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Spin Hall effect: Symmetry breaking, twisting, and giant disorder renormalization
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Atomically thin materials based on transition-metal dichalcogenides and graphene offer a promising avenue
for unlocking the mechanisms underlying the spin Hall effect (SHE) in heterointerfaces. Here we develop a
microscopic theory of the SHE for twisted van der Waals heterostructures that fully incorporates twisting and
disorder effects and illustrate the critical role of symmetry breaking in the generation of spin Hall currents.
We find that an accurate treatment of vertex corrections leads to a qualitatively and quantitatively different
SHE than that obtained from the popular iη and ladder approximations. A pronounced oscillatory behavior
of skew-scattering processes with twist angle θ is predicted, reflecting a nontrivial interplay of Rashba and
valley-Zeeman effects and yields a vanishing SHE for θ = 30◦ and, for graphene-WSe2 heterostructures, an
optimal SHE for θ ≈ 17◦. Our findings reveal disorder and broken symmetries as important knobs to optimize
interfacial SHEs.

DOI: 10.1103/PhysRevB.109.L241404

Introduction. The discovery of superconductivity [1,2],
flat bands [3–6], strongly correlated insulating phases, and
topological behavior [7,8] in layer-twisted honeycomb sys-
tems has led them to be at the center of many theoretical
and experimental studies [9–20]. The significance of twisting
in the plethora of spin-dependent phenomena generated by
spin-orbit coupling (SOC) is currently under intense inves-
tigation [21–29]. It has been shown that the modification of
the Fermi surface’s spin texture induced by twisting [21–25]
leads to profound changes in the spin-charge interconversion
processes displayed by graphene–transition-metal dichacol-
genide (TMD) bilayers [26,27], a paradigmatic system in the
burgeoning field of graphene spintronics [30–32]. Despite
these advances, a microscopic theory of the spin Hall effect
(SHE), i.e., the generation of a transverse spin current due to
an applied electric field, reflective of the untwisted, let alone
twisted, van der Waals (vdW) heterostructures used in spin
Hall experiments [33–41], remains an elusive task. Such a
theory could offer valuable insight into the role of broken spa-
tial symmetry and relative atomic orientation between layers.
Through twisting, the single unique mirror plane present in
aligned graphene-TMD bilayers is lost, reducing the symme-
try from C3v to the chiral point group C3. From a physical
perspective, the metal-chalcogen environment around each
carbon atom is changed as the layers are twisted, leading to
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a modulation of the out-of-plane asymmetry SOC (Rashba ef-
fect) and the sublattice-resolved SOC (valley-Zeeman effect).
Twisted vdW heterostructures therefore provide a natural,
highly tunable platform to investigate interfacial SHEs and
may serve as a guide in examining other heterointerfaces.

Another key question is the breaking of translation symme-
try due to disorder, which is known to profoundly modify the
electrodynamic response of spin-orbit-coupled Dirac bands
[32]. The ubiquitous nature of disorder in two-dimensional
(2D) crystals makes it a crucial ingredient for understanding
both the SHE and the wealth of magneto-electric effects un-
derlying charge-to-spin conversion, such as the inverse spin
galvanic effect (ISGE). The ISGE has been understood in both
untwisted [42,43] and twisted [26] 2D vdW heterostructures
with dilute random impurities. In contrast, previous theoret-
ical work on the SHE has focused on minimal models of
proximitized graphene, i.e., without disorder [44,45], within
the Rashba spin gap [46], and in the absence of the valley-
Zeeman effect [47]. The diffusive SHE with a Fermi energy
located well above the spin gap, the most experimentally
accessible and well controlled regime due to the suppression
of carrier-density inhomogeneities [33–41], is theoretically
challenging, and more so for comprehensive graphene-TMD
models with competing symmetry-breaking effects. Unlike
the conventional ISGE, where the nonequilibrium spin density
is simply proportional to the charge transport time, the extrin-
sic SHE is governed by its own timescales (which, technically
speaking, are encoded in vertex corrections to spin-charge
response functions). The microscopic processes governing
the SHE reflect the rich interplay between Fermi-surface
spin texture (quantum geometry) and spin-orbit scattering
mechanisms (extrinsic effects) and hence constitute a crit-
ical puzzle piece in understanding nonlocal spin transport
experiments [36,37] as well as guiding future efforts in spin
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twistronics. While real-space techniques for billion-atom cal-
culations of linear response functions have recently been
devised that could in principle be used to overcome the afore-
mentioned challenges [48–50], the scarce numerical studies
of the SHE in the literature simulated small systems (of order
10 nm in linear size, i.e., quantum-dot territory [51]) and
hence are far from capturing the transport regimes seen in
experiments.

