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Anapole mechanism of bound states in the continuum in symmetric dielectric metasurfaces
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We present a general multipole mechanism based on the lattice anapole effect leading to the excitation
of high-Q resonances in dielectric metasurfaces with the simplest unit cell (i.e., a unit cell with inversion
symmetry containing only one nanostructure) and irradiation conditions (i.e., normal incidence). Using multipole
techniques, we show analytically and numerically that these resonances are related to the conversion of bound
states in the continuum (BICs) to quasi-BICs by simply changing the metasurface period. It is also shown that
BICs and quasi-BICs, in turn, are realized through destructive interference (anapole effect) between multipoles of
the same parity. The main advantage of such a conversion BIC to quasi-BIC compared to those proposed earlier
is that it does not require distortion of symmetric properties of metasurfaces, special conditions of irradiation, or
displacement of elements in composite unit cells. The results obtained give an important insight into the physics
of high-Q resonances in meta-optics and can simplify and expand the application of metasurfaces for tunable
lasing, nonlinear generation, energy trapping manipulation, and enhanced sensing techniques.
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Introduction. Recently, many optical effects have been re-
alized and proposed in dielectric metasurfaces [1,2], which
serve as the physical basis for technological advances in pho-
tonics [3]. One effective way to create metasurface resonances
with high-quality factor (Q factor) is related to the eigenmodes
of the system with purely real eigenvalues, leading to their
infinite Q factor. Such eigenmodes do not have an energetic
connection with free space, do not emit electromagnetic en-
ergy, and cannot be excited by electromagnetic waves incident
from the far field. For this reason, they are called bound states
in the continuum (BICs) [4,5]. In metasurface optics, these
states are usually divided into two basic groups depending
on the conditions of implementation, namely, symmetry pro-
tected BICs and accidental BICs [6]. In the first case, a BIC is
an eigenmode of a metasurface, the multipole decomposition
of which, due to its symmetrical properties, includes only
multipole moments that individually do not radiate electro-
magnetic waves out of the metasurface plane [5,7]. In the
second case, accidental BICs can arise in a metasurface only
at certain values of its material and geometric parameters.
In terms of multipole analysis, these modes include a set
of multipole moments that individually can radiate electro-
magnetic waves from the metasurface, but due to destructive
interference between these waves, full radiation is completely
absent [5,7].

Since BICs cannot be excited by propagating waves,
they do not provide any contribution in the reflection and
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transmission spectra of metasurfaces (even in numerical mod-
eling). However, their existence and influence can emerge by
perturbing the parameters associated with the existence of the
BIC. In this case, BICs are transformed into quasi-BICs with a
finite Q factor, the value of which is determined by the degree
of parameter deviation [8–11]. Currently, several approaches
have been demonstrated to convert BIC to quasi-BIC. In the
case of symmetrically protected BICs, this can be achieved
by breaking the inversion symmetry of the elementary cells
of the metasurface [12–15] or by using oblique incidence of
external waves [16]. For accidental BICs, their conversion into
quasi-BICs can be accomplished by changing the irradiation
conditions [16,17] or, as in the case of metasurfaces with a su-
perlattice, by spatial displacement of their sublattices [18–21].

In this paper, we present a general multipole mechanism
associated with accidental BICs in symmetrical metasurfaces.
Contrary to previously reported approaches, this results in
high-Q resonances of quasi-BICs excited under normal inci-
dent light in periodic metasurfaces with a single-particle unit
cell with inversion symmetry. A clear understanding of this
mechanism in metasurfaces of simple geometry can signifi-
cantly expand the range of their functional applications.

Method and Results. In our approach, we consider two
types of symmetrical metasurfaces in the visible part of the
spectrum: the first type includes metasurfaces composed of
cylindrical particles with the refractive index of diamond or
titanium dioxide; the second type refers to metasurfaces made
of spherical particles with a refractive index of 3.5 without
absorption. The first type includes parameters of real materi-
als and is therefore directly related to possible experimental
implementation, the second type of metasurfaces is included
for demonstration purposes. However, given that silicon has
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FIG. 1. Reflectance R of infinite metasurfaces as a function of the
lattice period P. (a) The metasurface consists of cylinders [diameter
D = 200 nm, height H = 300 nm, refractive index np = 2.45 (e.g.,
diamond or titanium dioxide)] placed in a medium with refractive
index ns = 1.45. (b) The metasurface consists of spheres (diameter
D = 250 nm, np = 3.5) surrounded by a medium with ns = 1. Insets
illustrate the corresponding centrosymmetric unit cells. The illumi-
nation is a linearly polarized plane wave at normal incidence. The
numbered circles show regions with the BICs. Here and all other
figures, the values of the wavelength λ are indicated for vacuum.

a refractive index close to 3.5 with negligible absorption in
the infrared region, the results on metasurfaces of the second
type are also essentially relevant to possible experimental
implementation.

