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Resonant 4f photoelectron diffraction: Insight into Yb compounds
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Resonant photoelectron diffraction (RPED) and its use for studies of lanthanides are presented. To demonstrate
the potential of this technique, we show how the ground-state properties of the heavy-fermion compound
YbRh2Si2 and its trivalent counterpart YbCo2Si2 can be determined from RPED measurements and modeling.
By providing a modeling recipe and exploring RPED capabilities and limitations, we anticipate wide applications
of this method for insights into the properties of lanthanide-based systems.
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Photoelectron diffraction (PED) is an efficient method for
the comprehensive structural analysis of crystalline surfaces,
impurities and defects, thin films, low-dimensional materials,
as well as systems consisting of repeated, but not necessarily
periodic, structural blocks [1–8]. PED is based on the photoe-
mission (PE) of electrons from selected atomic sites, called
emitters. On their way to the surface, photoelectrons undergo
multiple scattering on the atoms which surround the emitter.
As a result, the angular distribution of the measured photocur-
rent exhibits a diffraction pattern, which contains information
about the properties of emitters and the local structure around
them. PED also allows to explore magnetic ordering [9–11],
estimate the intermixing of elements between different atomic
sites [12], and determine the noninteger valency of 4 f ele-
ments in individual atomic layers [11].

To resolve the fine structure of PED patterns, it is essential
to have an intense PE signal. For certain cases, such as the
investigation of deep atomic layers and dilute species, the
possibility of enhancing the measured PE signal becomes of
primary importance. The desired enhancement can be reached
by using resonant PED (RPED) [13], where photon energy is
tuned to the absorption edge of a chosen core shell [6,13,14].
Interference of the direct PE channel and the autoionization
(Auger) channel may significantly amplify the PE signal.
However, in the modeling of RPED patterns the latter indirect
PE channel is commonly ignored [6]. This approach may lead
to errors which are largely unexplored. Examples of theoreti-
cal modeling of RPED remain very few in number [10,15].
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Here, we show the advances of RPED for lanthanide re-
search. Starting with a theoretical overview of RPED, we
further show how this technique allows to probe the ground-
state properties of the heavy-fermion compound YbRh2Si2

influenced by a crystal electric field (CEF). We discuss the
possible limitations of RPED and ways to overcome them.
Namely, on the next example of YbCo2Si2 [16] we consider
the case when the CEF splitting of 4 f states is so small that
several states contribute to the PE signal. Finally, we present
a route for RPED modeling and discuss the consequences of
ignoring the indirect PE channel.

The samples were grown according to Refs. [17,18].
Angle-resolved photoemission spectroscopy (ARPES) and
RPED measurements were performed at BESSY II (One-
Cubed ARPES instrument) and at the Swiss Light Source
(PEARL instrument). The samples were cleaved in ultrahigh
vacuum before measurements. The experimental geometry is
described in the Supplemental Material [19].

To describe RPED, we use the muffin-tin model and ex-
press the PE amplitude as the sum of scattered partial waves
(see Supplemental Material [19] for details)

ψ (�k) = 2πk
√

ω/c
∑

lm

eiδl 〈χklm|�ε · �r|g0〉ψ̃lm(�k), (1)

where ω is the photon energy (atomic units are used), g0 is
the atomic orbital from which the photoelectron is excited,
�ε is the photon polarization, δl is the continuum state phase
shift, and χklm is the final state described by the function
χklm = il r−1Rkl (r)Y m

l (�r) with the radial wave function Rkl

normalized to the delta function of energy. The photoioniza-
tion cross section is σ (�k) = |ψ (�k)|2.
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FIG. 1. Resonant PE from YbRh2Si2 at the Yb 4d threshold. (a) Yb 4 f PE cross sections derived experimentally and theoretically.
(b) Schematic presentation of the tetragonal crystal structure, cleavage plane, and possible Si and Yb surface terminations. (c) A set of PE
spectra taken across the threshold from the Si-terminated surface at 2 K. (d) Resonant PE spectrum taken from the Yb-terminated surface at
2 K. (e) Computed evolution of the PE intensity of the Yb 4 f 12 final state multiplet across the Yb 4d threshold for the Si-terminated crystal.

The next step is to replace the one-electron PE matrix
element in Eq. (1) by the many-electron one, taking into
account the resonance. Such a matrix element for the resonant
transition from the ground state |g〉 to the final state |kβ〉 =
|β, klmms〉, with β being the final state of the ion, is given by
[20]

〈kβ|T |g〉 ≈ 〈kβ|Vr |g〉 +
∑

αα′
〈kβ|Va|α〉〈α|Ga|α′〉〈α′|Vr |g〉,

(2)
where Ga is the Green’s function of the Hamiltonian with
a configuration interaction Va, α denotes intermediate states,
and Vr describes the interaction with photons.

