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A positron pseudopotential is proposed that simplifies the description of a thermalized positron in a
metal or alloy. The method is based on a factorization of the positron wave function into an

energy-independent core function, which accounts for the detailed behavior of the positron when it
approaches an ion core, and a smooth envelope or pseudo wave function. The pseudo wave function
satisfies a Schrodinger-like equation with a relatively weak potential —the pseudopotential.
Pseudopotential differences have been calculated for a number of alloys. The results indicate that the

positron may have a strong preference or affinity for one sort of atom in binary alloys over the other.
This relative positron aAinity should lead to the positron preferentially annihilating with the electrons of
that sort of atom in the alloy, and a method of detecting this from measured positron-annihilation data
is proposed.

I. INTRODUCTION

Positron-annihilation techniques have resulted
in much useful information on the electron be-
havior in pure metals. ' The positron initially with
a large energy -1 MeV rapidly looses energy in
the sa,mple, and the bulk of the annihilation pro-
cesses take place when the positron is roughly in
therma, l equilibrium with the sample. The positron
lifetime can be measured yielding information on
the electron density at the position of the positron,
and in addition, the angular correlation of the two

y rays resulting from the most probable decay
process can be measured. This yields information
on the momentum distribution of the annihilating
positron-electron pair. The spatial distribution
of the annihilating positron in pure metals plays
a minor role in the interpretations of most ex-
periments; the slight penetration of the positron
into the ion-core regions merely leads to a small
core-electron contribution to the positron anni-
hilation in simple metals. ~ In some systems the
spatial distribution of the positron is an important
factor in the interpretation of positron-annihilation
experiments. In these cases the localization of
the positron in atypical regions of the sample and
its subsequent annihilation there dominates the
measured positron- annihilation characte ri sties.
For example, at a temperature of about 600 'C the
equilibrium concentration of monovacancies in
Al, -10 4, is sufficiently high that more than 95/o

of thermalized positrons annihilate from bound
states in the immediate vicinity of va.cancies be-
cause of the strong positron-vacancy interaction.
Positron trapping at vacancies in Cu, Ag, Au, Mg,
Zn, Cd, Al, In, Tl, and Pb has so far been de-
tected. ' Effects due to positron trapping at dis-
locations ' and at voids' in some metals have al-
so been reported.

Positron-annihilation experiments have also

been performed on alloys with the aim of studying
changes with composition of the electron momentum
distribution, in particular, the Fermi surface.
Results of Stewart on disordered I,iMg alloys in-
dicated an increase in the Fermi momentum on
increa. sing the Mg concentration. More recently,
many Fermi-surface studies have been carried
out on alloys such as CuZn. ' Positron annihila. -
tion is a valuable tool for studing these systems
since the short electron mean free path prohibits
the use of the precise techniques (such as de Haas-
van Alphen) used for pure metals or very dilute
alloys. However, little is known about the spatial
distribution of the rmalized positrons in alloy
systems.

In this paper a theoretical framework is pre-
sented for calculating the distribution of the
thermalized positron in pure metals, pure metals
with point defects, and in substitutional alloys.
In the following paper the method is used in a, de-
tailed discussion of the results of positron-anni-
hilation experiments performed on a series of
I,iMg alloys. The method can also be used for
calculating a,ccurate positron wave functions and
energies for perfect metals including full lattice
symmetry.

Since the early calculations of positron ground-
state wave functions in metals using the Wigner-
Seitz approximation it has been evident that the
spatial distribution of the thermalized positron
has something of a "Swiss cheese" character, the
distribution being relatively uniform apart from
"holes" around each ion due to the strong re-
pulsion of the positron from the positively charged
ions. This qualitative picture will be put on a
quantitative footing in the following sections by
describing the positron distribution in terms of a
smooth envelope modulated by a function which is
small in the region of each ion core.

The positron wave function for states near the
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bottom of the lowest positron energy band is sep-
arated into two factors. One factor reflects the
strong repulsion of the positron from the ion core.
It is insensitive to the energy of the positron and
to the environment of the ion core. The other
factor is a smooth envelope function which is
energy dependent and sensitive to the environment.
The envelope satisfies a Schrodinger-like equa-
tion with a relatively weak potential term. The
philosophy adopted prompts the use of the term
pseudopotential for this weak potential and positron
pseudo wave function for the smooth envelope.

The positron pseudopotential for a substitutional
alloy will be different in atomic cells containing
different sorts of atoms. This will lead to an en-
hancement of the pseudo wave function at the more
attractive site and an over-all preference of the
positron for one atom or the other in a binary al-
loy. The positron pseudopotential difference be-
tween different sorts of cells is proposed as a
measure of the relative positron affinity. This
affinity should lead to the positron preferentially
annihilating with the electrons of one sort of atom
over the other, and a method of detecting this
preference from observed quantities has been
devised.

