define
the polar axis and yields 16m/3'~3. Thus we obtain

tributions to the radial integration comes from
values of x near xo = I gt I

' '. If k~ro» 1, the x inte-
gration takes the integrand through many oscil-
lation of cos(2k~r) while the rest of the integrand is
slowly varying. This is the same as replacing
cos(2kor) by cos(t) and integrating (t) from 0 to 2m,

which yields

The remaining angular integration is identical to
the one used in obtaining Eq. (27) and we obtain

I(t) = 8m ZepA/3 'I ltl. (31)

Both cases considered in this subsection generate
spherically symmetric field gradients and thus I{t)
has no angular dependence.

B. Induced-field gradients

In some substances that have spin sites which
lack inversion symmetry, electric fields can induce
electric field gradients which are considerably
larger than any direct effect. ' The general con-
nection between the electric field gradient and the
electric field is written as

Vgg =Q R;;»&». (32)

For a zinc-blende structure, Eq. (32) can be writ-
ten as'

V~ =-RZ 5;;»E»

where 6,j~ is 1 if all three indices are different and
is zero otherwise.

In this subsection we consider only electric fields
arising from charged defects. We assume that the
electric potential is V(r) = Ze/r which is screened
at long distances. Thus (d(r) is of the form in Eq.
(13) with n = 2 and

I(t)= livzegpA/3'" ltl. (27)

There is a set of conditions under which it is
appropriate to use a potential of the form

V(r) = Ze/r (28)

g(Q) = Q AZe(3y, yq —5,.))(30.,.0) —5,.)), (29)

where Z can take effective charges and dielectric
constants into account. From Eq. (15) with n= 3,

&(~) (~l~ i~)Jd& lr(&)l. = (30)

The conditions are that the charge-screening radius
be much greater than (pc) '" and that the electric
potential takes the form of Eq. (28) within that
screening radius. In order to see this we note
that the dominant paxt of the radial integration in

Eq. (12) comes from values of r near ro = lgt 1
"'.

In addition, since I(t)-e ""', it is only necessary
that our approximation be good for times up to
about t-110/pcgl, or for values of ro 110/pcl-
Thus if the screening radius, which may depend on

c itself, is much greater than (pc) '", Eq. (28) is
a good approximation. However, since the inter-
action is ultimately screened, Iz(t) as given by Eq.
(20) vanishes.

Under the above conditions, we obtain

g(Q) = Q AZe(3y, .y) —5,.))R5()»Q».

By arguments similar to those in Sec. IIIA, this is
appropriate if the screening radius is much greater
than (pc) ~~ . In addition, I»(t) vanishes in this limit
since Eq. (18) obtains. From Eq. (15) with n=2
we obtain

I(t) = [(27r) p I
t /3] lg(n)

I

»dn. (35)

The angular integration is proportional to

The integral is easily performed by choosing a as
the polar axis and yields 8w! a 1'~2/5. Thus we ob-
tain

I(t) =
I

(»)"'AZeR p/» I I
t I'"f(y),

f(y)= Zy, y, '". (37)
iAj

This has a, characteristic angular dependence f(y)
and is proportional to Itl' . If we has used screen-
ing by conduction electrons, I(t) would have been
proportional to
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r;r, .
ii'j

(36) S(C)=-,AS„(3cos'3 —l)(3f„—Qf, ,),
i

(42c)

C. Elastic strains

In this subsection we consider the effects of
point defects which propagate strains and thus inter-
act with the nuclear spins via the s tensor. ' For a
crystal of arbitrary symmetry the relationship be-
tween the field gradients and the strains is quite
complicated and we shall only consider the case
where cubic symmetry obtains

For a crystal with cubic symmetry, '

where 8 is the angle between Ho and [001]. In this
case the angular dependence is quite simple.

In an isotropic elastic medium of infinite extent
with isotropic defects, "u = Br/rs, where B is a
constant and thus

f;, = [f,~;, + 2f.(1 —~;f)](3Q;Q, —~;,). (43)

f;, =B(3Q,.Q,. —6,,)(1+ 6,, ).
A somewhat more general model that is also easy
to work with is one where

V, , =[—(S, —S )6,.f+S ]e,, ——'S,g e

BQ; BQj

Bxj Bxj
(39)

In this model f, and f, refer to the compressional
and shear part of the strains, respectively. If the
medium is isotropic, then f, =f,. With this model,
g(Q) is

where u(r) is the lattice displacement at the posi-
tion r. At large distances from an impurity site
at the origin, "u-1/r and thus the strains go as
1/r' and can be expressed as

c,, =f;,-( Q)/~'.

Thus (d(r) is of the form given by Eq. (13) with n
=3 and

(40)

I,(t)=( p)t~/6)
~

( )~ ( ),
wp

3,(&) Sf3'~(S(")&l~'=),
0

(41a)

(4 lb)

g(Q) = 3AS44+y;y f f + —', AS„Q(3y; —1)f~;. (4lc)

S(G) = —'.AS„(3f.,—Zf„) (42a)

In this case only 8» and compressional strains con-
tribute to I(t). Similarly, if Ho points along the
[111]direction, then

g(Q) = AS44 Q f;f

and only S«and shear strains contribute to I(t).
These directions can be used to obtain the relative
magnitude of shear and compressional strains.
Further, if I S»f;; I is much larger than IS«f;& I

with i3-'j, and Ho is in the plane defined by [001]
and [110], then

Although a, specific model is needed for the f„'s
in order to obtain detailed results, there are some
special directions for Hp which are particularly
illuminating. For example, if Hp points along a cube
edge, say in the z direction, then

g(Q) = 18AS«f, Q Q;Qf y;y; + ,AS„f, Q-(3y'; —1)

I,(t) = ~,
~

t I, I,(t) = ~,t,
where v& is positive. Then

(46)

Q(t) C cc3$131 c P 3333

P((d) = (c(u,/m)/[((u —c~,)'+ (c(d, )'].
(46a)

(46b)

Equation (46b) describes a Lorentizian function with
a width c~~ and centered at c~~. Previously it has
been assumed that a Lorentizian line shape centered
about some finite frequency is caused by some net
strain in the crystal. This mechanism can be
distinguished from the one which we are suggesting.
If there is a net strain in some direction, then the
line shape should be symmetirc about that direction.
The symmetry in our model depends upon the shape
of the crystal.

x (3Q2 —1).
With the above model one can eva. luate I,(t) nu-

merically and I2(t) can be evaluated by the methods
used for evaluating the demagnetization field in a
ferromagnet. If u(r) really fall!& off as 1/r' through-
out a finite sample, then I2(t) depends on the sample
shape. With the model described by Eq. (44), I~(t)
can be evaluated exactly if the sample shape is an
ellipsoid. If the sample shape is not an ellipsoid,
then I2(t) for a given spin will depend on the position
of that spin in the sample.

The shape and possible position dependence of
I~(t) suggests quite a sensitive test of whether u(r)
-1/r . Suppose, for example, that I, and I2 can be
evaluated and we obtain
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