Results of numerical simulations of typical optical re-
sponse of metasurfaces under symmetrical conditions de-
scribed above are presented in Fig. 1. One can see that
the spectral position and width of resonances in reflection
can be controlled by selecting the period of a metasurface
constructed from symmetrical meta-atoms, such as cylin-
ders [Fig. 1(a)] or spheres [Fig. 1(b)]. Moreover, as will be
shown below, the circles with corresponding numbering in
the figure indicate the disappearance of the resonances due
to accidental BICs.

A. Research approach. Our research analysis of the results
in Fig. 1 is based on an important feature of metasurfaces
with translational and inversion symmetry: the multipole
representation of the interaction (energy exchange) between
elementary cells includes multipole moments of only one
parity [22]. This leads to the representation of the total optical
response of a metasurface at normal light incidence as a super-
position of the responses of two noninteracting subsystems,
each of which includes either only even multipole moments
or only odd ones (see Sec. 1 of the Supplemental Material
[33]).

Considering this remark and applying the method of
multipole decomposition [2,23–25], the reflection r (and
transmission t) coefficient of plane waves by infinite metasur-
faces as in Fig. 1, can be expressed in terms of the multipole
moments of only one unit cell. For x-polarized incident waves
the reflection coefficient can be written as [22,26]

r = iks

2SLE0ε0εs

(
peff − 1

v
meff

)
= rodd − reven, (1)

where ks and v are the wave number and the speed of light,
respectively, in the surrounding medium with relative per-
mittivity εs, ε0 is the vacuum permittivity, SL is the area of
the unit cell, E0 is the electric field of the external incident
wave at the point of multipole moment location in the unit

cell. In terms of rodd and reven the transmission coefficient is
t = 1 + rodd + reven, where

rodd = iks

2SLE0ε0εs
peff , reven = iks

2SLE0ε0εs

meff

v
(2)

are the odd and even parts of the total reflection coefficient.
Here we introduced the effective electric dipole (ED) moment
peff , combining the contribution of the odd multipole mo-
ments, and the effective magnetic dipole (MD) moment meff

combining the even multipole contributions, where

peff = px − iks

2v
Myz − k2

s

6
O(e)

xzz + . . . (3)

and

meff = my − ivks

6
Qxz − k2

s

6
O(m)

yzz + . . . (4)

We can introduce peff and meff , since in the above equations all
multipole moments [electric p and magnetic m dipoles, elec-
tric Q̂ (EQ) and magnetic M̂ (MQ) quadrupoles, and electric
Ô(e) and magnetic Ô(m) octupoles], regardless of the rank of
their tensor, are included in the form of only one component,
which generates radiation in the forward and backward direc-
tions with the polarization of the incident wave.

As follows from the multipole expansion [see Figs. S1(a)-
S1(c) in Sec. 1 of the Supplemental Material [33]], the narrow
resonant bands in Fig. 1 are associated with the resonant
contribution of either peff (odd multipoles only) or meff (only
even multipoles) and correspond to either rodd or reven. As a
result, the decrease in the width of the resonances and their
disappearance in the region indicated by circles in Fig. 1 are
determined exclusively by the behavior of either only odd or
only even multipoles of the elementary cell of the metasur-
face. It is important that the contribution of each multipole
of the same parity to the corresponding resonant band is of
a resonant nature [see Figs. S1(b) and S1(c) in Sec. 1 of the
Supplemental Material [33]]. In other words, resonant bands
are formed by the overlap of resonances of multipole moments
of the same parity. This resonant overlap is associated with
the lattice induced energy coupling between multipoles of the
same parity in metasurfaces with an inversion-symmetric unit
cell [22]: the resonant excitation of some multipoles leads
to the resonant excitation of other multipoles of the same
parity.

Thus, it becomes clear that due to the corresponding adjust-
ment of the system periodicity, the multipole coupling leads to
the spectral points where the resonance width of peff or meff

goes to zero (the white circles in Fig. 1). These points, as is
shown below, correspond to BICs–eigenmodes of the meta-
surface, which do not radiate into the far-field zone and cannot
be excited by external radiation. Multipole analysis of these
modes shows that they can include multipoles of only one
parity. Moreover, their nonradiating property is realized due
to destructive interference between their multipoles, which
would individually radiate energy from the system. In the
vicinity of points with BICs, these states will transform into
quasi-BICs with a finite high-Q factor, as in Fig. 1. To prove
the concept of the BICs, we first apply a multipole analytical
approach to explain the result in Fig. 1(b) for metasurfaces
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composed of spherical particles, and then numerically con-
sider the case of cylindrical particles in Fig. 1(a).