The method is based on a comparison of the
contribution that electrons in the ion-core re-
gions make to the positron annihilation in the al-
loy and in the two pure metals. The contribution
that these electrons make to the total positron-
annihilation rate is termed the positron-core-
annihilation rate and this quantity for the alloy
can, to a good approximation, be written in terms
of the core rates for the two pure metals and the
positron pseudodensity distribution in the alloy.

In Sec. II the pseudopotential picture of a posi-
tron is presented. The case of a positron in a
pure metal is discussed and then the case of a
positron in a substitutional binary alloy is pre-
sented. In Sec. III calculations of positron pseu-
dopotential differences between the two components
of a number of alloys are presented and the rel-
ative affinity of the positron for one sort of atom
or the other is discussed. The core rate is dis-
cussed in Sec. IV, and core rate in an alloy is ex-
pressed in terms of the positron pseudo wave
function. Conclusions are drawn in Sec. V.

II. POSITRON PSEUDOPOTENTIAL PICTURE

The basic ideas and the method will be intro-
duced by considering the case of a thermalized
positron in a perfect metal. The generalization
to the case of a metal with point defects or a sub-
stitutional alloy will then be straightforward.
Attention will be focused on simple metals for
which a clear distinction can be made between
core and valence electrons, but some qualitative

conclusions can be drawn for the noble metals.
It is somewhat easier to construct an approxi-

mate single-particle potential in which a ther-
malized positron moves in a metal than it is for
an electron in a metal. There is, of course, no

Pauli repulsion between the positron and an elec-
tron and so there is no exchange contribution to
the positron potential. Furthermore, calcula-
tions' based on a positron in a uniform electron
gas indicate that the positron-electron correlation
energy is a slowly varying function of mean elec-
tron density in the range of metallic densities.
This means that the positron correlation potential
in the interstitial regions of the metal will be rel-
atively constant. In the high-electron-density re-
gions in the ion cores, the correlation potential
will be swamped by the larger Hartree potential.
To a good approximation the positron in a metal
moves in the Hartree field of the ions and con-
duction electrons. The Hartree potential V(r)
for the positron in a metal can be estimated using
the charge density of the ions and a knowledge of
the valence-electron density. The former can
be constructed from calculated free-atom wave
functions which are sufficiently accurate for our
purposes. The valence electrons in simple met-
als are believed to be fairly uniformly distributed,
and to a reasonable approximation their contri-
bution may be calculated assuming a uniform dis-
tribution.

The single-particle wave function g (r) for a
low-lying positron state of energy E satisfies the
Schrodinger equation

The positron, having a positive charge, is
strongly repelled from the ion-core regions of a
metal and consequently the wave function is small
in these regions, increasing rapidly to become
largest in the regions between the ions. Calcu-
lations of positron wave functions for the state at
the bottom of the lowest energy band for a few
metals have been made using the Wigner-Seitz
approximation. The results indicate that the ratio
of the positron density at the nucleus to that in the
interstitial region is about 2% for Li and much
smaller for the other metals, for example, 0. Ol%%uo

for Mg. It is clear that the positron wave function
is not smooth and for many purposes a few plane
waves would be a poor representation in the core
region. Similarly the potential experienced by the
positron in these regions is large; its effect can-
not be treated using low-order perturbation theory.
In view of this it might seem puzzling that the
bottom of the band effective mass ratio, m*/m,
for the positron is very near unity (m*/m is 1.03
for Be and 1.05 for Na, ' both calculations based
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on the Bardeen, Silverman, and Kohn method),
implying that the positron, at least near to the
bottom of the band, behaves rather like a free
particle.

The free-particle nature of valence electrons
in simple metals is reconciled with the very large
attractive potential in the core region through the
electron pseudopotential picture. The idea is that
much of the large potential the valence electron
experiences in the core region is cancelled by the
kinetic energy arising from the necessary orthog-
onality to the core-electron states. The residual
part of the potential is known as the electron
pseudopotential, and the corresponding pseudo
wave function is relatively smooth. An analogous
situation does not exist for-the thermalized posi-
tron since we are only concerned with the lowest
single-particle positron states.

In the core regions where the positron wave
function is most distorted the potential V(r) is
much larger than the positron energies of interest
(a few eV only) and so from (1) the shape of ((r)
in the core regions must be insensitive to the
positron energy. Therefore, a positron core func-
tion, with the correct spatial dependence in the
core regions, and independent of positron energy
is factorized out of the positron wave function
g(r) to leave a smooth envelope. This envelope
contains all the energy dependence of ((r), and
we adopt for it the term positron pseudo wave
function.