In this Letter, we construct a microscopic theory for twisted
graphene-TMD systems that accounts for band structure
effects nonperturbatively and straddles strong- and weak-
scattering regimes, hence overcoming the above challenges
via a unified approach. The most surprising result is a giant
modulation of the spin Hall conductivity with twist angle,
yielding an optimal SHE for chiral bilayers at a critical twist
angle (θc ≈ 17◦ for graphene-WSe2 heterostructures). This
novel behavior, reflective of the sensitivity of disorder cor-
rections to quantum-geometric effects, is absent in the iη
approximation. Moreover, our findings suggest that purely
diffusive SHEs in graphene-TMD systems are dominated by
skew-scattering processes with large cross sections. An in-
triguing exception are C3v-invariant systems with θ = 30◦.
Here anomalous scattering processes due to spatial fluctua-
tions of the proximity-induced SOCs [52–54] are expected to
govern the steady-state SHE.

Model and theory. We implement the Hamiltonian of
Refs. [21–26] for the low-energy graphene-TMD description,
which assumes the axes to be taken in the graphene sheet’s
frame of reference. Specifically (h̄ = 1), for the clean sys-
tem we write Hk = H0k + HR + HvZ (k is the wave vector
measured from a Dirac point), with H0k = v(τzσxkx + σyky),
HvZ = λvZ(θ )τzsz, and

HR = λR(θ )eisz[αR(θ )/2](τzσxsy − σysx )e−isz[αR(θ )/2], (1)

where λR(θ ), αR(θ ), and λvZ(θ ) are the twist-dependent
Rashba magnitude, Rashba phase, and valley-Zeeman cou-
pling, respectively; v is the bare Fermi velocity; and τi, σi,
and si (i ∈ {x, y, z}) are the Pauli matrices acting on the valley,
sublattice, and spin degrees of freedom, respectively. Here
we use the θ dependence of the SOC magnitudes accurately
mapped by recent quantum interference measurements on
twisted graphene-WSe2 heterostructures [28] to predict the
full θ dependence of the SHE. Furthermore, we include scalar
disorder in our model via the term V (r) = ∑

i u0δ(r − Ri ),
where {Ri} is the set of impurity positions and u0 charac-
terizes the impurity scattering strength. Short-range disorder
typically dominates the electronic transport when probing be-
havior away from the charge neutrality point [55–57] (thus
electron-hole puddles are expected to play no role in the trans-
port physics located above the Rashba gap). We further note
that the twisted bilayer system under study generally belongs
to the C3 chiral group, except for the discrete set of twist an-
gles θ = pπ/3 (p ∈ Z), at which the symmetry is elevated to
C3v due to the presence of a mirror plane. Moreover, as shown
below, there is an important hidden symmetry for θ = π/6.
These considerations will become crucial when assessing the
disorder corrections to SHE.

The spin Hall conductivity σ sH is calculated from the
Kubo-Streda formula [54,58,59] using an extension of the

FIG. 1. (a) Renormalized charge current vertex within the T -
matrix formalism. Red (blue) solid lines denote disorder-averaged
retarded (advanced) Green’s functions, red (blue) dashed lines with
black (white) boxes represent retarded (advanced) T matrices, and
the black cross signifies the insertion of the scalar impurity den-
sity. (b) Expansion of the T -matrix vertex renormalization. The
black dashed lines denotes an impurity scattering event. (c) Y dia-
grams showing the response functions with the insertion of a single
third-order scattering event. The gray shading indicates the renor-
malization of the vertices within the BA [retaining only the first term
in (b)].

T -matrix diagrammatic technique of Ref. [54] to spin-orbit-
coupled bands. The transport in the dilute impurity regime is
governed by the Fermi-surface contribution

σ sH =
∑

k

tr
(
J z

y G+
k j̃xG−

k

)
, (2)

where G±
k = (G±−1

0,k − 
±)−1 are the disorder-averaged re-
tarded (+) and advanced (−) Green’s functions at the Fermi
energy ε, 
± are the disorder self-energies, G±