B. Analytical model. Let us consider metasurfaces from
Fig. 1(b) made of spherical particles supporting only dipole
and quadrupole resonant responses. This fact allows us to
apply the coupled dipole-quadrupole approximation devel-
oped in [27]. The equations for the dipole (px and my), and
quadrupole (Qxz and Myz) moments of every particle in the
metasurface are written as (see Sec. 2 of the Supplemental
Material [33])

px = αpE0 + αp

ε0εs

(
Spp px + iks

v
SpMMyz

)
, (5a)

Myz = iksαM

2
H0 + αM

2
(−ivksSMp px + SMMMyz ), (5b)

and

my = αmH0 + αm(Smmmy − ivksSmQQxz ), (6a)

Qxz = iksαQ

2
E0 + αQ

2ε0εs

(
iks

v
SQmmy + SQQQxz

)
, (6b)

where αp, αm, αQ, αM are the corresponding dipole and
quadrupole polarizabilities of an isolated sphere (for a ho-
mogeneous sphere these values are scalar and can be taken
from Mie theory); E0 and H0 are the external incident electric
and magnetic fields, respectively, at the metasurface plane;
Spp, Smm, SMM, SQQ, SMp = 2SpM, SQm = 6SmQ are the ED-
ED, MD-MD, MQ-MQ, EQ-EQ, ED-MQ, and MD-EQ lattice
sums, respectively, which take into account the interactions
between the corresponding multipoles in the metasurface (see
Sec. 3 of the Supplemental Material [33]). Note that Eqs. (5)
(odd) and Eqs. (6) (even) subsystems are independent of
each other. Complete solutions of the above systems and
corresponding reflectance are presented in the Sec. 2 of the
Supplemental Material [33], where their excellent agreement
with the numerical simulation is also demonstrated (see Fig.
S2 in Sec. 2 of the Supplemental Material [33]).

Let us now consider in detail the response of only the odd
subsystem, since its behavior leads to the narrow resonance in
Fig. 1(b). The solution of Eqs. (5) can be presented as

px = αeff
p E0ε0εs, and

ksMyz

2iv
= αeff

M E0ε0εs, (7)

where we have introduced the corresponding polarizabilities
accounting for the ED-MQ coupling due to SMp,

αeff
p = 1/α̃M − SMp

1/[α̃Mα̃p] − S2
Mp

, αeff
M = 1/α̃p − SMp

1/[α̃Mα̃p] − S2
Mp

. (8)

Here, the α̃p and α̃M polarizabilities take into account only the
individual ED-ED and MQ-MQ coupling, respectively,

1

α̃p
= ε0εs

αp
− Spp,

1

α̃M
= 4

k2
s

[
1

αM
− SMM

2

]
, (9)

(see also Sec. 2 of the Supplemental Material [33]). Thus,
from Eq. (3) and Eq. (7) the effective electric dipole of the

FIG. 2. (a) Absolute values of αeff
odd = αeff

p + αeff
M with (solid line)

and without (dashed line) ED-MQ coupling. (b) Polarizabilities αeff
p

and αeff
M with ED-MQ coupling. The metasurface parameters are as

in Fig. 1(b) and P = 350 nm.

odd subsystem is

peff = px + ksMyz

2iv
= (

αeff
p + αeff

M

)
E0ε0εs. (10)

Introducing the effective odd polarizability

αeff
odd = αeff

p + αeff
M = 1/α̃p + 1/α̃M − 2SMp

1/[α̃Mα̃p] − S2
Mp

, (11)

the reflection coefficient of the odd subsystem rodd, using
Eq. (2) and Eq. (10), can be written as

rodd = iks

2SL
αeff

odd. (12)

Thus, the effective odd polarizability αeff
odd determines spectral

properties of rodd. The coefficient rodd disappears when peff =
0 or αeff

odd = 0. The latter condition can be reformulated from
the numerator of Eq. (11) as

Re(1/α̃p + 1/α̃M − 2SMp) = 0, (13)

excluding the case Re(1/α̃p) = Re(1/α̃M) = Re(SMp) for
which αeff

odd �= 0 (see below). Here we have written the con-
dition in Eq. (13) only for the real part of the numerator, since
the same condition for the imaginary part is always satisfied
independently on wavelength in the diffractionless (λ > Pns)
region and without ohmic losses in the system, because in this
case