For a positron in a perfect metal we write

((r) = U, (r —R) g'"""(r) (2)

[(- h2/2m)V2Uo(r) + V(r) U, (r) J/U, (r) = E,

throughout the whole cell. Substituting (2) in the
Schrodinger equation, we find that gu"" ' satisfies
a Schrodinger-like equation

where r lies within an atomic cell centered on R
and Uu(r) is the positron Wigner-Seitz wave func-
tion. Ideally, the exact positron bottom of the
band wave function would be chosen for the positron
core function, but since these are relatively diffi-
cult to calculate, we would defeat our object of
devising a simple scheme to compute positron dis-
tributions. The positron Wigner-Seitz wave func-
tion is the lowest S-like radial wave function that
is flat at the surface of the equal volume sphere,
and so it does not exactly satisfy the Schrodinger
equation near the cell boundaries. However, de-
tailed calculations" performed for Al indicate that
the positron Wigner-Seitz energy Eo differs by
only 0. 01 Ry from the exactbottom of the band
energy and so we assume that

( @2/2 )~2yuseudo( ) p Vuseudo ( R )q escudo( )

Eq useud o( ) (4)

where V"'" the quantity playing the role of the
potential, which will be termed the positron
pseudopotential, consists of two parts and is given
by

for r within the atomic cell

= 0, for r outside the atomic cell.

The first part is constant throughout the cell and
for the perfect metal has the same value in every
cel]. With the zero of energy taken to be the value
of the electrostatic potential in the interstitial re-
gion (at r=R, ) the Wigner-Seitz energies are large
and positive. Values of Eo for a number of metals
are listed in Hodges and Stott. The second part,
which we shall term the gradient part of the pseu-
dopotential and denote by V&(r), is more com-
plicated. However, it is easy to see that it is
much weaker than V(r) in the core region. Where-
as the full potential diverges near the nucleus
having the form V(r) -Z/r, the logarithmic deriv-
ative Uu (r)dU2(r)/dr entering Vo remains finite
and has the value Ze2m/h2 at r= 0 and falls sharp-
ly to zero at the equal volume cell radius since
Ud(r) is flat there. But the major point is that
the contribution of V'~ to the positron energy de-
pends on the gradient of Pu""d' which is small
because the rapidly varying part of the full wave
function in the core region has been factorized
out. The error introduced into V~ due to the use
of the approximate Wigner-Seitz wave function in
(2) and (3) is small because in the region near the
cell boundary where U, (r) does not have the full
lattice symmetry and is poorest, V~ is small. The
positron Wigner-Seitz wave functions and logarith-
mic derivatives for Li and Mg are illustrated in
Fig. 1; the normalization of the wave functions
has been adjusted so that U, (R,) = 1.

The Wigner-Seitz method for obtaining the bot-
tom of the band wave function is a better approxi-
mation for the k= 0 valence electron state in a
cubic metal than it is for the positron. The greater
curvature in the positron wave function near the
cell boundary arises from the exclusion of the
positron from the central part of the cell and re-
sults in the large values for Eo. The electron
Wigner-Seitz wave function in the case of an alkali
metal is flat over 90% or more of the cell volume. '
The logarithmic derivative of the valence-electron
Wigner-Seitz wave function will be s~all over
most of the cell, and it might seem tempting to
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FIG. 1. Positron W.gner-Seitz wave functions and
their logarithmic derivatives for Li {full lines) and Mg
{dashed lines) plotted against y /Ra. The wave functions
are normalized so that Up{Ra) =1.

gzg2 l ~ IS(K„)l'l(k+K„l VG lk) I'
z(k) =z, + — + —,M

Tf ..0 e'u'/2m- (@'/~m)(k+ K„)'
(6)

where 0 is the volume of the unit cell, K„ is a
reciprocal lattice vector, S(K„) is the structure
fa,ctor, a,nd

(pIVe Iq) =-&dr e ' ' Ve(~)e""

The matrix element can be simplified to give

4mb' q ~ (p-q)
(p I Vo I q) =

m Ip q)
Ra

dr r'
d [lnUO(r)] j,(ip-q i r),

0

construct a pseudopotential and pseudo wave func-
tion for the electron following a procedure similar
to (2), (4), and (5). The drawback to this is that
the nodes in the core region of the valence-electron
wave function lead to divergences in its logarithmic
derivative and hence also in the Ve(r). Conse-
quently the form factor corresponding to Vo(r)
will oscillate and decrea, se slowly for la, rge mo-
mentum transfers. The factorization of the va, —

lence-electron wave function into an energy-in-
dependent core part and a smooth envelope is not
useful because the nodes in the electron wave
function in the ion-core region shift with energy.
In contrast to the electron case, the positron
states of interest lie near the bottom of the lowest
band and the positron %igner-Seitz function has no
nodes; Vo(r) is well-behaved.

The validity and usefulness of a pseudopotential
picture for positrons in metals, and as we shall
see later in alloys also, hinges on the awkward
part of the positron pseudopotential Vo(r) being
small enough to be treated in low-order pertur-
bation theory. The positron band effective mass
at k= 0 has been calculated for a number of simple
metals in order to test this.

