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Light-induced large and tunable valley-selective Hall effect in a centrosymmetric system
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We propose that a large and tunable valley-selective Hall effect can be realized in a centrosymmetric system
via light-induced breaking of inversion and time-reversal symmetries. This is demonstrated in graphene driven by
bicircularly polarized light, which consists of a linear combination of left- and right-handed circularly polarized
light with different frequencies. We also show that our Hall conductivity is two orders of magnitude larger
than the maximum value obtained in noncentrosymmetric systems, and that the main valley can be switched by
tuning a phase difference between the left- and right-handed circularly polarized light. Our results will enable us
to generate and control the valley-selective Hall effect in centrosymmetric systems.
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Introduction. Electron systems can get a valley degree
of freedom with broken inversion symmetry. In epitaxial or
bilayer graphene [1,2] and some transition-metal dichalco-
genides [3], electrons at the K and K′ points in the momentum
space have the valley degree of freedom. These systems are
noncentrosymmetric because their lattices break inversion
symmetry; this symmetry holds in centrosymmetric systems.
The valley degree of freedom can be used to realize val-
leytronics phenomena. An example is the valley-selective Hall
effect, in which the current from one of two valleys causes
the charge current perpendicular to an electric field. This was
experimentally observed in MoS2 [4] or bilayer graphene [5]
with resonant circularly polarized light (CPL), which excites
an electron at one valley [6–9]. Another example is a valley-
contrasting Hall effect [10], in which the electrons around
different valleys generate opposite currents perpendicular to
the electric field. This is distinct from the valley-selective Hall
effect because in the latter the contribution from one valley is
negligible. Since the valley degree of freedom can be utilized
in similar ways to the spin degree of freedom in spintronics,
valleytronics has opened new phenomena and applications
utilizing it.

Bicircularly polarized light (BCPL) will provide a new way
for generating and controlling the valley degree of freedom.
BCPL is generated by a linear combination of left- and right-
handed CPL [11] and described by ABCPL(t ) = (Ax(t ) Ay(t ))T

[e.g., see Figs. 1(a) and 1(b)], where

Ax(t ) + iAy(t ) = A0ei�t + A0e−i(β�t−θ ). (1)

If A0 is strong enough to be treated nonperturbatively, BCPL
can break time-reversal symmetry and inversion symmetry
[12,13]. Therefore, BCPL could generate the valley degree
of freedom. To treat such nonperturbative effects, we need to
consider a system driven by BCPL using the Floquet theory
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[14,15]. Since the Hamiltonian in this theory can be changed
by varying parameters of ABCPL(t ), BCPL could also con-
trol the valley degree of freedom. However, a possibility of
a BCPL-induced valley-selective or valley-contrasting Hall
effect remains unexplored.

Here we demonstrate the large and tunable valley-selective
Hall effect in monolayer graphene driven by BCPL. Using a
high-frequency expansion [16,17] of the Floquet theory, we
show that inversion symmetry can be broken only for even β

in Eq. (1), whereas time-reversal symmetry can be broken for
any β. We also show the effects of BCPL on the energy bands
and the Berry curvatures. Then, using the Floquet linear-
response theory [18–23], we show that the valley-selective
Hall effect can be realized for β = 2 at θ = 0 or π . Our Hall
conductivity is much larger than the maximum value known
so far, and the main valley can be switched by tuning θ . Our
results indicate that BCPL can be used to generate and control
the valley-selective Hall effect in centrosymmetric systems.
This work will open the door to the valley-selective Hall effect
in centrosymmetric systems.

Model. Graphene driven by BCPL [Fig. 1(c)] is described
by the Hamiltonian

H = Hs(t ) + Hb + Hsb, (2)

where Hs(t ) is the system Hamiltonian for graphene with the
BCPL field ABCPL(t ), Hb is the bath Hamiltonian, and Hsb

is the system-bath Hamiltonian. We have treated the non-
perturbative effects of the BCPL field as the Peierls phase
factors of the kinetic energy [18,20,22,23]. In addition to
Hs(t ), we have considered Hb and Hsb [20–23], where the
bath is Büttiker-type [24,25] and in equilibrium at temperature
T . The main effect of these Hamiltonians is to induce the
damping � [21–23], which could be used to realize a nonequi-
librium steady state under heating [26,27] induced by BCPL.
Throughout this paper, we set h̄ = kB = c = aNN = 1, where
aNN is the length between nearest neighbor sites.