Im(1/α̃p) = Im(1/α̃M) = Im(SMp) = −ks/(2SL), (14)

for details see Sec. 4 of the Supplemental Material [33].
A spectral dependence of αeff

odd with (SMp �= 0) and without
(SMp = 0) ED-MQ coupling is shown in Fig. 2(a). It can be
seen that the coupling leads to complete suppression of po-
larizability at the point determined by the condition Eq. (13),
creating a narrow suppression band against the background
of a wide resonant overlap of α̃p and α̃M. The width of
the suppression band is estimated by the spectral interval
between the zeros of αeff

p and αeff
M , which, as follows from

Eq. (8), are determined by the equations 1/α̃M − SMp = 0 and
1/α̃p − SMp = 0, respectively [see also the inset in Figs. S2(a)
in Sec. 2 of the Supplemental Material [33]]. Figure 2(b)
shows that between these zero points, αeff

p and αeff
M are out

of phase with each other so that at the spectral point defined
by Eq. (13), the radiation losses of the odd subsystem were
completely suppressed and αeff

odd = 0 or peff = 0. This behav-
ior is similar to the anapole effect during scattering by a single
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FIG. 3. (a) Numerical visualization of Eq. (16) for the state indi-
cated by the white circle in Fig. 1(b). The imaginary parts overlap.
(b) Electric field distribution of the eigenmode at the black point in
panel (a). The period of the metasurface is P = 295 nm.

particle [28–30]. Indeed, we have suppression of the emission
of multipoles of a certain parity from the metasurface due to
their destructive interference, while each multipole moment is
excited by external waves [4,31]. Thus, we can say that the
resonant multipole coupling leads to the lattice anapole effect
with respect to the multipoles of a certain parity.

It is important to note that, as followed from Fig. 2(a), the
anapole feature appears in the spectral region of overlap of
the lattice resonances for the dipole and quadrupole moments,
which would exist in the system if coupling were neglected.
Therefore, the realization of the anapole mechanism can occur
only in those parts of the spectrum where the conditions for
lattice resonances of multipoles of different orders are simul-
taneously satisfied. This is why the anapole mechanism cannot
be realized in the pure dipole approximation.

Due to a change in the periodicity of the metasurface, the
spectral position of the zeros of αeff

p and αeff
M can approach

each other, leading to a narrowing of the anapole resonant
feature in the reflection spectra. However, when formally the
positions of these zeros must coincide, the resonant feature
in the reflection will disappear. Let us show that this point
corresponds to a BIC.

C. Eigenmode and BIC condition. Eigenmodes of the odd
subsystem are the solutions of Eqs. (5), in the absence of
the source (E0 = H0 = 0). Under this condition the system of
equations has nontrivial solutions only when its determinant
is zero,

1 − S2
Mpα̃Mα̃p = 0. (15)

Its solution providing the condition for the eigenmode exis-
tence is (details can be seen in Sec. 5 of the Supplemental
Material [33])

1/α̃p = 1/α̃M = SMp. (16)

Note that Eq. (16) differs from Eq. (13).
Numerical calculation of each term from Eq. (16) for the

metasurface with a period of P = 295 nm in Fig. 1(b) is shown
in Fig. 3(a). One can see that the condition (16) is satisfied for
a wavelength λ = 635 nm, which corresponds to the position
of the disappearance of the resonant feature in Fig. 1(b),
indicated by a white circle 1. The absence of a resonance at
this position in Fig. 1(b) indicates that this eigenmode is not
excited by the incident wave. Using a numerical solver for
eigenmodes (see Sec. 7 of the Supplemental Material [33]),

one can find the distribution of the electric field in a unit cell
for this mode: the result is presented in Fig. 3(b).

Since for the eigenmode the electric field is present inside
the particles and the nontrivial solution of Eqs. (5) without
external fields should satisfy (details in Sec. 5 of the Supple-
mental Material [33])

peff = px − iks

2v
Myz = 0, (17)

we have to conclude that px �= 0 and Myz �= 0 and the eigen-
mode is a nonradiating state of the metasurface, i.e., a BIC.
Indeed, due to Eq. (17), the effective ED moment peff of
this mode, which includes the multipole moments radiating
from the metasurface plane, is zero, ensuring the absence of
radiation losses. The physical reason of the suppression of the
radiation losses from this mode is the destructive interference
between the waves separately emitted by its ED (px) and
MQ (Myz) moments. This mode is not excited by external
waves, and the solution of Eqs. (5) at the condition Eq. (16) is
peff = ε0εsE0/SMp �= 0 that differs from Eq. (17).

Note that a similar consideration can be performed for the
even subsystem, for which the BIC is a result of the destruc-
tive interference between contribution of even multipoles into
the far-field radiation [see Figs. S3(a) in Sec. 2 of the Sup-
plemental Material [33], where it is also shown in Figs. S3(e)
and Figs. S3(f) that to describe quasi-BIC resonances in the
even subsystem of metasurfaces from Fig. 1(b), it is necessary
to take into account octupole contributions]. To emphasize
the interference mechanism of the appearance of such BICs
in symmetric metasurfaces, we will conventionally call them
anapole-odd BICs or anapole-even BICs, depending on the
parity of the multipoles involved.