Exemplarily, we will examine RPED at the 4d → 4 f
absorption edge of lanthanides, focusing on two Yb-based
compounds. Notably, Yb exhibits two distinct 4 f configu-
rations, namely 4 f 14 (Yb2+) and 4 f 13 (Yb3+), but only the
Yb3+ configuration yields a resonance due to the complete
occupation of the 4 f shell in Yb2+. Additionally, in heavy
lanthanides the PE process is effectively characterized by
the 4d → 4 f excitation and the super-Coster-Kronig decay
channel 〈4d94 f n+1|Va|4d104 f n−1, kl〉, which is the only de-
cay channel we consider here. For light lanthanides, however,
more decay channels must be taken into account [20].

In our calculations for Yb3+ ions, we limit the basis for the
ground state to the |MJ〉 states of the lowest-energy term 2F7/2,

|gν〉 =
∑

MJ

Aν
MJ

|4 f 13LSJMJ〉 . (3)

To describe the intermediate states α, we use the full basis
of the |4 f 144d9Lt St Jt MJt 〉 states and diagonalize the Hamil-
tonian with the Coulomb and spin-orbit (SO) terms. The final
states kβ were constructed from the |4 f 12L f S f Jf MJ f , klmms〉
basis states with l taking all possible values (0, 2, 4, 6, 8); the
Hamiltonian parameters are given in Ref. [21]. All necessary

radial matrix elements and phase shifts are calculated with our
Hartree-Fock code [22]. The scattering amplitudes ψ̃lm(�k) are
calculated with the modified version of the EDAC code [23],
where we replaced the charge density of Yb with the one
calculated with our code [22]. Finally, the matrix elements
〈kβ|Va|α〉 are scaled by the factor of 0.75 to fit the experi-
mentally measured width of the resonance.

First, it is worth establishing how well the resonant PE
is described by our modeling. We show this in Fig. 1 with
YbRh2Si2 as an example. Note that YbRh2Si2 and YbCo2Si2

expose two possible surface terminations upon cleaving,
namely the Yb and Si terminations as shown in Fig. 1(b)
[24,25]. Figure 1(c) shows a set of PE spectra taken across
the Yb 4d threshold from the Si-terminated surface. Due to
the noninteger valency of Yb in YbRh2Si2, the PE spectra
reveal a coexistence of the Yb2+ and Yb3+ multiplets [26].
Note that between 0 and 2 eV of binding energy (BE), two
Yb2+ PE doublets can be seen. They reflect the signals from
the outermost Yb surface and bulklike Yb marked in Fig. 1(c).
The spectral structure of a Yb3+ bulklike multiplet between 5
and 13 eV BE was discussed in Ref. [27].

When we change the photon energy across the Yb 4d
threshold, the PE intensity of the Yb3+ multiplet is reso-
nantly enhanced as seen from Fig. 1(c). Its evolution along
with the calculated PE cross sections is shown in Fig. 1(a).
The computed PE spectra of the Yb3+ multiplet are given
in Fig. 1(e). A good agreement between the calculated and
measured spectra as well as the PE cross sections is achieved
when the resonance energy Eα − Eg is set to 181.05 eV
in Eq. (2).

Shifting now our focus to the RPED measurements
[Fig. 2(b)], we will show how this technique may be effec-
tively employed to analyze the ground state of YbRh2Si2. The
CEF with the tetragonal point symmetry splits the J = 7

2 state
of Yb3+ into four doubly degenerate states [25]. They belong

L241118-2



RESONANT 4f PHOTOELECTRON … PHYSICAL REVIEW B 109, L241118 (2024)

FIG. 2. (a) Different CEF schemes of YbRh2Si2 proposed in Refs. [28,29]. Difference in the charge densities of the closed 4 f shell and
the CEF states is illustrated (color denotes spin). (b) Schematic of the RPED experiment. (c) Average R factor of the six analyzed peaks shown
in (d) for the four different ground-state configurations. Dotted lines with open symbols show the R factor when the resonant process is not
taken into account. (d) Experimental and theoretical Yb3+ RPED patterns (with h̄ω = 181 eV at 35 K) for the peaks marked in Fig. 1(d). The
PE intensity is presented in an orthographic projection with a subtracted background. The dark color corresponds to low PE intensity.

to the two irreducible representations �t6 and �t7, leading to
nonzero coefficients Aν