0,k = (ε −
Hk ± i0+)−1 are the clean Green’s functions, J z

y = vσysz/2
is the spin current operator, jx = −e∂kx Hk is the charge
current operator in the x direction (e > 0), j̃x is the disorder-
renormalized charge current operator (Fig. 1), and the trace is
taken over all internal degrees of freedom. Equation (2) cap-
tures all possible single-impurity scattering processes when
handled within the T -matrix formalism outlined in Figs. 1(a)
and 1(b). Most notably it accounts for skew-scattering (semi-
classical) and side-jump (quantum) corrections in a fully
nonperturbative fashion [54]. If vertex corrections are ig-
nored, σ sH fails to vanish when λvZ = 0, thus violating the
exact SU(2)-gauge covariance of the Rashba-coupled system
[60,61]. As it turns out, vertex corrections are also essential
when sublattice symmetry is broken, i.e., λvZ = λA − λB �= 0
[32], where λA (B) is the intrinsiclike SOC on A (B) sites. We
demonstrate this in two complementary ways: by means of a
numerical evaluation of the T -matrix series (full resumma-
tion) and an analytical calculation of a subset of Feynman
diagrams. The latter provides insights into the microscopic
mechanisms governing the SHE, while the former allows us
to reach the strong- and unitary scattering regimes, e.g., de-
scribing resonant impurities [62].

Results. We specialize to the case |ε| > 
s, where 
s =√
4λ2

R + λ2
vZ is the spin gap, which, as mentioned previously,
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is the most pertinent parameter region. We start by describing
the impact of skew scattering to leading order in u0. This is
achieved by calculating the Y diagrams shown in Fig. 1(c),
in which the Green’s functions and vertices are renormalized
within the first Born approximation (BA),

σ sH
Y =

∑
k,p

2 Re
[
tr
(
G−

k J̄ z
y G+

k Y +G+
p j̄xG−

p

)]
, (3)

where Y + = nu3
0

∑
q G+

q is the retarded skew-scattering inser-
tion, G±

k are the Green’s functions evaluated within the BA,
and J̄ z

y and j̄x are the disorder-renormalized spin current and
charge current vertices, respectively, calculated within the BA.
We note that the Rashba phases in Eq. (1) can be removed by
untwisting the full Hamiltonian via a unitary spin rotation (see
Ref. [26] for details).

Evaluating the Y diagrams in Fig. 1 produces

σ sH
Y = 2eε

nπu0

λ4
Rλ2

vZ

(
ε2 − λ2

vZ

)(
ε2 + λ2

vZ

)2

[
ε4

(
λ2

R + λ2
vZ

) + 3λ2
Rλ4

vZ − ε2λ4
vZ

]2 (4)

to leading order O(n−1) in the impurity concentration. The
intricate behavior with the Fermi energy and θ -dependent
SOCs encoded in Eq. (4) reflects a remarkable reliance of
disorder effects on the spin-orbital texture of Bloch wave
functions (the quantum geometry of energy bands [42]). Prin-
cipally, a noncoplanar Rashba spin texture (and thus λvZ �= 0)
is required for a nonvanishing SHE. This has a simple inter-
pretation: Skew scattering from scalar impurities relies upon
electronic states with a well-defined spin polarization around
a valley to enable a clear separation between spin-up and
spin-down scattering channels. The tilted Rashba spin textures
in graphene-TMD systems generally satisfy this requirement.
Thus, a spin Hall response naturally emerges when the sub-
lattice symmetry is broken [note that λR(θ ) is guaranteed to
be nonzero due to the interfacial breaking of the horizontal
mirror plane]. These considerations remains true at O(n0),
further emphasizing the critical role played by vertex correc-
tions. In addition to occurring at O(n−1), the renormalized
response also carries a factor of u−1

0 , which puts it at the next
order in the scattering strength when compared to the elec-
trical conductivity and spin susceptibility [26,47]. Anomalous
scattering processes, such as single-impurity side jumps and
diffractive skew scattering [54,63–65], kick in to next order in
the small-n expansion and thus are relevant for samples with
low carrier mobility. They are not considered here.

We now turn to the nonperturbative results in the scat-
tering strength obtained by resumming the infinite T -matrix
series in Fig. 1(b) numerically. The range of impurity con-
centrations we focus on is chosen to yield bona fide diffusive
spin transport, i.e., σ sH ∼ n−1. The valley-Zeeman behav-
ior of the steady-state spin Hall conductivity and spin Hall
angle, θsH = 2eσ sH/σxx, is shown in Fig. 2 in both the weak-
scattering and unitary limits. (For consistency, we calculate
the charge conductivity σxx from linear response theory with
the same methodology used for σ sH.) Moreover, the weak-
scattering limit of σ sH (solid line) is obtained via Eq. (4);
a numerical calculation in this regime is out of reach due
to the smallness of the disorder self-energy. We see that
while the weak-scattering limit may yield a nominally large