Thus, at the position indicated by the circle in Fig. 1(b),
the resonant feature of peff vanishes because it corresponds to
the anapole-odd BIC, which cannot be excited. Away from the
pure BIC position, quasi-odd-BICs are realized with the reso-
nant suppression of their peff . Note that the Fano-type resonant
features of the reflectance in Fig. 1(b) at the quasi-odd-BIC
are determined by interference between the contributions of
resonant peff and nonresonant meff [a detail demonstration of
this interference is presented in Figs. S3(b)-S3(d) in Sec. 2
of the Supplemental Material [33]]. Furthermore, we note a
special behavior of quasi-BIC of the array of spheres. As one
can see in Fig. 1(b) (or alternatively in Fig. S2 in Sec. 2 of
the Supplemental Material [33]), the spectral position of the
quasi-BIC is basically independent of the lattice period and is
determined by the MQ resonance of a single sphere with the
same diameter and refractive index as in Fig. 1(b).

D. Numerical approach. Now let us show that the es-
tablished multipole mechanism of the anapole BICs is
implemented in a general case of metasurfaces composed of
cylindrical particles. Here, as above for the results in Fig. 1,
we use ANSYS Lumerical to simulate the optical response of
a periodic array of cylindrical particles and COMSOL Multi-
physics for eigenfrequency analysis (for details see Sec. 7 of
the Supplemental Material [33]). As an example, we will show
that the position of the circle 1 in Fig. 1(a) corresponds to the
existence of a nonemitting lattice eigenmode with only odd
multipoles (anapole-odd BIC). In contrast to the above analyt-
ical case, the effective ED moment peff is approximated as a
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FIG. 4. (a) Dependence of the effective ED moment peff of
the eigenmodes associated with the band indicated by circle 1 in
Fig. 1(a), on metasurface period P. The inset shows the absolute
values of multipole contributions in peff of the eigenmode with
peff = 0. (b) Electric field distribution of the nonradiating eigen-
mode. (c) Quality factor of the resonance band indicated by number
1 in Fig. 1(a) as a function of the period offset �P = P − P1, P1 =
285 nm. (d) Effective polarizabilities of individual odd multipoles
from ED up to M16 pole (solid line for the real part, dashed line
for the imaginary part; ED: blue lines, MQ: green lines, EO: orange
lines, M16: purple lines) and the superposition of the total one
αeff

odd (black line) for the resonant band indicated by number 1 in
Fig. 1(a) at P = 250 nm.

superposition of ED, MQ, EO and magnetic 16th pole (M16)
(see Fig. S1 in Sec. 1 of the Supplemental Material [33]). In
Fig. 4(a), peff of that eigenmode for different lattice periods
is shown. As one can see, at P = 285 nm (the BIC in the
circle 1) peff = 0 and the mode has pure real eigenfrequency
fE = 618 THz (λ = 485 nm), in contrast to the other values
of P. Furthermore, as it is shown in the inset, the individ-
ual multipole contributions to the effective ED moment peff

are not zero. This proves that this nonradiating mode is an
anapole-odd BIC of the system. The electric field distribution
of the eigenmode field at the center of the unit cell is presented
in Fig. 4(b). Here, we note that due to the symmetry, the
eigenstate is degenerate.

The pure BIC has infinite quality factor. However, when
deviating from the conditions of the pure BIC, the quality
factor of the quasi-BIC depends significantly on the period
P of the metasurface. In Fig. 4(c), we see that varying P by
±10 nm leads to the drop of the Q factor by one order of
magnitude. This can have potential applications for optome-
chanical sensors, for instance, to detect stretching/shrinking
of the metasurface environment.

In order to demonstrate in the case of cylindrical parti-
cles the anapole mechanism for the formation of resonant
(quasi-BIC) bands, we numerically calculated the effective

FIG. 5. (a) Sketch of the unit cell of a normally irradiated
metasurface with superstrate and substrate. (b) Reflectance of the
metasurface with period P = 285 nm as a function of the wavelength
and the superstrate refractive index. The substrate refractive index
is nsub = 1.45. Other parameters of the metasurface as in Fig. 1(a).
(c) Dependence of the Q factor of the resonance, indicated by number
1 in panel (b), on the superstrate-to-substrate refractive index contrast
�n = nsup − nsub. The top axis shows the resonance wavelength.

odd polarizability αeff
odd for the odd resonant quasi-BIC band

corresponding to the number 1 of the metasurface with P =
250 nm in Fig. 1(a). From the panel Fig. 4(d) it is clear that
the complete resonant suppression of αeff

odd is realized and is
a result of a destructive superposition of the corresponding
multipole contributions. It is important that the excitation of
quasi-BICs is accompanied by an increase in electromagnetic
energy in the plane of the metasurface [see Figs. S1(e), S1(f),
and S1(h)-S1(j) in Sec. 1 of the Supplemental Material [33]].