Inversion or time-reversal symmetry breaking. We be-
gin with symmetry breaking induced by BCPL. Using the
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FIG. 1. (a), (b) Trajectories of ABCPL(t ) per period Tp = 2π/�

for β = 2 and 3. The red, yellow, and blue lines correspond to those
at θ = 0, π

2 , and π , respectively. (c) The setup for the valley-selective
Hall effect in graphene driven by BCPL. The system, graphene, is
driven by the pump field, the field of BCPL, and is weakly coupled
to the heat bath. The charge current perpendicular to the probe field
is generated.

high-frequency expansion [16,17] of the Floquet theory, we
obtain an effective Hamiltonian for describing the nonpertur-
bative effects of off-resonant BCPL,

Heff =
∑

k

∑
a,b=A,B

∑
σ=↑,↓

ε̄ab(k)c†
kaσ ckbσ , (3)

where

ε̄AA(k) = −ε̄BB(k) = 	BCPL + K (eff)
AA (k), (4)

ε̄AB(k) = ε̄BA(k)∗ = ε
(eff)
AB (k). (5)

(For the derivation, see the Supplemental Material [28].) Here
	BCPL is the staggered sublattice potential [12,29,30],
ε

(eff)
AB (k) = ∑

R=R0,R1,R2
t (AB)
eff (R)e−ik·R, and K (eff)

AA (k) =∑
R=±R′

0,±R′
1,±R′

2
K (AA)

eff (R)e−ik·R, where t (AB)
eff (R) and

K (AA)
eff (R) are the nearest-neighbor and next-nearest-neighbor

hopping integrals, respectively. Note that R0 = (0 1)T ,
R1 = (−

√
3

2 − 1
2 )T , R2 = (

√
3

2 − 1
2 )T , R′

0 = (
√

3 0)T ,

R′
1 = (−

√
3

2
3
2 )T , and R′

2 = (−
√

3
2 − 3

2 )T (see Fig. 1 of
the Supplemental Material [28]). Equations (3)–(5) show
that BCPL not only modifies the nearest-neighbor hopping
integrals, but also induces the staggered sublattice potential
and the next-nearest-neighbor hopping integrals. The latter
quantities depend on β (see Eqs. (34) and (35) in the
Supplemental Material [28]): for even β, 	BCPL is finite and
K (AA)

eff (R) has real and imaginary parts; for odd β, 	BCPL

is zero and K (AA)
eff (R) is pure-imaginary. As specific cases,

we show them for β = 2 and 3 in u = eA0 � 1 (for their
derivation, see the Supplemental Material [28]):

	BCPL =
{−6K1(u, θ ) (β = 2),

0 (β = 3), (6)

K (AA)
eff (±R′

l ) =
{

∓iK0(u) + K1(u, θ ) (β = 2),

∓i[K ′
0(u) + K ′

l+1(u, θ )] (β = 3),
(7)

where K0(u) =
√

3t2
NN

4�
u2, K1(u, θ ) = t2

NN
4�

u3 cos θ , K ′
0(u) =√

3t2
NN

4�
(u2 − 3

4 u4), K ′
1(u, θ ) =

√
3t2

NN
16�

u4 cos θ , K ′
2(u, θ ) =

t2
NN

16�
u4[sin θ − sin(θ − 4π

3 )], and K ′
3(u, θ ) = − t2

NN
16�

u4[sin θ −
sin(θ − 2π

3 )]. Therefore, BCPL can break inversion symmetry
only for even β because it is broken by 	BCPL and the
real parts of the next-nearest-neighbor hopping integrals.
Furthermore, since time-reversal symmetry is broken by
the imaginary parts of the next-nearest-neighbor hopping
integrals [22,31,32], BCPL can break it for any β. Note
that the l-independent K (AA)

eff (±R′
l )’s for β = 2 preserve C3

rotational symmetry, whereas the l-dependent ones for β = 3
break it.