In the case of pure metals, the constant part of
the positron pseudopotential (since it has the same
value in every atomic cell) leads merely to a
uniform potential of magnitude E0 throughout the
metal. The positron E(k) relation would then be
free-particle-like with E(k) = Eo+ h'ka/2m; the
corresponding positron pseudo wave function would
be a plane wave O' ""

~ Any deviation of the posi-
tron E(k) relation from free-particle-like behavior,
in particular the deviation of the effective mass
relation m*/m from l, must be due to the gradi-
ent part of the pseudopotential P~. Conventional
perturbation theory to second order in t/'~ leads
to an expression for the positron E(k) relation,

where

j,(x) = (sinx)/x'-(cosx)/x

is the second spherical Bessel function. Near
the bottom of the positron band, that is for small
k, (6) simplifies and we have

8 k
E(k) = Z, +- —— iS(K„) i'2' 2&1 figQ

where

A(K„) = ~
"- dr r' —IlnUO(r)] j,(K„r).

0

The final expression for the positron effective
mass ratio at k = 0 for the cubic metals is

4+)~ -
~

(A(Z))

The quantity A(q) plays the role of the positron
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FIG. 2. Positron pseudopotential coefficients S(0) A{q)
in rydbergs [Eq. {10)]plotted against q in atomic units
for Li, Na, Mg, and Al.
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pseudopotential form factor, a,nd it is illustrated
for a number of ca.ses in Fig. 2. The positron
effective mass ratios calculated using (11) for a
number of metals are given in Table I. The posi-
tron effective mass ratios for Be and Mg were
estimated by spherically averaging the E(k) re-
lation. In this way average scala, r instead of ten-
sor effective masses were obtained. They in-
crease as the size of the core increases and also
are larger for polyvalent metals although in all
cases considered they deviate little from unity.
In those cases where rn*/m has previously been
calculated using the Ba,rdeen- Silverman-Kohn
small-k expansion, namely Be and Na, there is
good agreement. This agreement indicates that
second-order perturbation theory in V~ is work-
ing well, and furthermore the small deviation of
m*/m from unity confirms that Ve is small.

A more exhaustive test of the positron pseudo-
potential picture has been carried out. " Using a
slightly modified pseudopotential the k =- 0 positron
wave function including the full lattice symmetry
has been calculated up to first order in the
gradient part of the pseudopotential. These wave
functions have been compared with the results of
diagonalizing the secular equation with a pla. ne
wave basis and using the matrix elements of the
full potential. The perturbative results a,re as
good as these and near the nucleus are superior.
The k = 0 energies have also been calculated using
both methods, and the results are in excellent
agreement. The deta. ils of these calculations will
be presented elsewhere. "

The calculation of positron wave functions in
a.lloys is a harder problem, a.nd this will be dis-
cussed now in the light of the positron pseudopo-
tential picture. Consider a thermalized positron
in an A-B substitutional alloy. The positron po-
tential consists of four contributions:

(a) The bare-ion contributions described ear-
lier.

(b) The Hartree contribution from the valence
electrons which for a particula, r atom we have
smeared out uniformly over its atomic cell so that
at this stage each cell is electrically neutral.

(c) The contribution from positron- valence-
electron correlations. Even in an alloy of simple
metals there will be considera, ble nonuniformity

TABLE I. Positron k=0 effective masses calculated
to second order in the positron pseudopotential using Eq.
{11). Values calculated previously for Be and Na by Stew-
art et al. {Ref. 10) are in parentheses.

of the valence-electron density if there is a va-
lence difference, and since the positron-electron
correlation energy varies, albeit slowly, with
electron density, there will be a. contribution to
the positron potential. A local density approxi-
mation ha, s been used to estimate this contribution
and a term .E, „(p(r)) has been added to the poten-
tial, where E, ,(p(r)) is the positron-electron
correlation energy for a. uniform electron gas of
density p, and p(r) is the valence-electron density
in the alloy which is a.ssumed to be uniform with-
in each cell, but will have a different value in cells
of different valency. This will amount to a, term
E"„„in the potential within a. cell, where the type
of cell has been denoted by x=A or B.

(d) The contribution due to charge transfer from
one type of cell to another. An accurate estimate
of this contribution would require the valence-
electron density in the alloy. A calculation of this
quantity would be very difficult and little informa, -
tion is as yet available; so the potential due to
charge transfer has been estimated using the fol-
loming simple argument.