E. Influence of a variable superstrate. Finally, let us con-
sider the behavior of anapole-BICs and quasi-BICs in an
inhomogeneous environment. As an example, we consider
a more practical case with a fixed glass substrate and dy-
namically variable superstrate. A sketch of the considered
metasurface (unit cell) and excitation condition is shown in
Fig. 5(a). In Fig. 5(b), the reflectance of the metasurface with
period P = 285 nm that exhibits odd-anapole BIC, indicated
by number 1 in Fig. 1(a), for different superstrate materials
is presented. As one sees, a nonradiating pure odd-anapole
BIC can be transformed into a radiating quasi-BIC by in-
troducing a refractive index contrast �n between superstrate
and substrate. This is due to the fact that a change in the
refractive index of the superstrate leads to a change in the
effective wavelength in it and thereby violates the conditions
of coupling between multipoles, adding the coupling through
reflection from the substrate. As a result, the BIC transforms
into quasi-BIC with a spectral shift. The dependence of the
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FIG. 6. (a) Reflectance, (b) transmittance and absorptance [black
curve in (b)] for the infinite metasurface composed of disks with
refractive index of np = 2.45 + ik and period P = 300 nm. The
remaining parameters of the system are as in Fig. 1(a). In the panels,
blue and orange curves correspond to np = 2.45 and np = 2.45 +
0.01i (εp = 6 + 0.05i), respectively.

quality factor of the odd-anapole BIC on �n is shown in
Fig. 5(c). The Q factor of the odd-anapole BIC is less sensitive
to the relative superstrate change �n/nsup than the relative
period variation �P/P1. Despite the lower sensitivity, the
metasurface can still be used to detect the refractive index
change of the surrounding environment, which can be caused
by external factors, such as heat or material concentration
change.

F. Effect of material absorption and metasurface finite
size. In reality, fabricated metasurfaces have nonideal particle
shapes, finite sizes, and material impurities that can intro-
duce absorption. These imperfections decrease the Q factor of
the metasurface resonance. Since losses are very destructive
for the realization of high-Q resonances, below we discuss
the influence of the material absorption and radiation losses
associated with finite-size structures. For the first case, let us
take the system shown in Fig. 1(a) with a certain period, and
artificially add a small imaginary part to the disk’s refrac-
tive index. In Fig. 6, the comparison of the spectrum of the
lossless (blue) and lossy (orange) metasurfaces is shown. As
one can see, the quasi-BIC of the lossless metasurface (i.e.,
the narrow resonance at λ = 500 nm) disappears from the

reflectance and transmittance in the presence of the material
loss, and interestingly, appears in the absorptance. This means
that a quasi-BIC in lossy systems could be identified from the
absorption spectrum.

A radiation loss from the edge of a finite-size metasurface
can be interpreted as an absorption. Accordingly, in such lossy
systems, the realization of high-Q factor resonances, which
have long lifetime, can also be problematic. Let us estimate
a metasurface size that exhibits a resonance with a certain
Q factor. One can define the lifetime of a resonance with Q
factor Q and angular frequency ω as τ = 2Q/ω (for power
dissipation) [32]. Hence, the estimated metasurface size is
d = τc/ns. Let us consider the narrow resonance (blue curve)
at λ = 500 nm presented in Fig. 6. It has Q ≈ 2000 and hence
d ≈ 225 µm, which corresponds to an array of 750 × 750
particles.

Conclusions. We analytically and numerically showed that
simple regular dielectric metasurfaces (single particle per unit
cell) with inversion symmetry can support high-Q resonant
quasi-BICs excited by normally incident light. Quasi-BICs in
such systems are associated with the existence of pure acci-
dental BICs, which are eigenmodes with infinite-quality factor
and with inclusion of multipole moments of one parity. The
developed analytical model for symmetric metasurfaces made
it possible to establish a connection between the properties of
single particles and the period of the metasurface to determine
the conditions for the existence of BICs and quasi-BICs (see
Sec. 6 of the Supplemental Material [33]). Since the BICs
do not emit waves due to multipole destructive interference,
we called them anapole-odd or anapole-even BICs, depending
on the involved multipole parity. Changes of the periodicity
transforms the pure anapole BICs into quasi-anapole BICs
with finite-quality factor. The anapole mechanism responsible
for the emergence of BICs and quasi-BICs is purely based on
multipole interference and controlled only by lattice period.
The configurational and geometric simplicity of symmetrical
metasurfaces and the high sensitivity of their quasi-anapole
BICs to changes in material and structural parameters make
them extremely attractive for the development of multi-
functional applications in the fields of linear and nonlinear
photonics.