Valley degeneracy lifting. The above differences between
the effects of BCPL for even and odd β lead to a difference
in the valley degeneracy. The energy dispersion of Eq. (3) is
given by

ε
(eff)
± (k) = ±

√[
	BCPL + K (eff)

AA (k)
]2 + ∣∣ε (eff)

AB (k)
∣∣2

. (8)

We estimate ε
(eff)
± (k)’s at the K and K′ points for

β = 2 and 3 in u � 1; the results for β = 2 are ε
(eff)
± (kK) =

±|3√
3K0(u) − 9K1(u, θ )| and ε

(eff)
± (kK′ ) = ±|3√

3K0(u) +
9K1(u, θ )|, where kK = ( 4π

3
√

3
0)T and kK′ = ( 8π

3
√

3
0)T ; those

for β = 3 are ε
(eff)
± (kK) = ε

(eff)
± (kK′ ). Therefore, the valley

degeneracy can be lifted for even β due to a combination of
breaking both time-reversal symmetry and inversion symme-
try, whereas it is preserved for odd β.

The energy difference between the two valleys, 	valley =
|ε (eff)

± (kK) − ε
(eff)
± (kK′ )|, for β = 2 can be controlled by

changing u and θ . Figures 2(a)–2(c) show the θ dependence
of ε

(eff)
± (k) numerically calculated for β = 2 at � = 10tNN and

u = 0.4 and 0.8. (For details of the numerical calculations, see
the Supplemental Material [28].) At θ = 0 and π , 	valley is
finite and increases with increasing u [see Figs. 2(a) and 2(c)].
This is because K0(u) and |K1(u, θ )| increase with increasing
u. The valley which has the larger gap can be switched by
changing θ from 0 to π or vice versa [compare Figs. 2(a) and
2(c)]. Meanwhile, at θ = π

2 , 	valley = 0, i.e., the valley degen-
eracy holds [see Fig. 2(b)]. This is because K1(u, θ ) ∝ cos θ .

Valley-selective Hall effect. We turn to the nonperturbative
effects of BCPL on the Berry curvatures for the driven system
described by Eq. (3) for β = 2. The Berry curvature for the
upper or lower band, Bz

+(k) or Bz
−(k), is given by

Bz
±(k) = −i

vx
±∓(k)vy

∓±(k) − v
y
±∓(k)vx

∓±(k)

[ε (eff)
+ (k) − ε

(eff)
− (k)]2

, (9)

where vν
αβ (k) = ∑

a,b=A,B(U †
k )αav

(eff)ν
ab (k)(Uk )bβ (α, β =

+,− and ν = x, y), (Uk )aα is the unitary matrix to diagonalize
Eq. (3), and v

(eff)ν
ab (k) = ∂ε̄ab(k)

∂kν
. Figures 2(d)–2(f) show the
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FIG. 2. (a)–(c) The momentum dependences of ε
(eff)
+ (k) and ε

(eff)
− (k) obtained in the high-frequency expansion for β = 2 at � = 10tNN,

u = 0.4 and 0.8, and θ = 0, π

2 , and π . The momenta at the symmetric points K′, �, K, and M are ( 8π

3
√

3
0)T , (0, 0)T , ( 4π

3
√

3
0)T , and ( π√

3
π

3 )T ,

respectively. Here ( 8π

3
√

3
0)T and (0, 0)T are equivalent to (− 4π

3
√

3
0)T and ( 4π√

3
0)T , respectively. (d)–(f) The momentum dependences of Bz

α (k)
obtained in the high-frequency expansion for β = 2 at � = 10tNN and θ = 0, π

2 , and π with (α, u) = (+, 0.4), (−, 0.4), (+, 0.8), and (−, 0.8).
The insets show the results for u = 0.8 on a smaller scale.