FIG. 2. Valley-Zeeman coupling dependence of the spin Hall
response for weak-scattering potentials [Eq. (4), with u0 = 0.1 eV
nm2] and unitary (u0 → ∞) limits. A fixed Fermi energy of ε =
0.2 eV is assumed along with n = 1014 m−2 and λR = 20 meV.
The gray region is the area accessible with intermediate-scattering
strengths. The inset shows the same plot but for the spin Hall angle
θsH.

magnitude of the spin Hall response, the corresponding spin-
charge conversion efficiency is significantly lower than in the
unitary case (|θunitary

sH | 	 |θweak
sH |). This can be inferred from

the scaling behaviors in the perturbative regime, σ sH ∝ u−1
0

[see Eq. (4)], as opposed to the faster decay featured by the
electrical conductivity (σxx ∝ u−2

0 ). Furthermore, the charge
transport coefficients have distinct Fermi energy dependences
in the Born and unitary scattering regimes. Specifically, σxx ∼
ε0 (BA) and σxx ∼ ε2 (unitary) in the limit ε 	 
s. This
is fortunate, because the measured charge conductivity in
graphene-TMD systems closely follows the ε2 law in the
intermediate- to high-charge-carrier-density regime [39,66],
thus matching the results of our theory in the unitary limit
and hence evidencing its predictive power. In this strong-
scattering regime, not only do the predicted spin Hall angles
reach detectable values (see inset in Fig. 2), more importantly,
they agree well with lateral spin Hall measurements [39].
Additionally, |σ sH| increases with λvZ in a monotonic fash-
ion for strong disorder, exhibiting no turning points inside a
reasonable range of λvZ, unlike the weak-scattering response,
which displays a maximum at λvZ � λR.

The considerations above show that the unitary scatter-
ing regime should be the primary focus when analyzing the
SHE of realistic systems. To this end, we use the twist-
dependent SOC magnitudes λR(θ ) and λvZ(θ ) probed in
recent experiments on graphene-WSe2 heterostructures [28].
To extrapolate the experimental data to twist angles greater
than π/6, we exploit the twist angle symmetries of the in-
dividual SOCs [22,23]. In practice, this is accomplished by
fitting a minimal Fourier series to the data of Ref. [28]
[see Figs. 3(b) and 3(c)]. To further improve the accuracy
of our results, we also account for the SU(2) gauge covari-
ance breaking due to the momentum cutoff regularization
(kmax = �/v, where � is the energy cutoff) of our numerical
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scheme [67]. The ensuing twist angle behavior of the spin
Hall response in the unitary limit is shown in Fig. 3(a), which
is the main finding of this Letter. The significance of these
results is best appreciated by a direct comparison against
the iη-approximated response σ sH

η , wherein 
± = ∓iη and
vertex corrections are neglected [67]. We immediately see
that σ sH and σ sH

η differ in several ways. Most importantly,
σ sH vanishes when λvZ = 0, while σ sH

η reaches a maximal
value at this point. Furthermore, the iη approximation yields
a response that is not only different in sign, but also an order
of magnitude larger than the renormalized result. We glean
insight for this size discrepancy from the weak-scattering
limit, where σ sH ∼ ε−1 for large Fermi energies in contrast
to σ sH

η tending towards some constant value [67]. The iη
scheme irrefutably fails in modeling the SHE, even when
accounting for the parametric dependences of the broadening
η = η(θ ). Finally, we note that the ladder approximation,
corresponding to only considering the first diagram in the
skeleton expansion of Fig. 1(b), also fails to describe the
giant skew-scattering-driven SHE modulation reported here.
This is because the left-right asymmetry of scattering cross
sections manifests at third order in the scattering poten-
tial, as is well known. Before discussing twisting effects, a
cautionary remark is in order: Short-range defects generate
substantial valley mixing [55–57], which is absent in our
disorder model. Because the skew cross section has opposite
signs in the K and K ′ valleys (courtesy of the valley-Zeeman
effect), intervalley scattering events diminish the skewness
of spin-up/spin-down scattering channels and thus the spin
Hall conductivity [68]. Given the prominence of band-driven
skew scattering in graphene-based heterostructures [61], the
use of interfaces free of atomic defects is advisable to fully
exploit the advantages of proximity-induced SOC for the
SHE. For a quantitative analysis of the interplay of interval-
ley and skew scattering in honeycomb layered systems, we
refer the reader to Refs. [61,68], where these ideas were first
discussed.

