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The decay of N initially inverted spins linearly coupled to a harmonic lattice is considered. We first
discuss the problem of the time dependence of the magnetization, which is approximately solved by
reducing it to one with only two degrees of freedom. Successively, analytic expressions for the power
spectrum of the phonons emitted are derived for two different models of the decay of the spin system.
The results exhibit band narrowing in both cases. The causes of this narrowing are discussed,
particularly for the narrowing which takes place after the avalanche time. In the latter range of times
it is suggested that the narrowing is due to a quantum-mechanical effect operating on a macroscopic

scale.

I. INTRODUCTION

In two recent papers, !'2 we have presented a the-
ory of the paramagnetic relaxation from negative
temperature of N two-level spins linearly coupled
to a harmonic lattice, which is free of statistical
assumptions and which is essentially based on the
well-known spin-phonon Hamiltonian

Je= Zwka};ak +3w, Do+ D elaole™ +H.c.),

k r Ryr (1 . 1)
where the a operators refer to the phonon spec-
trum, the o” to the spin at site # in the lattice, and
€ is a simplified k-independent coupling constant.
The first of these papers! was focused on the time
dependence of the magnetization o,, which is de-
fined as the difference of the spin-level populations
normalized to one, while the interest of the second?
was centered mainly on the shape of the power
spectrum of the phonons emitted in the relaxation
process as a function of time.

The main points which emerge from this analysis
are the following.

(i) The decay of the magnetization from an initial
situation of inverted population and no lattice exci-
tation exhibits a well-pronounced knee which takes
the system to a semistable situation of equalized
spin-level populations in times orders-of-magnitude
shorter than the normal spin-lattice relaxation
time.

(ii) The quick decrease in the magnetization cor-
responds to an avalanche process in which phonons
are generated which stimulate the decay of more
spins with the generation of further phonons. This
self-regenerative process stops when the popula-
tions of the spins are equalized, that is when o,~0.

(iii) The width of the power spectrum of the emit-
ted phonons decreases with time during the ava-
lanche, and it is possible to distinguish two main
mechanisms of narrowing. The first is due to the
fact that modes near to the center of the band of
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phonons in speaking terms with the spins interact
more efficiently than those in the wings; conse-
quently, their populations increase faster. The
second is due to the decrease of the width of the
band of modes in speaking terms itself, which pro-
gressively cuts more and more modes off the region
of quasiexponential increase of the phonon popula-
tion.

(iv) The usual rate equations to describe normal
paramagnetic relaxation are not applicable to the
model, since they can be derived from Hamiltonian
(1.1) only under the assumption of a time-indepen-
dent phonon bandwidth.

Since the problem is self-consistent in the sense
that the time variation of the population of each lat-
tice mode influences the decay of the magnetization
and vice versa, it had been necessary in the devel-
opment of the previously published calculations to
make several assumptions based on physical con-
siderations in order to keep the mathematics as
simple as possible and not to obscure the physical
features of the model. The aim of this paper is to
present more rigorously and completely the mathe-
matical aspects of the theory. In this way a two-
fold objective is attained, since it shall be possible
to test the limits of the model and the validity of the
approximations previously made, while a neater
picture of the narrowing of the power spectrum of
the emitted phonons shall result.

This paper is divided into two parts, the first of
which coincides with Sec. IT and is dedicated to the
behavior of the magnetization o, as a function of
time; in the second part (Secs. I and IV) we shall
be concerned with the shape of the power spectrum
of the emitted phonons. The starting point in both
cases is the equation which is obeyed by the phonon
population in the ~th mode #,

dn,
dt?

l+0
= (0, = AwQhn, +1 —5=

(1.2)
where n2=2Ne?, N being the number of spins in the
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crystal, and where
Aw?=(w,— wp)? .

The derivation of Eq. (1.2) from Hamiltonian (1.1)
has been discussed in Ref. 1. We only remark that
this equation was derived by neglecting terms which
in Ref. 1 were called “higher-order correlations.”
In fact, the interplay of the geometry of the sample
and effects coming from the magnitude of relaxation
time T, may cause these terms to become impor-
tant in determining the behavior of the system.
These effects shall be discussed in a forthcoming
paper. Here we shall simply assume that we are in
the condition to discard them.

We shall always be concerned in this paper with
modes with |Aw,| <7, and we shall assume that the
modes out of this band are too far away from reso-
nance to be affected in any relevant way by the vi-
cissitudes of the magnetization.

[I. TIME DEPENDENCE OF o,

In Ref. 2 we have shown that from (1. 2) it is pos-
sible, under rather mild conditions involving the
smoothness of 7,(¢) as a function of % in the neigh-
borhood of the resonance, to derive the following
integral equation for the magnetization of the sys-
tem at time ¢, if at time 0 all the spins are in the
upper state and no phonon is present in the lattice,

oz(t)=1—’&1§)ﬂjo {1 +0,()]

+2ny(t o, (¢ at’ (2.1)
where g(w,) and n, are, respectively, the density
of states of the lattice modes and the resonant pho-
non population. Since the integrand in (2.1) can be
seen from (1.2) to be equal to

2g(we)m d?ng
N dt®’

one obtains the relation

%:B(l _oz) ’

a7 (2.2)

where B=N/27g(w,). Moreover, differentiating
both sides of (2.1) one gets
do,

—£=—~ A(l +0,+2n0,) ,

it (2.3)

where A=27g(w,)e?. Equations (2.2) and (2. 3) form
a system of two coupled first-order differential
equations for the unknown ny(#) and o,(f). In this
way we have reduced the problem quite drastically
from one with N to one with only two degrees of
freedom. We proceed by substituting 20, to the
spontaneous emission term 1 +o0, in (2.3). This
should not introduce any serious error since the
substituted term is important only at the very be-

ginning of the decay when 0,~1. Then eliminating
o, by (2.2), Eq. (2.3) becomes

%‘ano:ZA(no+l)<l—%%) . (2. 4)
Moreover, if we set

g dng_ dp

dt’ dt®  Tdngy’

Eq. (2. 4) can be put in the form

P ap=24(ng+1) dn,

B-p
which can be integrated to give

B-p—-Bln(B-p)=Anyny+2)+Cy , (2.5)

where C; is a constant which we shall determine
from the initial conditions. The problem is now
that of integrating first-order nonlinear Eq. (2. 5).