MJ
in Eq. (3) only for MJ that differ by

4. These states can be parametrized [18] as

�6,1 = cos α6 | ± 1/2〉 + sin α6 | ∓ 7/2〉,
�6,2 = sin α6 | ± 1/2〉 − cos α6 | ∓ 7/2〉,
�7,1 = cos α7 | ± 3/2〉 − sin α7 | ∓ 5/2〉,
�7,2 = sin α7 | ± 3/2〉 + cos α7 | ∓ 5/2〉 , (4)

where we restrict the parameters α6 and α7 to the range from
0◦ to 90◦. The CEF splittings, known from neutron scattering
measurements, and the proposed CEF schemes [28,29] are
summarized in Fig. 2(a).

In Fig. 2(d), we show the RPED patterns from Yb-
terminated crystal for the peaks 1–6 marked in Fig. 1(d). Since
the PED matrix element is mostly determined by the crystal
structure, all patterns reveal similar sets of features. However,
there are notable differences in the intensities of these features
(see Fig. S1 [19]), which contain information about the ground
state of Yb.

In our model, we considered the Yb3+ PE signal from three
Yb layers (the fifth, ninth, and 13th atomic layers) below the
divalent Yb surface [Fig. 2(b) and Ref. [19]]. The studies of
structurally similar LnRh2Si2 systems (Ln = Tb, Dy, and Ho)
[30,31] revealed a strong relaxation of the trivalent Ln ter-
mination which should be considered in modeling. However,
for the divalent Yb surface of YbRh2Si2 PED patterns mod-
eled without relaxation agree well with experiment, indicating
no significant relaxation. This is supported by our density
functional theory (DFT) calculations, where the derived dis-
placements of atoms near the surface are negligible (<0.07 Å

relative to their positions in the bulk; see Fig. S2 and related
discussion in Supplemental Material [19]).

Since for YbRh2Si2 the 4 f ground-state doublet is sep-
arated by 17 meV from the first excited doublet, we can
neglect the occupation of excited states at the temperature of
RPED experiment (∼35 K). To establish the ground state of
YbRh2Si2, we examined all four possible doublets given by
Eq. (4) with all possible values of α6 or α7. Each modeled
RPED pattern was compared with the experimental one by
means of a reliability factor R defined in Ref. [32]. In Fig. 2(c),
we present the dependencies of the R factor which was av-
eraged over six RPED patterns for all four possible ground
states. As seen, the optimal ground state, corresponding to
the global minimum of R, is �7,2 with α7 = 56◦. It agrees
perfectly with the ground state corresponding to the CEF
parameters PR1, proposed in Ref. [28] along with the PR2
set. They both were derived from the analysis of inelastic
neutron scattering and electron paramagnetic resonance mea-
surements. However, no decision was made as which of the
two sets is the decisive one. As we can see now, the RPED
data allow us to make the final statement.

It is worth noting that the RPED patterns in Fig. 2(d)
reveal R factors smaller than 0.2, implying a good agreement
between experiment and theory. The only exception is peak
6, which shows a large R value due to its low intensity and,
consequently, noisy pattern. Nevertheless, its R factor reaches
a minimum close to the PR1 parameters.

It is instructive to analyze the consequences of disregarding
the indirect term in the PE matrix element. For this case, the
calculated dependencies of the R factor for the �7 ground
states are shown by dashed lines in Fig. 2(c). One can see
that the R-factor curve for �7,2 is shifted by more than 40% to
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(a) (b)

(c)

(d)

FIG. 3. (a) Experimental and theoretical RPED patterns from the Yb3+ 4 f multiplet of YbCo2Si2 for the peaks marked in (c). Measure-
ments were conducted at ∼35 K and calculations were performed with CEF parameters PC3. (b) R-factor dependence on the parameters of 4 f
states for different CEF schemes. (c) PE spectrum taken from the Yb termination at hν = 181 eV. (d) Measured inverse magnetic susceptibility
compared with the one calculated for the CEF parameters PC3 at the magnetic field B = 2 T.

larger values of R and its minimum now is less obvious and
moved away from the PR1 point. In addition, the difference
in R between the sets PR1 and PR2 decreases as compared to
the resonant curves. Overall, we conclude that ignoring the
resonant term may provide a comparable but substantially less
reliable result. We should add here that for certain cases (e.g.,
for Eu [11]), the resonance may not significantly affect the
PED patterns.