Consider a large isolated cluster of A atoms in
B metal. Electron relaxation results in charge
transfer across the cluster boundary and a, charge
dipole layer is set up around the cluster. There
is no simple way of determining the amount of
charge transferred; however, the additional Har-
tree potential due to the dipole layer is just suf-
ficient to equalize the internal Fermi energies in-
side a,nd outside the cluster. In this case the
potential due to charge transfer experienced by
the positron apart from an unimportant constant
is approximately given by E~ inside the A cluster
and E~ outside, where EF" and EF are the internal
electron Fermi energies of the A and B metals,
respectively. This prescription is used for cal-
culating the Ha.rtree potential due to charge tra, ns-
fer around a single cell, although we realize that
the extent of the dipole layer is only slightly smaller
than the dimensions of the atomic cell. Splitting
up the alloy into atomic cells each of the same
volume, the potential due to cha, rge transfer is
approximated by a constant potential E„" in every
cell occupied by an A atom and E~ in the B atom
cells. Here EJ"; and E~ are the internal Fermi
nergies for the A and B metals each adjusted to

the alloy atomic volume. Similar arguments to
these have been used to discuss electrochemical
effects in alloys' and to estimate the potential
experienced by electrons due to charge transfer
in dilute alloys. 1

The positron potential in, say, an A cell of the
alloy is, apart from a constant, the same a,s that
in a, cell of the pure A metal adjusted to have the
alloy atomic volume. This means that the wave
function for a thermalized positron near an A ion
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in the alloy is very similar in shape, though we
shall see not in amplitude, to the wave function
near an A ion in the pure A metal, and similarly
for the B ions. The pseudopotential picture for a
thermalized positron, applied earlier to a pure
metal can be applied to the alloy. The Wigner-
Seitz wave function for a positron in an A cell,
Up, is factorized out of the full positron wave
function g in each A cell and similarly for the B
type cells,

(i2)

where

I

I
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for r within the cell of type x, either A or B,
centered on the site R. The amplitude of the
Wigner-Seitz solutions is adjusted so that the so-
lutions for the different sorts of cell have the same
value in the interstitial region Uo (8, ) = UD(R, ).
This means that the Wigner-Seitz solutions for
different cells no longer have the same normal-
ization, and we write

(i4)

where f„d r denotes the integration over the atomic
cell (the Wigner-Seitz sphere in the approximate
scheme). Taking tII"'""' (r) equal to a constant in
(i2) would give the simplest approximation for the
positron wave function in the alloy. Improvements
to this can be calculated from the Schrodinger-
like equation satisfied by g"'"d'. Following a
similar procedure to that outlined for the pure
metal g"'""' is given by (4) where the positron
pseudopotential for the alloy is

A2
V*(r) =E o+ E ~ E*,„,———l*nU*, (r)) i" 'V (15)

within a cell of type x, either A or B. The constant
part of the positron pseudopotential has a different
value in the different sorts of cell, the small gra-
dient parts are also different and so the positron
pseudo wave function will not be uniform through-
out the alloy. The positron pseudo wave function
and pseudopotential are indicated schematically
in Fig. 3 and are compared with the full wave
function and potential for the two cases of a posi-
tron in a pure metal and a, positron in an alloy.

The positron pseudopotential may also be used
to discuss the behavior of positrons near vacancies
in metals. This case is also illustrated sche-
matically in Fig. 3. Since there is no repulsive
core in the vacancy cell, the factorization of the
positron wave function is ca.rried out in cells
other than the vacant one, and the resulting posi-
tron pseudopotential is strongly attractive. The
over-all picture is very similar to that proposed

FIG. 3. A schematic figure illustrating the positron
pseudo wave function and pseudopotential (full lines) and
the corresponding full wave function and potential (broken
lines) for three cases: (a) a positron in pure A metal, (b)
a positron near an attractive substitutional impurity in
A metal, and (c) a positron bound state at a rnonovacancy
in metal. The jagged line is intended to represent the
gradient part of the pseudopotential.

by Hodges, "although the positron trapping po-
tential was deduced using different arguments.
The positron-vacancy potential we1.1 depths cal-
culated using these two approaches compare favor-
ably. ' In those metals where the positron-vacancy
interaction is very strong leading to large posi-
tron-vacancy binding energies [for example in Al
the positron-vacancy binding energy is about 2 eV
(Ref. i5)] the positron bound-state pseudo wave
function will be sharply localized and the gradient
part of the pseudopotential which depends on
VII'"'""(r) may play a, bigger role.

III. RELATIVE POSITRON AFFINITIES IN ALLOYS

Positron pseudopotential differences Vp = Ep —E p

+EX Ep+Ecorr Emrr have been calculated for a
number of alloys with 50 at /q comp. osition. The
difference in the gradient part of the pseudopoten-
tials have been neglected in view of the small de-
viation of zzz*/zzz from unity for the pure metals and
so the pseudopotential difference consists of the
differences in the constant part, the charge trans-
fer contribution, and the positron-electron corre-
lation energy contribution.