From (2.2) we find that in the range of interest
(0,>0) it is always p <B. We then divide this range
into two regions where we shall use different ap-
proximations.

(@) p<B. 1Inthis range we develop the left-hand
side of (2.5) in a power series of p/B, keeping
terms up to O(p?/B?) so that

B~p-Blin(l - p/B)~- BlnB=~ B(1 - InB) +p*/2B,
and (2. 5) becomes
2B%1 - 1nB) +p?=2ABny(ny+2)+C, . (2.6)

C, is determined by imposing that 0,=1 at £=0, so
that p=0 from (2.2). Then

C;=2B*1~1nB),

and substituting in (2. 8) yields

dng/ [nglng+2))2 = (2AB)2 qt . 2.7

Equation (2.7) can be immediately integrated to give
ng==1+cosh[(2AB)Y2t+C,)] .

In this expression C, must be zero, since ny=0 at
t=0. Therefore, the population of the resonant
mode varies like

ng()==1+cosh(2AB)?t , (2.8)

up to times such that p < B. We can make the defi-
nition of this range more precise by introducing a
value p* = KB with K <3 and constant. Thus, (2.8)
should be valid for p < p*; we also introduce a

time 7 corresponding to p*. From (2.7) we see
(neglecting 2 with respect to ny) that the population
of phonons in the resonant mode at =7 is given by

n¥ ~K(B/2A)"? (2.9)

and from (2. 8) we find
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T= arc cosh(n¥ +1)

1
(24B)'

1 B 1/2
smarccosh K 24 +1f .

(b) p S B. 1In this range the logarithmic term
dominates the linear one in the left-hand side of
(2.5), which we approximate to

(2.10)

(2.11)

The new value of C, is found by imposing that p=p*
= KB when ng=nf. Using (2.9) we obtain from
(2.11) (again neglecting 2 with respect to n,)

BIn(B=p) == Anylnyg+2) = C, .

C,==B[In(l - K)B+3K? . (2.12)

Substituting in (2.11) we get within the same ap-

proximations
p=B[1 = (1 - K)enb/ax?2] (2.13)

We remark that in this range n,>n{; therefore be-
cause of (2.9) the exponential in (2.13) is smaller
than 1, and we approximate

dng

i =B, (2.14)
whose solution is
ny=Bt+C, . (2.15)

We find C, in (2.15) by imposing that n,=n} when
t=7. Using (2.9) and (2.10) in (2. 15) we obtain

C,=(B/2A)"3{K — arc cosh[K(B/24)"2 +1]},

from which we deduce that the growth of the popu-
lation of the resonant mode in this range of times
is approximately of the form

no(t) = Bt + (B/2A)/2{K — arc cosh[K(B/2A)"2 +1]}
=B(t=T7)+n¥ . (2.16)

The linear increase of n, at relatively large times
shown by (2.16) may seem surprising from a physi-
cal point of view. In fact, it is a consequence of
the form of our starting equation (2.2). We shall
discuss at length this point in the next sections
where we shall consider also the populations of all
the other lattice modes.

From (2.8) and (2.13) we can find the time be-
havior of o, using (2.2). We first define o* as the
value assumed by o, when p=p*= KB by

p*=KB=B(l-0}),
so that 0¥=1- K. Then we obtain directly
0,(t)=1~=(24/B)*2sinh(2AB)%t (0,>0¥),
o,()=(1- K)e-AB(t-f)2+K2/2

Function (2.1%7) for 0,(¢) is continuous at =7 within
the limits of the approximations we have made, that
is neglecting 1 with respect to n§. This is certainly

(0, <o) . 10
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legitimate since the number of phonons in the reso-
nant mode at /=7 will be shown later to be of the
order of 103-10%. Expression (2.17) should consti-
tute quite a good approximation to the solution of the
problem of the time evolution of ¢,(#) in the first
part of the decay of the magnetization, which forms
part of the object of the present paper. The canoni-
cal procedure now should be to substitute (2.17) into
(1. 2) and to solve the resulting differential equation
for each mode in the lattice. Unfortunately, it is
impossible to do this analytically, and we shall be
content with using instead of (2.17) an expression
which resembles it, and which has the advantage of
being capable of an analytic treatment. Of (2.17)
other than the general shape, we shall retain the
parameter 7 and a value of K which we shall fix on
the basis of the approximation we use for o,(¢). In
any case we shall define 7 as the time at which the
magnetization is reduced to one-half.