Twisting effects. We first focus on the region of twist an-
gles close to 30◦ as this will be the area hosting the most
exotic physics (Fig. 3). At θ = 30◦, the graphene-TMD sys-
tem has C3v symmetry, akin to untwisted bilayers. However,
unlike perfectly aligned heterostructures, there is a hidden
sublattice symmetry in our continuum model. This is because
λvZ(30◦) = 0 and thus the clean system possesses chiral (sub-
lattice) symmetry [69] at zero chemical potential, σzHkσz =
−Hk. (We note that our model omits a small sublattice-
resolved scalar potential effects in accord with perturbation
theory [22] and first-principles calculations [25].) As such,
we speculate that, when the twist angle is equal or close to
30◦, small fluctuations in the proximity-induced spin-orbit
fields will dominate the SHE due to λvZ approaching zero.
These fluctuations can arise from ripples in the graphene flake
[70] and nonuniform twisting across the sample [71]. Both
of these will yield spatially varying spin-orbit couplings that
can engender anomalous spin Hall responses [52,53]. The
exact consequence of these fluctuations makes for an inter-
esting question for further study beyond this work. Second,
we see that the spin Hall response in WSe2 is optimal for θ ≈
17◦, by virtue of the maximal value of |λvZ(θ )|. The strong

deg

deg deg

FIG. 3. (a) Twist angle dependence for the renormalized and
iη-approximated spin Hall conductivities for a graphene-WSe2 bi-
layer based on the experimental observations of Ref. [28], within
the unitary and diffusive limits. The shaded region indicates where
quantum effects will play a major role. Here we take ε = 0.2 eV,
n = 1014 m−2, and � = 10 eV. (b) and (c) Minimal Fourier series
fits to the experimental data (black crosses) of Ref. [28].

modulation of σ sH demonstrated here is a direct indicator
of the giant renormalization generated by the interplay of
disorder and twist-dependent Fermi surface spin texture. In
closing this discussion, we finally note that changing the TMD
of this heterostructure will naturally yield a different twist
angle dependence of the spin Hall conductivity and angle. The
resulting change cannot be predicted through intuition alone
and may be drastic, as hinted at by the difference in twist angle
variation of the SOC strengths shown in Ref. [23]. The only
guaranteed similarity is the vanishing of σ sH at θ = 30◦.

Lateral spin transport. Finally, we frame our results in the
context of recent experiments detecting the SHE in graphene-
TMD systems using spin precession techniques in Hall bar
geometry [37,39]. Within the weak-scattering regime [specifi-
cally, u0 � ν0(ε)−1, with ν0(ε) the clean density of states], the
observed spin Hall angles (θ exp

SHE ∼ 0.1–1 %) are not achiev-
able, even with proximity-induced SOC choices larger than
that recently mapped out by quantum interference imag-
ing [28]. Our microscopic theory predicts θSHE ∼ 0.02% for
λR = λvZ = 20 meV (see Fig. 2), indicating that the behav-
ior observed in spin Hall transport experiments is the result
of strong-scattering potentials. Working in the unitary limit,
we find that a spin Hall angle of order 0.1% is achievable
with larger SOCs or at higher impurity concentrations (ap-
proximately 5 × 1015 m−2); however, this starts to move the
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system away from the diffusive limit. For example, for a
system reflective of graphene-WSe2 heterostructures [28,29]
(λR = 14 meV and λvZ = 3 meV) with n = 4.5 × 1015m−2,
we obtain θSHE = 0.11% and find σxx to be approximately
diffusive [σxx(n)/σxx(2n) = 2.3]. However, the σ sH calculated
within the T -matrix method turns out to be nondiffusive,
reflecting higher-order corrections in n. Given the breakdown
of the diffusive limit in obtaining spin Hall angles comparable
to experiment, our findings suggest that bona fide quantum ef-
fects, such as diffractive skew scattering described by crossing
diagrams [54], may play a role in the spin transport observed.

Conclusion. Our work has demonstrated the necessity for
vertex corrections in the accurate modeling of the SHE in lay-

ered materials with competing broken symmetries. We found
that disorder impacts pure interfacial SHEs in an unexpected
way, leading to a strong oscillatory behavior of the spin Hall
response upon twisting. The twist angle dependence of the
SHE uncovered here reflects the underlying quantum geome-
try of electronic states in regions of noncoplanar spin texture
and allows for the regimes in which spatial fluctuations and in-
trinsic effects may dominate, thus raising intriguing questions
for future research.
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