The constant part of the pseudopotential Ep,
merely the positron Wigner-Seitz energy for the
alloy atomic volume, has been calculated by nu-
merical integration of the radial Schr'odinger
equation. The potentials used were constructed
from tabulated free atom electron wave functions'7
for the ion-core contribution and the potential due
to the valence electrons uniformly distributed over
the equal volume sphere. The correlation energy
contribution has been estimated using results for
the positron-electron correlation energy for a
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uniform electron gas calculated earlier by Hodges
and Stott. The internal Fermi energies used for
calculating the charge transfer contribution were
taken from Hodges and Stott. '

The positron pseudopotential difference has also
been estimated for a AuAg alloy. The positron
Hartree potential for this case requires further
explanation. The outermost d-electron distri-
bution was renormalized in the manner of Watson
and Ehrenreich' so that ten d electrons were
within the Wigner-Seitz sphere. As the positron
penetrates into the d-electron shell, it experiences
a rapidly increasing eftective valence; so the posi-
tron wave function is rapidly varying in the outer
regions of the cell. This means that the gradient
part of the pseudopotential is much larger for the
noble metals than it is for the simple metals with
small ion cores. Consequently the band effective-
mass ratio will also be larger for these metals.
Perturbation calculations using (l 1) indicate ef-
fective-mass ratios of 1.11, 1.19, and 1.21 for
Cu, Ag, and Au, respectively. The effective
masses will probably be as large for the transi-
tion and rare earth metals. Even though the
gradient parts of the pseudopotential are larger
for Ag and Au, we do not believe that their omis-
sion in calculating the pseudopotential differences
has lead to much error since the V~ for Ag and
Au are rather similar. The internal electron
Fermi energies for these metals were taken from
Hodges and Stott. ' The results for the positron
pseudopotential difference are presented in Table
0, a negative Vo indicating a relative positron
affinity for the A atom in the alloy.

The three contributions to Vo are listed in
columns 3-5 of Table II. The positron zero-point
energy difference in column 3 arises from the
interaction of the positron with the neutral cells.
The positron tends to be pushed out of the cell
containing the larger valence and larger ion core,
for instance, out of the Mg cell in Li-Mg and out
of the In cell in In-Cd. The effect of different
ion cores is easiest to see in the alloys with no

valence difference; for example, the positron is
pushed away from the larger Zn ion in Mg-Zn
alloy. There is some cancellation between the
ion core and valence effects in Al-Zn; Al has the
larger valence, but a smaller ion core and hence
the relatively small zero-point energy difference.
The next column lists the difference in positron-
valence-electron correlation energy and here the
effect is for the positron to be attracted to the cell
with larger electron density, that is, to the cell
with the larger valence. This tends to balance
somewhat the valence contribution to the zero-
point energy difference. Column 5 lists the con-
tribution arising from electron charge transfer
from one cell to another so that the cells are no
longer electrically neutral. The magnitude and
direction of the electron transfer is affected both
by the electron kinetic energy, reduced if the
electron wave functions are made more uniform,
and the electron potential energy, which tends to
pile up the electron wave functions in the cell with
the more attractive electron pseudopotential.

The net result of these three contributions is to
give substantial positron pseudopotential differences
Vo for most of the alloys considered. This means
that the positron pseudo wave function will be en-
hanced in cells containing the component in italics
in the following series of 50-at. % alloys of Al Zn, -
Mg-A/, Mg-Zn, Li-Mg, Mg-Cd, In-Cd, andAg-
Au and positron- annihilation experiments should
preferentially sample these components in the
alloys.

The effect of the pseudopotential difference may
easily be gauged. An isolated spherical potential
well of depth Vo and radius A, will have at least
one bound state (an s state) when

X=R,(2mV /I ) ~

is greater than n/2. The strength parameter X

has been calculated for the alloys considered, and
they are listed in column 7 of Table II. A value
of X approaching 1 implies a substantial enhance-

TABLE II. Mean atomic radius, three contributions to the positron pseudopotential dif-
ference, and the net pseudopotential difference Vo for a number of 50-at. %%upalloys . Aneg-
ative Vo in column 6 indicates a positron affinity for A over B in the alloy. The square-
mell strength parameter is also listed.

A B z,(a. u. ) E", —sB, (Hy) +corr Ecorr (By) EA EB (B ) Vo (H,y)

Al Zn

Mg Al
Mg Zn
Li MR

MR Cd
In Cd

Ag Au

2. 94
3.09
3. 06
3.26
3.29
3.35
3.01

0. 04
—0. 08
—0. 03
—0.10
—0. 05

0. 06
—0. 03

—0. 04
0. 03
0. 00
0. 04
0. 00

—0. 03
0. 00

0. 08
0. 08
0.13

—0. 02
0.07
0. 06

—0. 02

0. 08
0. 03
0.10

—0. 08
0. 02
0. 09

—0. 05

0. 8
0. 5
1.0
0.9
0. 5
1.0
0. 7
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ment of the positron pseudo wave function. In
those cases where X is about 1 or less a perturba-
tion calculation of the positron pseudo wave func-
tion treating the pseudopotential difference to first
order should be adequate. The full positron wave
function may be obtained by modulating P"'""'
with the core function. In any event, the degree
of localization of the positron around one sort of
site or another is determined by the positron
pseudopotential difference V„and it may be use-
ful to take Vo as a measure of the relative affinity
of the positron for the two different sites in an al-
loy.