III. PHONONS FROM A STEP DECAY

We shall find it useful to consider first a rela-
tively simple case when the decay of the magnetiza-
tion o, is approximated by a step such that

o,()=1 (0<t<T1),
o,(t)=0 (i>7).
In this case Eq. (1.2) reduces

dznk—( 2 Awdn,+n® (0<i<T)
are n WeNy + 7 s
(3.1)
-———dank——sz +3nf (t>7)
dte rle 27 s
with the usual boundary conditions
_dn |
nk(O)—dt . 0. (3.2)

We shall solve Eqs. (3. 1) separately and then join
the solutions at /=7.
In the first part of (3.1) we put

Np=Mp+ Cp, Ck="772/(772"'Awi), (3.3)
and the equation becomes

d%m

dtzk:(nz—Awi)mk, (3.4)
with the boundary conditions

m (o):—”z— dme| - _g (3.5)

k nz - Aw,ze > odt =0 ) ’
The solution of (3.4) with (3. 5) is obviously
le 2 2\1/2
mk:nz—Awicos}l(n - AW, (3.6)

so that the solution of (3.1) with (3. 2) is
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2
(1) =——— [cosh(n? = Awd)V2t = 1] (0<t<T) .

M= AWy (3.7)
In the second part of (3.2) we put

whose general solution is
My, = A, COSAW,{ + b, SinAw,t , (3.10)

where Aw,=|w,— wyl. Correspondingly, the gen-

- _.2 2
M= My + Cp, =1t/28w; , (3.8) eral solution of the second part of (3.1) is
and the equation becomes simpl
2 q Py Ny = 4, COSAW, +D, Sindw,l +12/200% . (3.11)
d My 2
== A . .
dt? CrMM > (3.9) Joining (3.7) and (3.11) at =7 leads to
J
7
ny(t) = —~—A——2 [cosh(n? = Aw?)! 21 — 1]cosAw,(t—T)
2 2 2\1/2 2
n (= awi)'? . 2 1/a> ; N . 2Aw,
h(n? - —-7)+1 - . )
nz—Aaﬁ,( Ao, sinh(n? = Aw?)271) sinAw,(t T)+Aw2ksm (t=7) (¢>7) (3.12)

Expressions (3.7) and (3. 12) give the sought-for
solutions for the phonon population as a function of
time, in the sense that they are solutions of (3.1)
and (3.2). One should be cautious about the mean-
ing of these results, however, since the model we
have chosen for the decay of o, is very extreme,
and for #<7 entirely nonrealistic from the point of
view of the conservation of the total number of ex~-
citations. In fact we see that according to (3.7)
phonons are created in the lattice before the spins
have moved from the upper state. This is clearly
unphysical, and it is evident that this model is not
capable of describing the conservation of the exci-
tations in the system, which we know may be de-
rived directly from (1.1). In spite of this fact,
however, the true equations for each of the modes
should not be very different from (3.1) for <7,
and therefore we expect that the solutions (3.7)
should be fairly realistic. In fact if we consider in
(3.17) the resonant case, we obtain exactly expres-
sion (2.8). The real meaning of this is that if we
make a reasonably small-percentage error in
choosing our o,(¢#), this results in reasonably small
errors in each of the n,; but if we sum all these
small errors in the phonon populations when we
wish to recover o, and eventually conservation of
the excitation number, we may end up with a large
unbalance due to the very large number of lattice
modes. We may therefore expect that even the
very extreme behavior of o, we have considered
yields a reasonable phonon spectrum for <7 in the
sense that the order of magnitude of the phonon
populations should be the right one in this range of
times. Moreover, for ¢> T solutions (3.12) have a
queer appearance since they show an oscillating be-
havior and become negative at times which depend
on the magnitude of Aw,. There may be two ap-
proximations responsible for this unphysical be-
havior. The first is higher-order correlations

[

which tend to redistribute the energy between dif-
ferent lattice modes and which we had discarded!
in the derivation of (1.2) from (1.1). These are
certainly small for <7 since most of the spins are
parallel; later on, however, they might play a
role—particularly when the other terms governing
the second time derivative of the population of the
kth mode become small because of the oscillations,
that is when », tends to zero. The second is the
approximation of ¢,(¢) which has already been dis-
cussed for /<7; when {>7 it may give errors in the
population of the modes which accumulate in time.
In fact, one might think that if we could solve (1.3)
with the right self-consistent o,(¢) then the negative
phonon populations would disappear. If this is the
main source of our difficulties, we may get over it
in the following way. We have previously' shown
that in the Heisenberg representation

€ Z (0'e

is rigorously valid along the spontaneous evolu-
tionary path of our system. If the number of pho-
nons in the kth mode ever happens to become zero
at time ¢’, then from (3.13) we deduce that at this
time it is also

(i) > (a0%e™ + alome ™))
r

-tkr) -

i, aloTe ~ (w, = wo)ahay (3.13)

—<z|Z alome ™ |)=0,  (3.14)
where |7) is the state with all the spins up and no

phonon in the lattice. On the other hand, the first
derivative of afa, with respect to time is given by

dt akak il ofa,, %]

= iekz (= a0he® +alo"e ™), (3.15)
r
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and taking the average value of (3.15) at time ¢’ we
find from (3. 14)

d .
E(ila{ak\z)lmﬁo .

Therefore, we know quite generally that if n,(¢) is
zero, also (dn,/dt)|,.,. must be zero. We may use
this information as initial conditions and again solve
(1.2) for ¢> t'. Since for most of the modes n, be-
comes zero only for ¢ >7 when o, is practically
zero, solutions of (1.2) consist of harmonic oscil-
lations in the population of the kth mode of frequen-
cy Aw, and of amplitude 7%/2Aw? about the central
value 7%/2Aw2. These are small amplitude varia-
tions of #, compared to the growth of the popula-
tions of the modes near resonance. Therefore, we
shall keep to the rule of following the modes only
up to the point when #n, becomes zero for the first
time, and of neglecting the population of these
modes at larger times.