Acknowledgments. We acknowledge the German Research
Foundation (DFG, Deutsche Forschungsgemeinschaft) under
Germany’s Excellence Strategy within the Cluster of Excel-
lence PhoenixD (EXC 2122, Project ID 390833453), and the
central computing cluster operated by Leibniz University IT
Services (LUIS), which is funded by the DFG (Project No.
INST 187/742-1 FUGG).

[1] W. Liu, Z. Li, H. Cheng, and S. Chen, Dielectric resonance-
based optical metasurfaces: From fundamentals to applications,
iScience 23, 101868 (2020).

[2] V. E. Babicheva and A. B. Evlyukhin, Multipole lattice ef-
fects in high refractive index metasurfaces, J. Appl. Phys. 129,
040902 (2021).

[3] M. Kang, T. Liu, C. Chan, and M. Xiao, Applications of bound
states in the continuum in photonics, Nat. Rev. Phys. 5, 659
(2023).

[4] K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A.
Fratalocchi, Nonradiating photonics with resonant dielectric
nanostructures, Nanophotonics 8, 725 (2019).

[5] S. I. Azzam and A. V. Kildishev, Photonic bound states in the
continuum: From basics to applications, Adv. Opt. Mater. 9,
2001469 (2021).

[6] K. Koshelev, A. Bogdanov, and Y. Kivshar, Meta-optics
and bound states in the continuum, Sci. Bull. 64, 836
(2019).

L241405-6

https://doi.org/10.1016/j.isci.2020.101868
https://doi.org/10.1063/5.0024274
https://doi.org/10.1038/s42254-023-00642-8
https://doi.org/10.1515/nanoph-2019-0024
https://doi.org/10.1002/adom.202001469
https://doi.org/10.1016/j.scib.2018.12.003


ANAPOLE MECHANISM OF BOUND STATES IN THE … PHYSICAL REVIEW B 109, L241405 (2024)

[7] Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A.
Bogdanov, Multipolar origin of bound states in the continuum,
Phys. Rev. B 100, 115303 (2019).

[8] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis,
and N. I. Zheludev, Sharp trapped-mode resonances in planar
metamaterials with a broken structural symmetry, Phys. Rev.
Lett. 99, 147401 (2007).

[9] V. R. Tuz, V. V. Khardikov, A. S. Kupriianov, K. L.
Domina, S. Xu, H. Wang, and H.-B. Sun, High-quality trapped
modes in all-dielectric metamaterials, Opt. Express 26, 2905
(2018).

[10] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y.
Kivshar, Asymmetric metasurfaces with high-Q resonances
governed by bound states in the continuum, Phys. Rev. Lett.
121, 193903 (2018).

[11] A. Barreda, C. Zou, A. Sinelnik, E. Menshikov, I. Sinev, T.
Pertsch, and I. Staude, Tuning and switching effects of quasi-
BIC states combining phase change materials with all-dielectric
metasurfaces, Opt. Mater. Express 12, 3132 (2022).

[12] L. Xu, K. Zangeneh Kamali, L. Huang, M. Rahmani, A.
Smirnov, R. Camacho-Morales, Y. Ma, G. Zhang, M. Woolley,
D. Neshev et al., Dynamic nonlinear image tuning through
magnetic dipole quasi-BIC ultrathin resonators, Adv. Sci. 6,
1802119 (2019).

[13] A. B. Evlyukhin, V. R. Tuz, V. S. Volkov, and B. N. Chichkov,
Bianisotropy for light trapping in all-dielectric metasurfaces,
Phys. Rev. B 101, 205415 (2020).

[14] N. Bonod and Y. Kivshar, All-dielectric Mie-resonant metapho-
tonics, C. R. Phys. 21, 425 (2020).

[15] A. B. Evlyukhin, M. A. Poleva, A. V. Prokhorov, K. V.
Baryshnikova, A. E. Miroshnichenko, and B. N. Chichkov,
Polarization switching between electric and magnetic quasi-
trapped modes in bianisotropic all-dielectric metasurfaces,
Laser Photonics Rev. 15, 2100206 (2021).

[16] D. R. Abujetas, J. Olmos-Trigo, J. J. Sáenz, and J. A. Sánchez-
Gil, Coupled electric and magnetic dipole formulation for
planar arrays of particles: Resonances and bound states in the
continuum for all-dielectric metasurfaces, Phys. Rev. B 102,
125411 (2020).

[17] D. R. Abujetas, J. Olmos-Trigo, and J. A. Sánchez-Gil, Tai-
loring accidental double bound states in the continuum in
all-dielectric metasurfaces, Adv. Opt. Mater. 10, 2200301
(2022).

[18] R.-L. Chern, H.-C. Yang, and J.-C. Chang, Bound states in
the continuum in asymmetric dual-patch metasurfaces, Opt.
Express 31, 16570 (2023).

[19] T. Shi, Z.-L. Deng, Q.-A. Tu, Y. Cao, and X. Li, Displacement-
mediated bound states in the continuum in all-dielectric
superlattice metasurfaces, PhotoniX 2, 7 (2021).