We can better understand the capabilities and limitations of
RPED by looking also at the trivalent compound YbCo2Si2,
for which the results are summarized in Fig. 3. The PE spec-
trum taken from the cleaved sample reveals a high intensity
of the Yb2+ doublet [Fig. 3(c)] implying that the sample
surface is mostly Yb terminated. The PED analysis indi-
cates the possible presence of about 10% of a Si-terminated
surface that does not affect the results. Compared to the
spectrum for YbRh2Si2, this one lacks peaks 7 and 8. This
is a spectroscopic signature of trivalent behavior of Yb in
the bulk of YbCo2Si2 [16]. For measurements, we considered
the highest-intensity peaks marked as 1 and 2. The obtained
RPED patterns are shown in Fig. 3(a). As for YbRh2Si2, we
first considered only the ground-state doublet. RPED analysis
indicates that the optimal ground state is �7,2. The dependence
of R(α7) looks similar to the corresponding curve in Fig. 2(c),
but with smaller variations of R ranging from 0.34 to the
global minimum of 0.25 reached at α7 = 68◦ (see Fig. S3
[19]). Thus, the obtained results for YbCo2Si2 are very similar
to those of YbRh2Si2.

However, as seen from Table I, the ground-state doublet
of YbCo2Si2 is separated from the first excited doublet by

only 4 meV [33]. Therefore, the second doublet contributes
significantly to the PE signal at ∼35 K, that is the temperature
of experiment. It is therefore necessary to consider PE from
both the ground state and the first excited state, and model
the wave functions for all permutations allowed by Eq. (4).
Following this procedure, we derived the two-dimensional
(2D) R-factor maps which are given in Fig. 3(b). The obtained
global minimum of R is highlighted with a yellow square. Al-
though it indicates that �7,2 is the ground state, it is seen that
there are several local minima (marked with yellow circles),
for which the R factors differ not too much from that of the
global minimum. This implies that the wave functions of the
ground and first excited states cannot be uniquely identified
from RPED measurements at 35 K.

This problem can be solved by performing measurements
at lower temperature. If this is not accessible, with the help
of data from the other techniques, it is feasible to choose
appropriate wave functions not only for the two doublets, but
for the entire CEF-split multiplet. In order to do this, we first
computed anisotropic g factors and magnetic susceptibility
and compared them with experiment [18]. Then, we searched
for the CEF parameters which provide the smallest R and
show good agreement for g factors and susceptibility. This
approach gave us the unique solution marked by the yellow
cross in Fig. 3(b) and denoted as PC3 in Table I. The respective
anisotropic susceptibility, shown in Fig. 3(d), and g factors
given in Table I, agree nicely with experiment [18,34]. As
we see, the obtained optimal solution is not far from the
global minimum of R, but the parameter α6 deviates notably.
This can be explained by the fact that CEF near the surface

TABLE I. Characteristics of YbCo2Si2 4 f states. Possible CEF parameters Bk
q are given in meV for spherical tensor operators. Experimental

g factors are gc ≈ 1.4 and gab ≈ 2.8 [18]. The parameter set PC3 is derived in this work.

Energy levels Ref. B2
0 B4

0 B4
4 B6

0 B6
4 Scheme α6 α7 gab gc Label

YbCo2Si2 [33] [33] 48.1 −19.3 −25.2 35.4 7.51 �6,2 − �7,1 − �7,2 − �6,1 82.3◦ 42◦ 4.49 0.98 PC1
[18] 47.3 −28.5 −27.7 −12.5 2.16 �7,1 − �6,2 − �7,2 − �6,1 81.7◦ 27◦ 3.20 1.54 PC2

0,4,12.5,30.5 meV This work 43.4 −29.5 2.38 −15.7 62.7 �7,2 − �6,2 − �7,1 − �6,1 75◦ 62◦ 3.28 1.41 PC3
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may slightly differ from CEF in the bulk. Such possibility
is evidenced by our studies of LnRh2Si2 compounds, where
Ln = Tb, Dy, and Ho [30,31]. When the energy separation
between the ground and excited 4 f states is small, as in the
case of YbCo2Si2, the influence of surface effects can be
essential.

In summary, the presented RPED approach and its appli-
cation to the heavy-fermion compound YbRh2Si2 illustrates a
potential of exploiting the resonant PE process in PED mea-
surements for studies of lanthanides. Especially, a conclusive
determination of the ground-state properties of YbRh2Si2 as
well as a discussion of RPED’s limitations considered for
the case of trivalent YbCo2Si2 demonstrates that RPED is a
powerful spectroscopic tool for studies of heavy-fermion phe-
nomena. It can be extended quite naturally to other strongly
correlated materials and applied at other resonant excitations
such as 3d → 4 f [35].
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