It is interesting to take the limit Aw,— 0 in (3.12)
since this gives the population of the resonant mode
ny(t) for ¢t>71. We obtain

ng(t) =n¥ +n(t=7) sinhnr + 302t -7)% (t>71),
(3.16)
and this confirms the linear growth of the number
of resonant phonons, which we had found in Sec. II,
up to times such that

nsinhgr 2 $n?(t~1) . (3.17)

On the other hand, since up to time 7 it is always
o,=1, we are entitled from (2. 2) to use K=1. Then
p* =B and we get nsinhnr = B= N/2mg(w,). Recalling
n¥=2Ne? condition (3.17) assumes the form

t-7S2A.

Since A™'= Ty, the ordinary spin-lattice relaxation
time, we find that the last term in (3.12) is never
likely to play any role because at times when it
might be numerically important, the magnetization
of the system is decaying in entirely different con-
ditions below o0,=0, and the whole treatment given
in this paper breaks down. In any case, it is evi-
dent from (3.12) that there is an evolution of the
whole spectrum of emitted phonons after time 7 and
that the distribution of phonons tends to become
more and more peaked about the resonant frequen-
cy. Infact we see that when 7 is large enough but
smaller than 7; the dominant term on the right-hand
side of (3.12) is the second part which becomes of
the form

o

2 .
g Awi[(nz - Aw)V2sinh(n? = Awd)V21]T5(Aw,) .

(3.18)
Integration of (3.18) over the whole range of Aw, is
immediate, and we get the total number of phonons
in the lattice as
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ng(wy)n sinhnt = 1g(wy)B=3N, (3.19)

which is independent of time and coincides with the
number of spins which have decayed to the ground
state. We see that at relatively large times con-
servation of the total number of excitations is en-
tirely recovered.

We wish to conclude this section by pointing out
one more merit of the treatment we have given. In
the Introduction we have recalled that there are two
mechanisms which contribute to the narrowing of
the power spectrum of the phonons emitted during
the avalanche.? It is easy to convince oneself that
the second of the two, due to the gradual decrease
of the width of the band of modes in speaking terms
caused by the gradual decrease in ¢,({), is not op-
erative when the spins decay in a step-like fashion.
This permits us to isolate the effects of the first
mechanism, which is the only one operative here,
and this fact shall be found useful in Sec. IV.
Moreover, a third source of narrowing is suggested
by the present treatment, which operates at larger
times after the avalanche is concluded, but when
the system has not yet resumed the normal decay.
As it is evident from (3.12) and (3. 18), this is more
remindful of an interference narrowing, which
causes power to be transferred from the wings to
the central part of the phonon spectrum and which
can account for the linear increase of the popula-
tion of the resonant mode. In other words, the
present treatment seems to suggest that the men-
tioned increase takes place at the expenses of the
other modes, whose energy content is progressive-
ly exhausted.

IV. PHONONS FROM A FERMI DECAY

A more realistic decay law for the magnetization®
which is suitable for an analytic treatment, is

o, ()=1/(e™ " +1) , (4.1)

which we call Fermi like because (4. 1) resembles
the familiar Fermi distribution low if n™! is K7, ¢

is the energy, and 7 the chemical potential. When
we operate as in Sec. III

Np=Mp+ Cp, Ck:“ﬂz/(ﬂz"Awi) ) (4.2)
Eq. (1.2) becomes

d®m 1+R: 1-0

dtzk:(nszz‘-A(Ui)mk‘l‘l_ng 2 2772 ’ (4' 3)

~

where R2=(Aw,/n)? varies between 0 and 1. The
last term is zero at £=0, and at later times is al-
ways smaller than the first term on the right-hand
side of (4.3), except perhaps in a small region of
modes (amounting to a few percent of the total) at
the extreme wings of the band of modes in speaking
terms with the spin system, where R, =~1. Since
the population of these modes is never likely to
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reach noticeable values, we shall discard the last
term in (4. 3) and study the well-known equation*

dzm 2

= (et - i) (.4
with the same boundary conditions as in Sec. III

2
n dm,,
= =0; 4,

mk(O) nz_Awi ) dt i=0 0’ ( 5)
the change of variable

g - e-n(t--r) , (4 6)

takes (4. 4) into the form

d®m, _dm ( 1 )

2 k B _ - P2

‘E d&z +£ d£ 1_1/£ Rk My .
This equation, after substituting

My = uy £ (4.7)
becomes

d*u ; duy
5(1-g)d£2 +(1=2iR,)1 =) d£+uk—0. (4.8)

Equation (4. 8) is a hypergeometric equation whose

solution analytic at £=0 is

uV = Fl~ iR, +(1 = R)Y?, —iR,
~(1=RYY2;1=2iR,; =™ "],  (4.9)

A second solution of (4. 8) linearly independent from

I

F[— iR, +(1 = ROY?, = iR, -~ (1 = R})V?;1 = 2iR,; = e™*™"]

(4.9) is, for R,#0,
M;Z) - e-ziAwk(t-‘r)F[iRk -Q1- RE)l/a , iR,
+(1 = RHY%; 142iR,; -] . (4.10)

The case R,=0 (resonant model) shall be treated
separately at the end of this section. Using (4.9)
and (4.10) we find two linearly independent solu-
tions of (4. 4) from (4.7) as

m;l) - eiAwh(t~‘r)F[_ iR, +(1 - Rg)l/z’ — iR,

- (=R 1= 2iR,; - ™ "], (4.11)
m;m - e"A‘”k("T)F[iRk— (1- R,f)”a, iR,
+(1=R2)'Y2; 1+2iR,; —e "] . (4.12)