Experimental and theoretical evidence indicates
that there are a.ctual positron bound states a,round
monovacancies in many metals. The possibility
of positron bound states around impurities in met-
als will now be considered. The amount of lattice
relaxation around an impurity in a metal is not
known at present, but assuming that this is a,

small effect, an interstitial atom of the metal or
an interstitial impurity atom should be repulsive
to the positron. This is because the interstitial
amounts to the insertion of an additional repulsive
ion into the lattice. The situation is different for
substitutional impurities, if the repulsive ion of
the host is replaced by one much less repulsive,
then a large attra, ctive pseudopotential can result.
Li, with its small core and valency of 1 has one
of the largest positron affinities. It can be dis-
solved in small quantities in a number of metals.
So as an impurity, it is a prime candidate for
positron bound states.

Calculated positron pseudopotential diff erences
for Li impurities in metals with increasing valency
are presented in Table III. As expected there is
a strong positron affinity for the Li impurity in

all the cases except Li-Pb, where there is a large
electron-cha, rge- transf er contribution and a. la.rge
E„~—E„„balancing the zero-point energy dif-
ference. The magnitude of Vo for Li-Ag is prob-
ably an overestimate since correlations between
the positron and the 4d electrons of Ag have been
neglected in the calculation of E",

Op@ Egppp An
inspection of the list of strength pa, rameters in-
dicates that there will probably be no bound state
a,round a. Li impurity in any of the metals studied

since all the values of X are significantly less than
n/2. However, the large values of I V, I for Li in

Ag, Mg, and Al suggest that a thermalized positron
will sample more Li atoms than indicated by the
atomic concentration, and this will be reflected in
the results of positron-annihilation experiments.
Since Li has probably the strongest positron af-
finity of any metallic impurity, it is safe to assert
that there will not be positron bound states around
the isolated impurities in dilute alloys.

IV. POSITRON-ANNIHILATION CORE RATE

This section is devoted to a discussion of a meth-
od by which information on the relative positron
affinity for one component of an alloy may be
deduced from experimental annihilation data and
the role played by the positron pseudodensity in
this respect. The measured annihilation rate and
angular correlation curve for a positron annihi-
lating in a. bina, ry alloy will reflect the way the
thermalized positron is distributed between the
two different sorts of sites, but it is not possible
to deduce the way the positron is distributed di-
rectly from these mea, sured quantities since the
valence-electron distribution in an A cell of the
alloy is different from the distribution in a cell
of the pure A metal and so the electron distribu-
tion a,nd the positron distribution both change with
alloying, and the effects on the experimental data
from one of these factors cannot be sorted out
unambiguously from the effects of the other.
However, the core electrons in simple metals are
unaffected by alloying apart from small energy
shifts. The atomiclike character of the valence
electrons near the ions [the orthogonalized-plane-
wave (OPW) "wiggles" ] is also insensitive to al-
loying apart from a, small change in amplitude.
Furthermore the density of a thermalized positron
in the region of an A atom core in the alloy, the
other important factor affecting the annihilation
characteristics in that region, is unchanged from
the density in the core region in pure A metal
apart from a slowly varying factor. This factor
is the positron pseudodensity I

g'"" '(r) ) ~, for
the alloy. These arguments indicate that in an
alloy that portion of the positron decay due to
annihilation with core electrons and valence elec-

TABLE III. Mean atomic radius, three contributions to the positron pseudopotential dif-
ference, and the net pseudopotential difference Vp for Li impurities in. Ag, Mg, Al, and pb.
The square-well strength parameter is also listed.

Li Ag
Li Mg
Li Al
Li Pb

A, (a. u. )

3.01
3 33
2.98
3.65

Ep -Ep (By)

—0.15
—0. 09
—0.19
—0.20

0. 00
0. 04
0. 09
0.10

(By)

—0. 05
—0. 02
—0. 06

0.10

Vp (By)

—0.20
—0. 07
—0.16
—0. 00

1.3
0.9
1.2
0. 0
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trons with atomiclike features in an A cell will
differ from that same portion of the rate for pure
A metal only by the positron pseudodensity in the
A core region in the alloy. This portion of the
annihilation rate which has been called the core-
annihilation rate, reflects strongly the distribu-
tion of the positron between different sorts of sites
in an a.lloy.