θ dependences of Bz
+(k) and Bz

−(k) numerically calculated
for β = 2 at � = 10tNN and u = 0.4 and 0.8. (For details of
the numerical calculations, see the Supplemental Material
[28].) If the valley degeneracy is lifted (i.e., θ is 0 or π ), the
Berry curvatures at the two valleys are different in magnitude.
The valley which gives the largest contribution to the Berry
curvatures can be switched by changing θ from 0 to π or
vice versa. These results suggest that BCPL could induce the
valley-selective Hall effect and switch its dominant valley by
changing θ . Furthermore, by changing θ from 0 or π to π

2
or vice versa, a crossover between the valley-selective and
valley-independent Hall effects could be induced. However,
even with broken inversion symmetry, the Berry curvatures
of the upper or lower band at the two valleys have the same
sign, which means the absence of the valley-contrasting
Hall effect.

The results shown above are consistent with the time-
averaged anomalous Hall conductivity (AHC) σ C

yx calculated
in the Floquet linear-response theory [18–23]. Figure 3(a) or
3(b) shows σ C

yx numerically calculated at � = 8tNN for β = 2
or 3. (For details of the numerical calculations, see the Supple-
mental Material [28].) For β = 3, σ C

yx is quantized in a similar
way to that of graphene driven by CPL [18,22,32]. This agrees
with the analyses using the high-frequency expansion because
the effective Hamiltonian for β = 3 is qualitatively the same
as that of graphene driven by CPL [22,32]. Meanwhile, for
β = 2, σ C

yx is quantized at θ = π
2 , whereas that is reduced from

the quantized value for moderately large u’s at θ = 0 and π .
The magnitude reduction in σ C

yx for large u’s at θ = 0 or π is
attributed to a drastic reduction in the contributions near one
valley due to a larger gap opening. In all the cases, σ C

yx ≈ −σ C
xy

is satisfied (see Fig. 2 in the Supplemental Material [28]).

(Because of this, it is reasonable to call σ C
yx the anomalous Hall

conductivity.) Since such an antisymmetric part (σ C
yx − σ C

xy)/2
is finite only with broken time-reversal symmetry [33,34],

FIG. 3. (a), (b) The u dependences of σ C
yx obtained in the Floquet

linear-response theory for β = 2 or 3 at � = 8tNN and θ = 0, π

2 , and
π . Here u = eA0 is dimensionless. The dotted lines correspond to
a quantized value −2e2/h. (c)–(h) The momentum dependences of
σ C

yx (k) obtained in the Floquet linear-response theory for β = 2 at
� = 8tNN with (θ, u) = (0, 0.2), (0,0.4), (0,0.6), (π, 0.2), (π, 0.4),
and (π, 0.6). The symmetric points are the same as those used in
Fig. 2.
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these results indicate that time-reversal symmetry is bro-
ken in all the cases, which agrees with the high-frequency
expansion.

Then, Figs. 3(c)–3(h) show σ C
yx(k)’s calculated in the

Floquet linear-response theory for β = 2 at � = 8tNN with
(θ, u) = (0, 0.2), (0,0.4), (0,0.6), (π, 0.2), (π, 0.4), and
(π, 0.6), where σ C

yx(k) is defined as σ C
yx = ∑

k σ C
yx(k). For

u = 0.2, σ C
yx(kK) and σ C

yx(kK′ ) are almost the same. Mean-
while, for u = 0.4 and 0.6, the main contribution at θ = 0
or π comes from the vicinity at the K or K′ point, respec-
tively. These results indicate that moderately strong BCPL
can induce the valley-selective Hall effect, and that the valley
which gives the main contribution to this Hall effect can
be switched by changing θ from 0 to π or vice versa. In
contrast, σ C

yx(kK) and σ C
yx(kK′ ) are degenerate at θ = π

2 even
for u = 0.4 and 0.6 (see Fig. 3 in the Supplemental Mate-
rial [28]); the same degeneracy holds for β = 3 at θ = 0,
π
2 , and π (see Fig. 3 in the Supplemental Material [28]).
Therefore, by changing θ for β = 2, the crossover between
the valley-selective and valley-independent Hall effects can
be induced. Since the valley degeneracy is lifted only without
both time-reversal symmetry and inversion symmetry, these
results indicate that inversion symmetry is broken for even β

at θ = 0 and π , which also agrees with the high-frequency
expansion.