We note that m 2 = [miP]* because F(a, b; c; 2)

= F(b, a; c; z). Imposing boundary conditions (4. 5)
we shall now find the linear combination of (4.11)
and (4.12) suitable for our purposes. The equations
in (4. 5) are initial boundary conditions, however,
and at £=0 the argument of both the hypergeometric
functions in (4.11) and (4. 12) are — ¢, which is
much larger than one in most of the realistic con-
ditions, as will be shown in Sec. V that n7="7-10.
Therefore, hypergeometric series expansion of
(4.11) and (4. 12) would not be legitimate at ¢=0,
and it is convenient to continue analytically these
functions out of the unit circle by the well-known
relationship®

:Ake[—i}ek-r(1-R§)1/2]n(t-r)F[_iRk+(1 —~ROVZ iR, +(1 - R)Y2;1+2(1 = REV2; = "t-D]

+Bke[-iRk-(l-Rg)Ualn(t--r)F[_ iRy— (1= ROY2 iR, — (1= R2)Y2;1=2(1 = R})V2; = e"¢-7] |

and by its complex conjugate, where we have put
for simplicity

e I'(1 - 2iR,)T[- 2(1 - R)']
*"T[-iR,- (1 - R)VIT(1 - iR, - (1 - )7’
(4.14)
(1 - 2iR,)T{2(1 - R2)'2]

By = T[-iR,+(1 - R)V?|I[1 - iR, +(1 - R})'?] *

The following exact relationship between these co-
efficients shall be found useful in the future:

A,Bf — A¥B,=iR,/(1 - R®)Y? . (4.15)
Expression (4.13) and its complex conjugate are
now suitable for expansion by hypergeometric se-
ries in the neighborhood of #=0; in view of the
smallness of the exponential at this time we retain
only the first term in the series and obtain

F[=iR,+(1 = R)Y2, —iR,~ (1= R)Y2;1 =~ 2{R,;

(4.13)
r
- D] ge-iAwk(t-T)(Ake(I-R%)llafl(t-'r)
~(1-R2)1/2 (¢~
+Bke (1-Rp) >/ En(t f)) . (4- 16)

Substitution of (4.16) and its complex conjugate in
(4.11) and (4. 12) yields the following expressions
valid in the neighborhood of #~0:

miV 2Akeu-ze,f)‘/an(t-r) +Bke—(1-R§)1/2n(t-‘r) ,

(4.17)

/2 2,1/2

2,1
m’gz) zA,?,"e(l Rp) " “n(t-1) +B;“e (1-Rp, n(t-1) .

We now apply the boundary conditions (4. 5) to
(4.17) and obtain the full solution of (4. 4) as

O 4 bym? (4.18)

my(t) = aymy,
where
a,= b}
(A:e-(l-Rg)”zn'r - B:e(l-RE)llanr) ,

(4.19)

i
“on (1< p2)i2
2R,(1 - R2)VV?
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and where m, and m 2’ are given by (4.11) and

(4.12) or by the equivalent expressions obtained by
1

my(t) = E(I—RE

R2)1/2
+oRD

Expression (4. 20) is an exact solution of Eq. (4. 4),
and it is related to the occupation number of pho-
nons in the Ath mode by the very simple relation
(4.2). Its form however, is not simple, and in or-
der to understand its behavior as a function of time
we are compelled to use approximations.

We consider first the case n(t=7) <0, and re-
mark that this does not necessarily imply that n¢
is small, but only that we are far enough from the
avalanche time. In this case we can develop the
hypergeometric functions in (4. 20) in a power se-
ries of — e™¢ "™ keeping only the first two terms in
the hypergeometric series. Then we have

N 1 -(I-Ri)l/znt entt=" >
malt) =5 RY) [e M T A r)”

2 1/3 Pt >j|
(1-rD) -
e < 1+2(1- ROV

We remark that the divergence in (4.21) for the
modes with R, =V3 is only apparent and it is due to
the divergence of the first hypergeometric series
in (4.20) for 1 -2(1 — R?)Y2=0. We might eliminate
it by a suitable linear transformation formula for
the hypergeometric function, but this would involve
a considerable algebraic labor which would obscure
the implicity of the result of our approximation
(4.21). We rather prefer to avoid this pseudodi-
vergence by sampling the band of the modes in
speaking terms. 'Consequently, we shall consider
two regions of modes. The first is that of the
wings where we shall approximate (1 — RZ)Y2~0 in
the denominators of (4.21); this, however, ex-
cludes the very small number of modes which have
been discussed at the beginning of this section and
for which Eq. (4. 4) is not valid for small times. In
the second region we simplify (4.21) by substituting
both denominators with (2 ~ R%); this is valid in a
central zone of frequencies extending from R, =0 to
about R, ~%. Then we immediately get from (4.21)
in the wings of the band

(4.21)

le cosh[(l Rf)"ant]( n(t 'r))

mk(t)
(4.22)
This has an interesting appearance, since it shows
that the phonon population in the wings, far from
the avalanche, is smaller than in the case of the

step-like decay. This is to be ascribed to the slow

)[ -(1-R2>1 zntF[ iRy— (1= RAY2 iRy — (1= RI)V2;1 = 2(1 - RAV?; -

"F[= iR, +(1 = R 1/2 iR, +(1 = RE) V% 1+2(1~ R/ 2 = "t 7] .