It should be straightforward to deduce the core
rate from experimental annihilation data, . The
rapid spatial variation of the core-electron wave
functions and the "OPW wiggles" leads to high-
momentum components in the positron-electron
pair momentum distribution. These high-mo-
mentum components are manifested in the mea-
sured 2 —y angular correlation curve as a broad,
roughly Gaussian, component extending far be-
yond the Fermi momentum. The ratio of this
broad component in the measured pair momentum
distribution to the total area should give the ratio
of the core rate to the total measured a.nnihilation
rate.

The relation bebveen the core rate for an AB
alloy, the core rates for pure A and B metals,
and the positron pseudodensity function in the
alloy will now be developed. By analogy with the
expression commonly used for the total annihi-
lation rate, " the core rate for the alloy X, is
written

r, = (rr/rrr) fdrr (rip, (r) ( (r, (r)) (16)

where ~ p and n p are the total annihilation rate and
the electron density at the position of the positron
in singlet positronium. The positron density in
the alloy is denoted by o (r) and p, (r) is the sum
of the core-electron density and the density aris-
ing from atomiclike features of the valence elec-
trons in the core region. The many-body enhance-
ment of the rate due to the electron polarization
cloud around the positron is accounted for by a
factor $ which is taken to be a function of p, only.
The core rates for the pure metals are given by

X",= (Xo/no)Jtdro "(r)p", (r) $ (p",(r)), (17)

where again x refers to the species of atom either
A or B.

The positron density in the alloy may be ex-
pressed in terms of the positron pseudodensity
o '"" ' (r) using (12) and (13),

(18)

where r lies within an atomic cell of the alloy at
R occupied by an atom of type x. To a very good
approximation, Uo (r) is the ground-state positron
wave function in the core region and so

&"(r) =IU"o(r- R)f'/o'" ~

Now using the slowly varying nature of the positron
pseudodensity in the alloy, we find after some
ma.nipula, tion

~A

1 ~ (o A/~B I)oA

where &X„a reduced core rate, is given by

a.nd the fa,ctors n" a,nd e defined ea.rlier, in
Sec. II, a.re the renormalization factors for the
positron core functions in the alloy. The quantityo" appearing in (20) is the fraction of total posi-
tron pseudodensity in the A cells of the alloy and
is given by

dry"'" '(r), (22)

where the summations are over the A sites in the
alloy. An important feature of using the core
rate and in particular (20) is that detailed com-
putations of the overlap of the positron with core
electrons a,re unnecessary and the difficult prob-
lem of estimating the enhancement of the rate due
to positron-electron correlations is avoided. Both
of these aspects are a,ccounted for in the alloy
core rate through the core rates for the two pure
metals which may be deduced from experimental
data on the pure metals.

If the valencies and the sizes of the ion cores
of the constituents of the alloy a.re simila. r, then
the ratio o("/o. s is very nearly unity and the
denominator in (20) is, therefore, also nearly
unity. Furthermore if the positron pseudopoten-
tial difference Vp is small in magnitude so that the
positron shows no over-all preference for one sort
of site or the other, then the positron pseudo-
density would be uniform throughout the alloy.
Inspection of (20) shows that the reduced core rate
under these circumstances would decrease linearly
from the value 1 for pure B to 0 for pure A as the
alloy composition is varied a,ssuming that there
is no volume change on alloying. Any deviation
from a straight line of the reduced core rate vs
concentration plot would indicate a preference of
the positron for either A sites or 8 sites. For a
concave curve the positron pseudo wave functions
would be larger at A sites than B sites as a re-
sult of Vp & 0, In contrast a convex curve would
indicate a positron affinity for 8 over A with Vp &0.

V. CONCLUSIONS

A simple picture of the thermalized positron
distribution in an alloy has been presented.
Through a factorization of the positron wave func-
tion the envelope of the positron density may be
obta, ined in terms of a potential which ha, s a con-
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venient form and in many cases will be weak
enough to allow the use of low-order perturbation
theory. The strong repulsive potential when a
positron approaches close to an ion and which leads
to the depletion of positron density in these re-
gions is accounted for by modulating the positron
envelope with a prescribed positron core function.
The term positron pseudo wave function is sug-
gested for the envelope of the positron wave func-
tion and positron pseudopotential for the corre-
sponding potential.

The positron pseudopotential difference be-
tween different sorts of sites in a binary alloy re-
sults from the preference of the positron for one
sort of site or the other. This preference may
conveniently be termed relative positron affinity,
and the pseudopotential difference is a quantitative
measure of this. A positron pseudopotential dif-

ference will lead to an enhancement of the pseudo
wave function on the more attractive sites which
in turn will result in the positron preferentially
annihilating with the core electrons of one sort
of atom in the alloy. To a fair approximation the
contribution of core electrons to the total positron-
annihilation rate in simple metals may be deduced

from measurements of the positron lifetime and
angular correlation curve. A measurement of
this contribution, the core rate, for different al-
loy concentrations should yield directly informa-
tion on the positron pseudo wave functions.
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