Similar results are obtained at � = 6tNN (see Fig. 4 of
the Supplemental Material [28]), implying that the similar
properties hold even in the resonant case. Therefore, our
valley-selective Hall effect could be experimentally observed
because for graphene driven by CPL, the results obtained in
the Floquet linear-response theory [18,22] are qualitatively
reproducible in experiments using a smaller light frequency
[35]. Note that the Floquet linear-response theory can analyze
the off-resonant case and the resonant case, whereas the high-
frequency expansion can analyze only the former case. Our
light is resonant or off-resonant if � � Wband or � > Wband,
respectively, where Wband = 6tNN is the bandwidth of the non-
driven system.

Discussion. To understand why the valley-contrasting Hall
effect is absent, we compare the Berry curvatures calculated
for β = 2 using the high-frequency expansion with those in
two special cases. In these cases, the effective Hamiltonian is
given by Eq. (3) for β = 2 with K0(u) = 0 or K1(u, θ ) = 0,
and the other parameters are the same as those used for
β = 2 and � = 10tNN at θ = 0 and u = 0.4. Since the K0(u)
term and K1(u, θ ) terms break time-reversal symmetry and
inversion symmetry, respectively [Eqs. (6) and (7)], the first
case possesses time-reversal symmetry, whereas the other pos-
sesses inversion symmetry. (The first case is similar to that
studied in Ref. [10].) Note that for β = 2, K1(u, θ ) appears
in 	BCPL and K (AA)

eff (±R′
l ) [Eqs. (6) and (7)]. Figures 4(a)

and 4(b) show the Berry curvatures numerically calculated in
these two cases. The Berry curvatures of the upper or lower
band at the two valleys are opposite in sign with time-reversal
symmetry. Therefore, we conclude that the valley-contrasting
Hall effect is absent in graphene driven by BCPL due to

FIG. 4. (a), (b) The momentum dependences of Bz
+(k) and Bz

−(k)
in the special cases with K0(u) = 0 and K1(u, θ ) = 0. The symmetric
points are the same as those used in Fig. 2.

the broken time-reversal symmetry. Note that the difference
between the signs of the Berry curvatures at the two valleys
without and with time-reversal symmetry may be similar to
that between a ferromagnet and an antiferromagnet.

We compare our study with the relevant studies. The
BCPL-induced symmetry breaking has been partly clarified
in some off-resonant cases at β = 2 using the high-frequency
expansion [12,13]. Meanwhile, our results obtained in the
high-frequency expansion are applicable to any β. Further-
more, our Floquet linear-response theory showed that these
results remain qualitatively unchanged at smaller light fre-
quencies including a resonant one for β = 2 and 3. Therefore,
our results have a wider applicability. Then, there is no pre-
vious study showing the valley-selective Hall effect via the
light-induced inversion symmetry breaking, although there
are many studies about valley-dependent properties of peri-
odically driven systems [36–41]. Therefore, our study is the
first work demonstrating the BCPL-induced valley-selective
Hall effect.

We also comment on three advantages of our valley-
selective Hall effect. In the standard mechanism [4,5], the
inversion symmetry is broken by the lattice and the time-
reversal symmetry is broken by resonant CPL. Meanwhile, in
our mechanism, these symmetries are both broken by BCPL.
Therefore, only our mechanism works in centrosymmetric
systems. In addition, our mechanism enables us to switch
the main valley and induce the crossover between the valley-
selective and valley-independent Hall effects by tuning θ .
Note that in the standard mechanism, the main valley can
be switched by changing the helicity of CPL. Then, our Hall
conductivity, which is O(e2/h) [e.g., see the value at u = 0.6
and θ = 0 in Fig. 3(a)], is two orders of magnitude larger than
the maximum value obtained in the standard mechanism [5].
This comes from a special property of monolayer graphene
that the energy gaps at the two valleys are tunable solely
by light, which enables us to make the energy gap at one
valley much larger than the other with keeping the other small.
Therefore, monolayer graphene driven by BCPL may provide
the best opportunity for the valley-selective Hall effect.
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