the analytic continuation (4.13).
using (4.15) we have explicitly

In the latter case,

n(t-r)]

(4.20)

f

decrease of o, from the initial value which is not
present in the case of Sec. III. This difference
tends to increase with time. In the central part of
the band we obtain

m(t) = le (cosh(l - RY)Veny

en(t T)

"o R sinh(l - RZ)'/%y >, (4.23)
which shows the same effect of reduced growth.
However, since

sinh(1 — R)Y2n¢

5 R’? Rg)llznt ,

<cosh(l -
the reduction in the growth of the modes near the
center is smaller than that of the modes in the wings
of the band. Consequently, this indicates the be-
ginning of a narrowing due to the decrease of ¢,. If
we assume that n¢>1, then we may approximate

cosh(l — R2)Y2nt~sinh(1 - R2)Y?nt

in (4.23) and we may give a qualitative idea of the
growth of the phonons in both ranges of frequencies
by adopting

n(t-r)

my(£) = IRZ cosh[(l-—Rz)”znt]< -2 Rz) (4. 24)

instead of (4.22) and (4.23). Comparison of (4.24)
with (3. 6) suggests us to define a scaling function
F(t, R,) which may be taken as a measure of the
narrowing of the power spectrum of the phonons
due to the gradual decrease of o, prior to the ava-
lanche as

F(t,R,)=1-¢e"t""/(2~R?) . (4. 25)

We see that F as a function of R, tends to become
more and more narrow as time increases, and also
that even the resonant mode is affected.

We now wish to consider the region of times up
to n(t-7)~1, that is when the avalanche is already
well developed. Consequently, we cannot use the
expansion which led to (4.21), and we have to re-
sort to other approximations. In the wings of the
band we approximate

F[-iR,— (1= R})'?, iR, - (1 - R})"?;1 - 2(1 - R))%;

n(t-'r)] o~

- F(=iR,,iRy;1; — ™),
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and use
F(= iRy, iRy;1; = €"*™)
~3F(= iRy, iRy 35— """ ) +3,

which is an approximate relation and can be ob-
tained by expanding both sides by the hypergeomet-
ric series for ¢<7. This allows us to use®

F(- a, a;3; sin®z) = cos2az ,
where we put
sin?z = — """

c0s2az = cOS{2R, In[e™ ™72 4 (1 + e"t-T)1/2]} |

Consequently, in this range of frequencies we ap-
proximate both hypergeometric functions in (4. 20)
by

Lcos{2R,In[e® /24 (1 +e™™)2)L 4L . (4.26)
Expression (4. 20) then becomes
m,(£) u—l—z cosh[(1 = R%)'nt]
1- R
X (3 cos {2R, In[e™*""/2 4 (1 + ™" )2]} 4 3) .
(4. 27)

The scaling function F(#, R,) that can be deduced
from (4.27) for times up to n(¢=7)~1 and for the
modes in the wings is therefore given by (4. 26).
For the central region, we approximate in (4. 20)

F[—iR,— (1 - R)'2,iR,— (1= R®)Y?;1-2(1 - R)'?;
n(t-‘r)] ~ F[l - 2(1 - Rk)I/ZJERgeZ"“'T)
X F(L= iRy, 1 +iRy; 3; = "),

-e
(4. 28)

where use has been made of®

hrﬁ (e )F(a b;c;z)

=La(a+1)b(b+1)22F(a+2, b+2;3; 2) .

Laurent expansion® of T'[1 —2(1 — R%)"/2] about the
singularity at R,=0 shows that the product RZT[1
- 2(1 = R})?] remains finite and near to — 1 for all
the modes in the range we are considering. We
approximate also
F[- iR, +(1 = R})Y?, iR, +(1 = R%)?; 1 +2(1 = R%)'?;
26-0] & F(1 — iR, 1 +iR,; 3; — e™™™) .
(4.29a)
When (4.28) and (4. 29a) are substituted in (4. 20),
one can easily see that the contribution coming
from the former is a factor ¢?"" smaller than the
contribution of (4.29a) and can be discarded.
Therefore, since n¢>>1 and

-e

2.1/2
e(l-Rk) nt ~2 COSh(l _Rz)l/ant ,

we may write

1
T-R cosh[(1 = R%)Y2nt]

X F(1=iR,, 1 +iR,;3; — ™™ ™).

mk(t)

(4. 29D)
From (4.29b) we deduce a scaling factor
F(t,R,) =F(1=iR,, 1 +iR,;3; = ™™ ™) .
Moreover,
F(1=iR,,1+iR,;3;=e™™™)
~1FQ -iR,,1+iR,;5; - " ") +3, (4. 30)

as can be checked by expanding both sides by the
hypergeometric series for {<7. Using the well-
known relation®

F(l+%a,1=%a;%;sin®z)=2sinaz/asin2z,

where
==2iR,, z=iln[e™ /24 (L+ e V)],

expression (4. 30) becomes

F(1-iR,, 1 +iR,; 3;—¢"*™™)

- sin{2R, 1n[e”‘t‘”/2+(1+en(t--r>)1/z]}
" R, sinh{21n[e"® 772 4 (1 4+ " T)/2)} 0

and the scaling factor for the central modes up to
times such that n(f=7)~1 is

F(t, Ry)

sin{2R, In[e"*"7/2 4 (1 + ""P)V2]}
“ 2R, sinh{21n[e"* 72 4 (1 + gD 2]} T2 (-4 a0

When (4. 26) and (4. 31) are plotted as functions of
R, for different times, they reveal a progressive
narrowing of the power spectrum of the emitted
phonons up to times just after the main part of the
avalanche; the rate of narrowing is more marked
in this region of times before as expected, since
most of the modes we are considering are cut off
the region of quick growth by the decrease of o,
near (~T.