[20] L. M. Berger, M. Barkey, S. A. Maier, and A. Tittl, Metallic and
all-dielectric metasurfaces sustaining displacement-mediated

bound states in the continuum, Adv. Opt. Mater. 12, 2301269
(2024).

[21] S. You, M. Zhou, L. Xu, D. Chen, M. Fan, J. Huang, W. Ma,
S. Luo, M. Rahmani, C. Zhou et al., Quasi-bound states in
the continuum with a stable resonance wavelength in dimer
dielectric metasurfaces, Nanophotonics 12, 2051 (2023).

[22] I. Allayarov, A. B. Evlyukhin, and A. Calà Lesina, Multireso-
nant all-dielectric metasurfaces based on high-order multipole
coupling in the visible, Opt. Express 32, 5641 (2024).

[23] F. J. García de Abajo, Colloquium: Light scattering by particle
and hole arrays, Rev. Mod. Phys. 79, 1267 (2007).

[24] R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, Exact
multipolar decompositions with applications in nanophotonics,
Adv. Opt. Mater. 7, 1800783 (2019).

[25] P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S.
Shalin, A. Karabchevsky, and A. B. Evlyukhin, Multipole
analysis of dielectric metasurfaces composed of nonspherical
nanoparticles and lattice invisibility effect, Phys. Rev. B 99,
045424 (2019).

[26] R. Dezert, P. Richetti, and A. Baron, Complete multipolar
description of reflection and transmission across a metasur-
face for perfect absorption of light, Opt. Express 27, 26317
(2019).

[27] V. E. Babicheva and A. B. Evlyukhin, Analytical model
of resonant electromagnetic dipole-quadrupole coupling in
nanoparticle arrays, Phys. Rev. B 99, 195444 (2019).

[28] V. Savinov, N. Papasimakis, D. Tsai, and N. Zheludev, Optical
anapoles, Commun. Phys. 2, 69 (2019).

[29] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev, A. B.
Evlyukhin, A. E. Miroshnichenko, and A. S. Shalin, The high-
order toroidal moments and anapole states in all-dielectric
photonics, Laser Photonics Rev. 13, 1800266 (2019).

[30] R. Colom, R. McPhedran, B. Stout, and N. Bonod, Modal
analysis of anapoles, internal fields, and Fano resonances in
dielectric particles, J. Opt. Soc. Am. B 36, 2052 (2019).

[31] J. S. T. Gongora, G. Favraud, and A. Fratalocchi, Funda-
mental and high-order anapoles in all-dielectric metamaterials
via Fano–Feshbach modes competition, Nanotechnology 28,
104001 (2017).

[32] B. E. Saleh and M. C. Teich, Fundamentals of Photonics (John
Wiley & Sons, Hoboken, NJ, 2019).

[33] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L241405 for effective odd and even
polarizabilities (Sec. S1); explicit form of the lattice sums
(Sec. S2); details of the derivation of the coupled dipole-
quadrupole equations (Sec. S3); relation between imaginary
parts of the effective polarizabilities and dipole-quadrupole lat-
tice sum (Sec. S4); derivation of the eigenmode condition and
eigensolutions (Sec. S5), including for even subsystem; useful
expressions to predict quasi-BICs position (Sec. S7); details of
ANSYS Lumerical and COMSOL Multiphysics simulations.

L241405-7

https://doi.org/10.1103/PhysRevB.100.115303
https://doi.org/10.1103/PhysRevLett.99.147401
https://doi.org/10.1364/OE.26.002905
https://doi.org/10.1103/PhysRevLett.121.193903
https://doi.org/10.1364/OME.462695
https://doi.org/10.1002/advs.201802119
https://doi.org/10.1103/PhysRevB.101.205415
https://doi.org/10.5802/crphys.31
https://doi.org/10.1002/lpor.202100206
https://doi.org/10.1103/PhysRevB.102.125411
https://doi.org/10.1002/adom.202200301
https://doi.org/10.1364/OE.487611
https://doi.org/10.1186/s43074-021-00029-x
https://doi.org/10.1002/adom.202301269
https://doi.org/10.1515/nanoph-2023-0166
https://doi.org/10.1364/OE.511172
https://doi.org/10.1103/RevModPhys.79.1267
https://doi.org/10.1002/adom.201800783
https://doi.org/10.1103/PhysRevB.99.045424
https://doi.org/10.1364/OE.27.026317
https://doi.org/10.1103/PhysRevB.99.195444
https://doi.org/10.1038/s42005-019-0167-z
https://doi.org/10.1002/lpor.201800266
https://doi.org/10.1364/JOSAB.36.002052
https://doi.org/10.1088/1361-6528/aa593d
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L241405