We now consider the situation for large times
when n(t—7)>1, and we concentrate on the central
part of the band where R, is small. At these times
expressions (4.20) is not a manageable starting
point however, since the argument of the hyper-
geometric functions appearing in it is large, and
we turn to (4. 18) with m ! and m? given by (4.11)
and (4.12). We need first explicit expressions for
a, and b,. When the various I'(z) in (4.14) are ex-
panded in Laurent series about the appropriate sin-
gularities, 5 the following approximate expressions
are obtained:

'l - 2iR,)
C(1-iR,)T(2 - iRy’

A,~3T(1-2iR,), B,=~

which are regular in the neighborhood of R,=0.
Consequently, in (4.19) we may neglect the term
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with the negative exponential as a factor, due to
the magnitude of nr. We thus obtain

iT'(1 +24R,) (1R V201,
b

- b, =ar .
2R,T(1 +iR,)T(2 +iR,) L

(4. 32)
Using expressions (4. 32) to weigh (4. 11) and (4.12)
in (4.13) we find

a, =

o SA-RHY 20 ( iT(1 +24R,) >
malt) == e Re\ R T +iR) T2 +iR,)

X g2 9r "D p(1 - jR,,1 +iR,;

X1=2iR,;=e ™), (4. 33)

This is still a rather opaque expression, but it re-
duces to a familiar one if we neglect the imaginary
parts in the arguments of the T functions because
of the smallness of R, and if we retain only the first
term in the hypergeometric series, which is one,

because of the smallness of the exponential. Then
(4. 33) reduces to
o (1-Rp Y 20y SINAWy (£ = T)
mk(t) ne Aw,
— ne" 6 (w, ~ wy) - (4. 34)

teoo

Since 7 is the time at which 0,=%, we use K=} and
from Sec. II we get approximately

e~ (B/2A)"2, n=(2AB)"?,
so that (4. 34) can be written as
my(8)~ n,(t)~ 7B (w, — wp) .

From this we easily find

[ mgtondau) = mBew =38, @.35)

=n
which is analogous to (3. 19) and reassures us about
conservation of the number of excitations at large
times.

We now go back to investigate the resonant mode,
which we call the degenerate case because solutions
(4. 9) and (4. 10) coincide for R,=0. In these cir-
cumstances gy =1u, and the differential equation be-
comes

damg

7 n%omq . (4.36)

Two linearly independent solutions of (4.36) are®

me” =F(1,-1;1;- ™) =F(~1,1; ;- ™),

m® = 14 (14 D) R(2, 25 3; — D) (4.37)
the first of which reduces simply to
mél):1+e-n(t'f) . (4.38)

In the second we use®

d
F(2,2; 3,z)—2d—zF(1, 1; 2; z)
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) _Zi(ln(l —z)> ,

dz z
and we find
mP=2[-1+1Q+™ M Nn(1 +e"* )] . (4.39)

For small £, (t -7) is large and negative, and
(4. 39) can be approximated by

(2) o en<t'7) .

m§ (4. 40)

Boundary conditions (4.5) can be imposed on the
general solution

mo(t)= am§® (1) + bm> (1),
where m{Y and m® are given by (4. 38) and (4. 40).
We find
a=(1+2")1, b=(""+2¢)t,
and consequently

1 +e-n(t-1)
1+2e™

_____2_[
e 4 27

mo(t) =

+ —1+(1+e")In(1+e"¢ )] .
(4.41)
When ¢ is small, neglecting e " with respect to

e™™, (4.41) reduces to
mo(t)= coshnt ,

which gives the same time dependence for ny(f) as
in the case of step-like decay before the avalanche.
At t=17 (4.41) gives

mo(T)~e"(21In2 —1)=~ 0. 4™ ,

which should be compared with the value of 0. 5¢""
deducible from (3. 12) for the step-like decay. At
times ¢ such that 7(¢ — 7)> 1 expression (4.41) can
be approximated by

mo(t)=e"[n(t - 1) -1],

which again confirms the linear growth of the pho-
nons in the resonant mode at large time and is in
good agreement with the limiting case that can be
found from (4. 34) when Aw, tends to zero.

V. DISCUSSION AND CONCLUSIONS

We wish first to calculate relative orders of mag-
nitude of the most relevant parameters we have
used in this paper in order to show the consistency
of the approximations we have done at various
stages during the development of the theory. We
observe that our model does not-include direct di-
polar interactions between the spins. Consequent-
ly, our conclusions should be valid for systems
where the phonon interruption time is shorter than
the spin-spin relaxation time T3, An interesting
example is that of the Cu salt studied by Giordmaine
et al.” which we have discussed in Ref. 2. Here we
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shall consider two cases; in both of them we take
K =% and the number of paramagnetic centers per
unit volume N=10, In the first case we assume
27g(wy) =5x 10° sec and T;=A"* =10 sec, and we
find

B=N/27g(wy) = 2x 10 sec™
n=(24B)Y2~6.5%x10° sec™,
ng§ = K(B/2A)*~1,5%x10°,
T~1,2x107 sec .

In the second case we assume 27g(w,)=5% 10° sec
and 7,=10"% sec and we get

B=~2x10" sec™, n=6,.3x10%sec™,

nE~1.6x10", 7~1.6%x107 sec.

The numbers given here show that the avalanche
may develop up to times of the order of microsec-
onds, while the equivalent temperature of phonons
in the resonant mode at the avalanche time may be-
come of the order of (103-10*)°K. We remark that
the rate of growth of the phonons in the resonant
mode after the avalanche is quite large, being given
by B, and this results in a significant increase in
the number of resonant phonons already at time 27
after the avalanche, These conclusions are also
valid for the Fermi-like decay, where we may also
see that it is legitimate to neglect ¢ ™" with respect
to one, since 717 is of the order of 10.

We now wish to propose an interpretation of our
results from the point of view of the time-energy
uncertainty principle. It is well known® that if we
have a single spin in the lattice, which decays from
the upper to the ground state, and if we assume
that the magnetic energy of these two states of the
spin is well defined, then the quantum of radiation
in the elastic field will be emitted preferably in a
band of frequencies of width A = T7! where T, is the
characteristic time for the decay process. This
is a consequence of the time-energy uncertainty
principle, since in this case the duration of the in-
teraction between the spin and the emitted phonon
is on the average of T, seconds, the phonons being
free to escape far from the spin after this time. In
the case of N spins which form the argument of this
paper, the situation is not the same even for the
decay of the first few spins, since the phonons
emitted cannot escape into a region devoid of inter-
action and the time a phonon lives before turning
another spin, becomes very short, giving rise to a
spread in the spectrum of the phonon occupation
numbers which initially is of the order of 7.

After this initial stage, but before the avalanche
time 7, it is convenient to distinguish two effects.
First, we observe that each bunch of spins which
may be assumed to emit at the same time finds a

situation which is different from that of the other
bunches because of the presence of a different num-
ber of stimulating phonons; more precisely, the
characteristic time associated with the decay of a
bunch of spins is proportional to the inverse of the
number of resonant phonons present in the lattice,
and consequently it is shorter than that of the pre-
ceding bunches. Therefore, we expect that be-
cause of this effect, the width of the power spec-
trum of the emitted phonons be larger than 1/t as
one would predict from a naive use of the uncer-
tainly principle with the equality sign, since the
whole spectrum should result from the superposi-
tion of phonons emitted at different times and with
decreasing characteristic times up to time . The
second effect is the spread due to the interruption
time, which is still small in this range of times in
spite of the decrease of 0,; this would tend to de-
crease the width of the spectrum of the emitted
phonons, but we have shown that it does not play a
noticeable role up to about time 7. The net result
at times before the avalanche should then be a band
larger than 1/¢, and in fact we have shown in a
preceding paper [Ref. 2, Eq. (15)] that the band-
width satisfies

(Aw)(t) 2= V2,

This tells us that after n¢=1 the band becomes
larger than the miminum required by a formula-
tion of the uncertainty principle in which the inter-
action which causes the decay is assumed to begin
at £=0 for all spins which have been reversed.

The situation is different late after the avalanche,
since then the average value of ¢, is near zero, and
the phonon interruption time has become much
larger than before 7. Consequently, this contribu-
tion to the linewidth is silenced and the bandwidth
is essentially influenced by the fact that the great
majority of phonons are emitted at time 7. From
expressions (3, 12) and (4. 34) for the number of
phonons in the two models we have studied, we find
that after the avalanche the width of the phonon dis-
tribution is approximately given by

(Bwy=(t-7)1.

This indicates that (Aw) is larger than would be ex-
pected if the beginning of the interaction causing
the decay were set at {=0. It is as if the uncer-
tainty principle were valid with the equality sign,
but the beginning of the interaction were shifted at
the avalanche time. In other words, since we are
dealing with a regenerative process, the effective
strength of the interaction increases suddenly at 7
with the number of emitted phonons, and the sys-
tem behaves as if the interaction had actually
started at this time. Since the interaction between
spins and phonons goes on after 7, the narrowing
of the power spectrum of the emitted phonons at
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large times should be interpreted as a quantum-
mechanical effect on a macroscopic scale.

In conclusion, in this paper we have shown that
the problem of the decay of the magnetization from
negative temperatures may, by suitable approxi-
mations, be reduced from a problem in which O(N)
lattice modes are coupled to the spins, to a prob-
lem with only the resonant modes coupled to the
spin, and we have approximately solved the latter,
giving explicit time dependences for both the mag-
netization and the number of phonons in the reso-
nant modes. Furthermore, we have presented de-
tailed analytic calculations of the power spectrum
of phonons emitted by N paramagnetic spins s =3
during an avalanche. We have performed two sets
of calculations, in each of them assuming a differ-
ent decay law for the magnetization of the spin sys-
tem: we have called these two models the step-like
and the Fermi-like decay, respectively. In this
way it has been possible to confirm quantitatively
that the parameters of the spectrum of the emit-
ted phonons vary during and after the avalanche,

showing a definite tendency towards narrowing.

By comparing the two types of decay considered,
we have been able to separate two mechanisms for
this narrowing, which operate before and during
the first part of the avalanche, and which we had
discussed in a semiquantitative fashion in another
paper. 2 Moreover, we have pointed out the possi-
bility of further narrowing after the avalanche is
concluded and we have suggested that this third
source of narrowing may be the manifestation on

a macroscopic scale of a quantum-mechanical ef-
fect. Since our model does not include any spin-
spin interaction other than that mediated by the
phonons in the lattice, the present theory should be
applicable only to crystals where the phonon inter-
ruption time is smaller than T,, We cannot ex-
clude, however, that the validity of the present the-
ory goes beyond these limits, ® since the stirring in
the spin system caused by the avalanche phonons
might considerably reduce the effects of some of
the relevant parameters which we have not taken
into account.
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